-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathCompressedBinaryLift.go
499 lines (454 loc) · 11.5 KB
/
CompressedBinaryLift.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
package main
import (
"bufio"
"fmt"
"os"
)
func main() {
// yosupo()
// P3398()
// jump()
CF519E()
}
// https://judge.yosupo.jp/problem/lca
func yosupo() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, q int
fmt.Fscan(in, &n, &q)
tree := make([][]int32, n)
for i := 1; i < n; i++ {
var parent int32
fmt.Fscan(in, &parent)
tree[parent] = append(tree[parent], int32(i))
}
bl := NewCompressedBinaryLiftFromTree(tree, 0)
for i := 0; i < q; i++ {
var u, v int32
fmt.Fscan(in, &u, &v)
fmt.Fprintln(out, bl.Lca(u, v))
}
}
func jump() {
// https://judge.yosupo.jp/problem/jump_on_tree
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, q int32
fmt.Fscan(in, &n, &q)
tree := make([][]int32, n)
for i := int32(0); i < n-1; i++ {
var u, v int32
fmt.Fscan(in, &u, &v)
tree[u] = append(tree[u], v)
tree[v] = append(tree[v], u)
}
D := NewCompressedBinaryLiftFromTree(tree, 0)
for i := int32(0); i < q; i++ {
var from, to, k int32
fmt.Fscan(in, &from, &to, &k)
fmt.Fprintln(out, D.Jump(from, to, k))
}
}
// https://www.luogu.com.cn/problem/P3398
func P3398() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, q int32
fmt.Fscan(in, &n, &q)
tree := make([][]int32, n)
for i := int32(0); i < n-1; i++ {
var u, v int32
fmt.Fscan(in, &u, &v)
u, v = u-1, v-1
tree[u] = append(tree[u], v)
tree[v] = append(tree[v], u)
}
bl := NewCompressedBinaryLiftFromTree(tree, 0)
query := func(a, b int32, c, d int32) bool {
path1 := bl.CreatePath(a, b)
path2 := bl.CreatePath(c, d)
return path1.HasIntersection(path2)
}
for i := int32(0); i < q; i++ {
var a, b, c, d int32
fmt.Fscan(in, &a, &b, &c, &d)
a, b, c, d = a-1, b-1, c-1, d-1
if query(a, b, c, d) {
fmt.Fprintln(out, "Y")
} else {
fmt.Fprintln(out, "N")
}
}
}
// A and B and Lecture Rooms (到树上两点距离相等的点的个数)
// https://www.luogu.com.cn/problem/CF519E
// 给定一棵n个点的无根树和q组询问,对于每一组询问,求出树上到某两点距离相等的点数(包含本身)。
func CF519E() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n int32
fmt.Fscan(in, &n)
tree := make([][]int32, n)
for i := int32(0); i < n-1; i++ {
var u, v int32
fmt.Fscan(in, &u, &v)
u, v = u-1, v-1
tree[u] = append(tree[u], v)
tree[v] = append(tree[v], u)
}
bl := NewCompressedBinaryLiftFromTree(tree, 0)
subSize := make([]int32, n)
var dfs func(v, p int32)
dfs = func(v, p int32) {
subSize[v] = 1
for _, to := range tree[v] {
if to == p {
continue
}
dfs(to, v)
subSize[v] += subSize[to]
}
}
dfs(0, -1)
query := func(a, b int32) int32 {
if a == b {
return n
}
lca := bl.Lca(a, b)
len_ := bl.Depth[a] + bl.Depth[b] - 2*bl.Depth[lca] + 1
if len_&1 == 0 {
return 0
}
if bl.Depth[a] < bl.Depth[b] {
a, b = b, a
}
// lca是否为中点
halfLen := len_ / 2
center := bl.KthAncestor(a, halfLen)
if lca == center {
p1, p2 := bl.KthAncestor(a, halfLen-1), bl.KthAncestor(b, halfLen-1)
return n - subSize[p1] - subSize[p2]
} else {
p1 := bl.KthAncestor(a, halfLen-1)
return subSize[center] - subSize[p1]
}
}
var q int32
fmt.Fscan(in, &q)
for i := int32(0); i < q; i++ {
var x, y int32
fmt.Fscan(in, &x, &y)
x, y = x-1, y-1
fmt.Fprintln(out, query(x, y))
}
}
// 空间复杂度`O(n)`的树上倍增.
// - https://taodaling.github.io/blog/2020/03/18/binary-lifting/
// - https://codeforces.com/blog/entry/74847
// - https://codeforces.com/blog/entry/100826
type CompressedBinaryLift struct {
Depth []int32
Parent []int32
jump []int32 // 指向当前节点的某个祖先节点.
}
func NewCompressedBinaryLift(n int32, depthOnTree, parentOnTree []int32) *CompressedBinaryLift {
res := &CompressedBinaryLift{
Depth: depthOnTree,
Parent: parentOnTree,
jump: make([]int32, n),
}
for i := int32(0); i < n; i++ {
res.jump[i] = -1
}
for i := int32(0); i < n; i++ {
res._consider(i)
}
return res
}
// root:-1表示无根.
func NewCompressedBinaryLiftFromTree(tree [][]int32, root int32) *CompressedBinaryLift {
n := int32(len(tree))
res := &CompressedBinaryLift{
Depth: make([]int32, n),
Parent: make([]int32, n),
jump: make([]int32, n),
}
if root != -1 {
res.Parent[root] = -1
res.jump[root] = root
res._setUp(tree, root)
} else {
for i := int32(0); i < n; i++ {
res.Parent[i] = -1
}
for i := int32(0); i < n; i++ {
if res.Parent[i] == -1 {
res.jump[i] = i
res._setUp(tree, i)
}
}
}
return res
}
func (bl *CompressedBinaryLift) FirstTrue(start int32, predicate func(end int32) bool) int32 {
for !predicate(start) {
if predicate(bl.jump[start]) {
start = bl.Parent[start]
} else {
if start == bl.jump[start] {
return -1
}
start = bl.jump[start]
}
}
return start
}
func (bl *CompressedBinaryLift) LastTrue(start int32, predicate func(end int32) bool) int32 {
if !predicate(start) {
return -1
}
for {
if predicate(bl.jump[start]) {
if start == bl.jump[start] {
return start
}
start = bl.jump[start]
} else if predicate(bl.Parent[start]) {
start = bl.Parent[start]
} else {
return start
}
}
}
func (bl *CompressedBinaryLift) UpToDepth(root int32, toDepth int32) int32 {
if !(0 <= toDepth && toDepth <= bl.Depth[root]) {
return -1
}
for bl.Depth[root] > toDepth {
if bl.Depth[bl.jump[root]] < toDepth {
root = bl.Parent[root]
} else {
root = bl.jump[root]
}
}
return root
}
func (bl *CompressedBinaryLift) KthAncestor(node, k int32) int32 {
targetDepth := bl.Depth[node] - k
return bl.UpToDepth(node, targetDepth)
}
func (bl *CompressedBinaryLift) Lca(a, b int32) int32 {
if bl.Depth[a] > bl.Depth[b] {
a = bl.KthAncestor(a, bl.Depth[a]-bl.Depth[b])
} else if bl.Depth[a] < bl.Depth[b] {
b = bl.KthAncestor(b, bl.Depth[b]-bl.Depth[a])
}
for a != b {
if bl.jump[a] == bl.jump[b] {
a = bl.Parent[a]
b = bl.Parent[b]
} else {
a = bl.jump[a]
b = bl.jump[b]
}
}
return a
}
func (lca *CompressedBinaryLift) Jump(start, target, step int32) int32 {
lca_ := lca.Lca(start, target)
dep1, dep2, deplca := lca.Depth[start], lca.Depth[target], lca.Depth[lca_]
dist := dep1 + dep2 - 2*deplca
if step > dist {
return -1
}
if step <= dep1-deplca {
return lca.KthAncestor(start, step)
}
return lca.KthAncestor(target, dist-step)
}
func (lca *CompressedBinaryLift) InSubtree(maybeChild, maybeAncestor int32) bool {
return lca.Depth[maybeChild] >= lca.Depth[maybeAncestor] &&
lca.KthAncestor(maybeChild, lca.Depth[maybeChild]-lca.Depth[maybeAncestor]) == maybeAncestor
}
func (bl *CompressedBinaryLift) Dist(a, b int32) int32 {
return bl.Depth[a] + bl.Depth[b] - 2*bl.Depth[bl.Lca(a, b)]
}
func (bl *CompressedBinaryLift) CreatePath(from, to int32) *TreePath {
return NewTreePath(from, to, bl.Depth, bl.KthAncestor, bl.Lca)
}
func (bl *CompressedBinaryLift) _consider(root int32) {
if root == -1 || bl.jump[root] != -1 {
return
}
p := bl.Parent[root]
bl._consider(p)
bl._addLeaf(root, p)
}
func (bl *CompressedBinaryLift) _addLeaf(leaf, parent int32) {
if parent == -1 {
bl.jump[leaf] = leaf
} else if tmp := bl.jump[parent]; bl.Depth[parent]-bl.Depth[tmp] == bl.Depth[tmp]-bl.Depth[bl.jump[tmp]] {
bl.jump[leaf] = bl.jump[tmp]
} else {
bl.jump[leaf] = parent
}
}
func (bl *CompressedBinaryLift) _setUp(tree [][]int32, cur int32) {
queue := []int32{cur}
head := 0
for head < len(queue) {
cur := queue[head]
head++
nexts := tree[cur]
for _, next := range nexts {
if next == bl.Parent[cur] {
continue
}
bl.Depth[next] = bl.Depth[cur] + 1
bl.Parent[next] = cur
queue = append(queue, next)
bl._addLeaf(next, cur)
}
}
}
type TreePath struct {
From, To int32
Lca int32
depth []int32
kthAncestorFn func(node, k int32) int32
lcaFn func(node1, node2 int32) int32
}
func NewTreePath(
from, to int32,
depth []int32, kthAncestorFn func(node, k int32) int32, lcaFn func(node1, node2 int32) int32,
) *TreePath {
return &TreePath{
From: from, To: to, Lca: lcaFn(from, to),
depth: depth, kthAncestorFn: kthAncestorFn, lcaFn: lcaFn,
}
}
// 从路径的起点开始,第k个节点(0-indexed).不存在则返回-1.
func (t *TreePath) KthNodeOnPath(k int32) int32 {
if k <= t.depth[t.From]-t.depth[t.Lca] {
return t.kthAncestorFn(t.From, k)
}
return t.kthAncestorFn(t.To, t.Len()-k)
}
func (t *TreePath) OnPath(node int32) bool {
lcaFn := t.lcaFn
return lcaFn(node, t.Lca) == t.Lca &&
(lcaFn(node, t.From) == node || lcaFn(node, t.To) == node)
}
func (t *TreePath) HasIntersection(other *TreePath) bool {
return t.OnPath(other.Lca) || other.OnPath(t.Lca)
}
// 求两条路径的交, 返回相交线段的两个端点.无交点则返回(-1, -1, false).
func (t *TreePath) GetIntersection(other *TreePath) (p1, p2 int32, ok bool) {
a, b, c, d := t.From, t.To, other.From, other.To
lcaFn, depth := t.lcaFn, t.depth
x1, x2, x3, x4 := lcaFn(a, c), lcaFn(a, d), lcaFn(b, c), lcaFn(b, d)
p1, p2 = x1, x2
if depth[x2] > depth[p1] {
p2 = p1
p1 = x2
}
update := func(x int32) {
curDepth := depth[x]
if curDepth > depth[p1] {
p2 = p1
p1 = x
} else if curDepth > depth[p2] {
p2 = x
}
}
update(x3)
update(x4)
lca1, lca2 := t.Lca, other.Lca
if p1 != p2 {
return p1, p2, true
}
if depth[p1] < depth[lca1] || depth[p1] < depth[lca2] {
return -1, -1, false
}
return p1, p2, true
}
func (t *TreePath) CountIntersection(other *TreePath) int32 {
p1, p2, ok := t.GetIntersection(other)
if !ok {
return 0
}
if p1 == p2 {
return 1
}
return t.depth[p1] + t.depth[p2] - 2*t.depth[t.Lca] + 1
}
// 将路径以separator为分隔,按顺序分成两段.separtor必须在路径上.
func (t *TreePath) Split(separator int32) (path1, path2 *TreePath) {
down, top := t.From, t.To
if down == top {
return nil, nil
}
swapped := false
if t.depth[down] < t.depth[top] {
down, top = top, down
swapped = true
}
from1, to1, from2, to2 := int32(-1), int32(-1), int32(-1), int32(-1)
if t.Lca == top {
// down和top在一条链上.
if separator == down {
from2 = t.kthAncestorFn(separator, 1)
to2 = top
} else if separator == top {
from1 = down
to1 = t.kthAncestorFn(down, t.depth[down]-t.depth[separator]-1)
} else {
from1 = down
to1 = t.kthAncestorFn(down, t.depth[down]-t.depth[separator]-1)
from2 = t.kthAncestorFn(separator, 1)
to2 = top
}
} else {
// down和top在lca两个子树上.
if separator == down {
from2 = t.kthAncestorFn(separator, 1)
to2 = top
} else if separator == top {
from1 = down
to1 = t.kthAncestorFn(separator, 1)
} else {
var jump1, jump2 int32
if separator == t.Lca {
jump1 = t.kthAncestorFn(down, t.depth[down]-t.depth[separator]-1)
jump2 = t.kthAncestorFn(top, t.depth[top]-t.depth[separator]-1)
} else if t.lcaFn(separator, down) == separator {
jump1 = t.kthAncestorFn(down, t.depth[down]-t.depth[separator]-1)
jump2 = t.kthAncestorFn(separator, 1)
} else {
jump1 = t.kthAncestorFn(separator, 1)
jump2 = t.kthAncestorFn(top, t.depth[top]-t.depth[separator]-1)
}
from1 = down
to1 = jump1
from2 = jump2
to2 = top
}
}
if swapped {
from1, to1, from2, to2 = to2, from2, to1, from1
}
if from1 != -1 && to1 != -1 {
path1 = NewTreePath(from1, to1, t.depth, t.kthAncestorFn, t.lcaFn)
}
if from2 != -1 && to2 != -1 {
path2 = NewTreePath(from2, to2, t.depth, t.kthAncestorFn, t.lcaFn)
}
return
}
func (t *TreePath) Len() int32 {
return t.depth[t.From] + t.depth[t.To] - 2*t.depth[t.Lca]
}