-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgen_refpano.py
45 lines (30 loc) · 1.23 KB
/
gen_refpano.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
import os
import random
import argparse
from src.pipeline_flux import FluxPipeline
parser = argparse.ArgumentParser(description='Arguments for PanoScene4D')
parser.add_argument('--save_dir', type=str, default="outputs")
parser.add_argument('--prompt', type=str, default="Sandy beach, large driftwood in the foreground, calm sea beyond, realism style.")
parser.add_argument('--lora_path', type=str, default='checkpoints/lora.safetensors')
parser.add_argument('--seed', type=int, default=119223)
args = parser.parse_args()
lora_path = args.lora_path
save_dir = args.save_dir
seed = args.seed
prompt = args.prompt
os.makedirs(f"{save_dir}", exist_ok=True)
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.to("cuda")
pipe.load_lora_weights(lora_path) # change this.
pipe.enable_model_cpu_offload() # save some VRAM by offloading the model to CPU
pipe.enable_vae_tiling()
image = pipe(prompt,
height=720,
width=1440,
generator=torch.Generator("cpu").manual_seed(seed),
num_inference_steps=50,
blend_extend=2,
guidance_scale=7).images[0]
image = image.resize((2048,1024))
image.save(f"{save_dir}/rgb.png")