|
| 1 | +/* |
| 2 | +https://www.techiedelight.com/shortest-common-supersequence-finding-scs/ |
| 3 | +*/ |
| 4 | + |
| 5 | +//Find one Shortest Common Supersequence |
| 6 | +// length(X) = m and length(Y) = n |
| 7 | + |
| 8 | +public String findSCS(String X, String Y, int m, int n,int T[][]){ |
| 9 | + |
| 10 | + if(m == 0) return Y.substring(0,n); |
| 11 | + |
| 12 | + else if(n == 0) return X.substring(0,m); |
| 13 | + |
| 14 | + else if( X.charAt(n-1) == Y.charAt(m-1) ){ |
| 15 | + return findSCS(X, Y, m-1, n-1, T) + X.charAt(n-1); |
| 16 | + } |
| 17 | + else if( T[m-1][n] < T[m][n-1] ){ |
| 18 | + return findSCS(X, Y, m-1, n, T) + X.charAt(m-1); |
| 19 | + } |
| 20 | + else{ |
| 21 | + return findSCS(X, Y, m, n-1, T) + Y.charAt(n-1); |
| 22 | + } |
| 23 | +} |
| 24 | + |
| 25 | +//Print all Shortest Common Supersequence |
| 26 | +// length(X) = m and length(Y) = n |
| 27 | + |
| 28 | +public List<String> findSCS(String X, String Y, int m, int n, int T[][]){ |
| 29 | + if( m == 0){ |
| 30 | + List<String> l = new ArrayList<>(); |
| 31 | + l.add(Y.substring(0,n)); |
| 32 | + return l; |
| 33 | + } |
| 34 | + else if( n == 0){ |
| 35 | + List<String> l = new ArrayList<>(); |
| 36 | + l.add(X.substring(0,m)); |
| 37 | + return l; |
| 38 | + } |
| 39 | + else if( X.charAt(m-1) == Y.charAt(n-1) ){ |
| 40 | + List<String> scs = findSCS(X, Y, m-1, n-1, T); |
| 41 | + List<String> res = new ArrayList<>(); |
| 42 | + for(String s : scs){ |
| 43 | + res.add(s+X.charAt(m-1)); |
| 44 | + } |
| 45 | + return res; |
| 46 | + } |
| 47 | + else if( T[m-1][n] < T[m][n-1] ){ |
| 48 | + List<String> scs = findSCS(X, Y, m-1, n, T); |
| 49 | + List<String> res = new ArrayList<>(); |
| 50 | + for(String s : scs){ |
| 51 | + res.add(s+X.charAt(m-1)); |
| 52 | + } |
| 53 | + return res; |
| 54 | + } |
| 55 | + else if( T[m-1][n] > T[m][n-1] ){ |
| 56 | + List<String> scs = findSCS(X, Y, m, n-1, T); |
| 57 | + List<String> res = new ArrayList<>(); |
| 58 | + for(String s : scs){ |
| 59 | + res.add(s+Y.charAt(n-1)); |
| 60 | + } |
| 61 | + return res; |
| 62 | + } |
| 63 | + else{ //T[m-1][n] == T[m][n-1] |
| 64 | + List<String> top = findSCS(X, Y, m-1, n, T); |
| 65 | + List<String> left = findSCS(X, Y, m, n-1, T); |
| 66 | + List<String> res = new ArrayList<>(); |
| 67 | + for(String s : top){ |
| 68 | + res.add(s + X.charAt(m-1)); |
| 69 | + } |
| 70 | + for(String s : left){ |
| 71 | + res.add(s + Y.charAt(n-1)); |
| 72 | + } |
| 73 | + return res; |
| 74 | + } |
| 75 | + |
| 76 | +} |
| 77 | + |
| 78 | + |
| 79 | +// Function to fill lookup table by finding length of SCS of |
| 80 | +// sequences X[0..m-1] and Y[0..n-1] |
| 81 | +public static void SCSLength(String X, String Y, int m, int n, int[][] T) |
| 82 | +{ |
| 83 | + // initialize first column of the lookup table |
| 84 | + for (int i = 0; i <= m; i++) { |
| 85 | + T[i][0] = i; |
| 86 | + } |
| 87 | + |
| 88 | + // initialize first row of the lookup table |
| 89 | + for (int j = 0; j <= n; j++) { |
| 90 | + T[0][j] = j; |
| 91 | + } |
| 92 | + |
| 93 | + // fill the lookup table in bottom-up manner |
| 94 | + for (int i = 1; i <= m; i++) |
| 95 | + { |
| 96 | + for (int j = 1; j <= n; j++) |
| 97 | + { |
| 98 | + // if current character of X and Y matches |
| 99 | + if (X.charAt(i - 1) == Y.charAt(j - 1)) { |
| 100 | + T[i][j] = T[i - 1][j - 1] + 1; |
| 101 | + } |
| 102 | + // else if current character of X and Y don't match |
| 103 | + else { |
| 104 | + T[i][j] = Integer.min(T[i - 1][j] + 1, T[i][j - 1] + 1); |
| 105 | + } |
| 106 | + } |
| 107 | + } |
| 108 | +} |
0 commit comments