-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgen_panodepth.py
111 lines (85 loc) · 3.86 KB
/
gen_panodepth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
import sys
import cv2
import numpy as np
import argparse
import torch.nn.functional as F
from PIL import Image
from utils.utils_basic import make_bagel_mask, icosahedron_sample_camera
from utils.trajectory import gcd_pose_gs
import utils.pano_utils.Equirec2Perspec as E2P
import utils.pano_utils.multi_Perspec2Equirec as m_P2E
python_src_dir = os.path.dirname(os.path.abspath(__file__))
print(f"Adding '{python_src_dir}' to sys.path")
sys.path.append(python_src_dir + "/submodules/360monodepth/code/python/src/")
from utility import depthmap_utils, pointcloud_utils
from utils.depth_alignment import depth_alignment, Pano_depth_estimation
class Gen_panodepth:
def __init__(self, depth_model='DepthAnythingv2', save_dir='outputs_panodepth', input_path='test.png' , pathtxt=None , device='cuda'):
self.save_dir = save_dir
self.device = device
self.depth_model = depth_model
self.pathtxt = pathtxt
self.input_path = input_path
os.makedirs(self.save_dir, exist_ok=True)
def read_paths(self, file_path):
rgbpath_list = []
try:
with open(file_path, 'r') as file:
for line in file:
path = line.strip()
if path:
rgbpath_list.append(path)
except FileNotFoundError:
print(f"file {file_path} not found")
except Exception as e:
print(f"error in reading: {e}")
return rgbpath_list
def readImg(self, path):
img = Image.open(path).convert('RGB')
img = np.array(img)
return img
def generate_panodepth(self, pano_rgb):
####### pano_rgb [pano_h,pano_w,3] [0-255]
pano_h, pano_w = pano_rgb.shape[0], pano_rgb.shape[1]
panodepth_estimator = Pano_depth_estimation(pano_h, pano_w, self.save_dir, self.device, depth_model=self.depth_model)
pano_depth = panodepth_estimator.get_panodepth(pano_rgb) #[0-1]
return pano_depth
def run(self):
pano_rgb_list = []
pano_depth_list = []
max_val = 65535
if self.pathtxt is not None:
pano_rgb_path = self.read_paths(self.pathtxt)
else:
pano_rgb_path = [self.input_path]
N = len(pano_rgb_path)
for i in range(N):
pano_rgb = self.readImg(pano_rgb_path[i])
pano_depth = self.generate_panodepth(pano_rgb)
if N==1:
save_dir_now = f"{self.save_dir}/layering"
else:
save_dir_now = f'{self.save_dir}/layering/{i}'
os.makedirs(save_dir_now, exist_ok=True)
rgb_path = f'{save_dir_now}/rgb.png'
depth_path = f'{save_dir_now}/depth.png'
np.save(f'{save_dir_now}/depth.npy', pano_depth)
depthmap_utils.depth_visual_save(pano_depth, f'{save_dir_now}/depth_rgb.png')
pointcloud_utils.depthmap2pointcloud_erp(pano_depth , pano_rgb, f"{save_dir_now}/pcd_rgb.ply")
rgb_pil = Image.fromarray(pano_rgb)
rgb_pil.save(rgb_path)
pano_depth = (pano_depth - pano_depth.min()) / (pano_depth.max() - pano_depth.min())
depth = (pano_depth * max_val).astype(np.uint16)
depth_pil = Image.fromarray(depth)
depth_pil.save(depth_path)
parser = argparse.ArgumentParser(description='Arguments for PanoScene4D')
parser.add_argument('--depth_model', type=str, default="DepthAnythingv2")
parser.add_argument('--save_dir', type=str, default="outputs")
parser.add_argument('--input_path', type=str, default='outputs/rgb.png')
args = parser.parse_args()
depth_model = args.depth_model
save_dir = args.save_dir
input_path = args.input_path
gen_panodepth = Gen_panodepth(depth_model = depth_model,save_dir=save_dir, input_path=input_path)
gen_panodepth.run() #DepthAnythingv2, zoedepth