forked from SciSharp/TensorFlow.NET
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModel.Evaluate.cs
206 lines (186 loc) · 7.91 KB
/
Model.Evaluate.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
using System;
using System.Collections.Generic;
using System.Linq;
using Tensorflow;
using Tensorflow.Keras.ArgsDefinition;
using Tensorflow.Keras.Callbacks;
using Tensorflow.Keras.Engine.DataAdapters;
using Tensorflow.Keras.Layers;
using Tensorflow.Keras.Utils;
using Tensorflow.NumPy;
using static Tensorflow.Binding;
namespace Tensorflow.Keras.Engine
{
public partial class Model
{
/// <summary>
/// Returns the loss value and metrics values for the model in test mode.
/// </summary>
/// <param name="x"></param>
/// <param name="y"></param>
/// <param name="batch_size"></param>
/// <param name="verbose"></param>
/// <param name="steps"></param>
/// <param name="max_queue_size"></param>
/// <param name="workers"></param>
/// <param name="use_multiprocessing"></param>
/// <param name="return_dict"></param>
/// <param name="is_val"></param>
public Dictionary<string, float> evaluate(NDArray x, NDArray y,
int batch_size = -1,
int verbose = 1,
NDArray sample_weight = null,
int steps = -1,
int max_queue_size = 10,
int workers = 1,
bool use_multiprocessing = false,
bool return_dict = false,
bool is_val = false
)
{
if (x.dims[0] != y.dims[0])
{
throw new InvalidArgumentError(
$"The array x and y should have same value at dim 0, but got {x.dims[0]} and {y.dims[0]}");
}
var data_handler = new DataHandler(new DataHandlerArgs
{
X = x,
Y = y,
BatchSize = batch_size,
StepsPerEpoch = steps,
InitialEpoch = 0,
Epochs = 1,
SampleWeight = sample_weight,
MaxQueueSize = max_queue_size,
Workers = workers,
UseMultiprocessing = use_multiprocessing,
Model = this,
StepsPerExecution = _steps_per_execution
});
var callbacks = new CallbackList(new CallbackParams
{
Model = this,
Verbose = verbose,
Steps = data_handler.Inferredsteps
});
return evaluate(data_handler, callbacks, is_val, test_function);
}
public Dictionary<string, float> evaluate(
IEnumerable<Tensor> x,
Tensor y,
int verbose = 1,
NDArray sample_weight = null,
bool is_val = false)
{
var data_handler = new DataHandler(new DataHandlerArgs
{
X = new Tensors(x.ToArray()),
Y = y,
Model = this,
SampleWeight = sample_weight,
StepsPerExecution = _steps_per_execution
});
var callbacks = new CallbackList(new CallbackParams
{
Model = this,
Verbose = verbose,
Steps = data_handler.Inferredsteps
});
return evaluate(data_handler, callbacks, is_val, test_step_multi_inputs_function);
}
public Dictionary<string, float> evaluate(IDatasetV2 x, int verbose = 1, bool is_val = false)
{
var data_handler = new DataHandler(new DataHandlerArgs
{
Dataset = x,
Model = this,
StepsPerExecution = _steps_per_execution
});
var callbacks = new CallbackList(new CallbackParams
{
Model = this,
Verbose = verbose,
Steps = data_handler.Inferredsteps
});
Func<DataHandler, OwnedIterator, Dictionary<string, float>> testFunction;
if (data_handler.DataAdapter.GetDataset().structure.Length > 2 ||
data_handler.DataAdapter.GetDataset().FirstInputTensorCount > 1)
{
testFunction = test_step_multi_inputs_function;
}
else
{
testFunction = test_function;
}
return evaluate(data_handler, callbacks, is_val, testFunction);
}
/// <summary>
/// Internal bare implementation of evaluate function.
/// </summary>
/// <param name="data_handler">Interations handling objects</param>
/// <param name="callbacks"></param>
/// <param name="test_func">The function to be called on each batch of data.</param>
/// <param name="is_val">Whether it is validation or test.</param>
/// <returns></returns>
Dictionary<string, float> evaluate(DataHandler data_handler, CallbackList callbacks, bool is_val, Func<DataHandler, OwnedIterator, Dictionary<string, float>> test_func)
{
callbacks.on_test_begin();
var logs = new Dictionary<string, float>();
foreach (var (epoch, iterator) in data_handler.enumerate_epochs())
{
reset_metrics();
foreach (var step in data_handler.steps())
{
callbacks.on_test_batch_begin(step);
logs = test_func(data_handler, iterator);
var end_step = step + data_handler.StepIncrement;
if (!is_val)
callbacks.on_test_batch_end(end_step, logs);
GC.Collect();
}
}
callbacks.on_test_end(logs);
var results = new Dictionary<string, float>(logs);
return results;
}
Dictionary<string, float> test_function(DataHandler data_handler, OwnedIterator iterator)
{
var data = iterator.next();
var outputs = data.Length == 2 ? test_step(data_handler, data[0], data[1]) :
test_step(data_handler, data[0], data[1], data[2]);
tf_with(ops.control_dependencies(new object[0]), ctl => _test_counter.assign_add(1));
return outputs;
}
Dictionary<string, float> test_step_multi_inputs_function(DataHandler data_handler, OwnedIterator iterator)
{
var data = iterator.next();
var x_size = data_handler.DataAdapter.GetDataset().FirstInputTensorCount;
var outputs = data.Length == 2 ?
test_step(data_handler, new Tensors(data.Take(x_size).ToArray()), new Tensors(data.Skip(x_size).ToArray())) :
test_step(
data_handler,
new Tensors(data.Take(x_size).ToArray()),
new Tensors(data.Skip(x_size).Take(x_size).ToArray()),
new Tensors(data.Skip(2 * x_size).ToArray()));
tf_with(ops.control_dependencies(new object[0]), ctl => _test_counter.assign_add(1));
return outputs;
}
Dictionary<string, float> test_step(DataHandler data_handler, Tensors x, Tensors y)
{
(x,y) = data_handler.DataAdapter.Expand1d(x, y);
var y_pred = Apply(x, training: false);
var loss = compiled_loss.Call(y, y_pred);
compiled_metrics.update_state(y, y_pred);
return metrics.Select(x => (x.Name, x.result())).ToDictionary(x => x.Item1, x => (float)x.Item2);
}
Dictionary<string, float> test_step(DataHandler data_handler, Tensors x, Tensors y, Tensors sample_weight)
{
(x, y, sample_weight) = data_handler.DataAdapter.Expand1d(x, y, sample_weight);
var y_pred = Apply(x, training: false);
var loss = compiled_loss.Call(y, y_pred, sample_weight: sample_weight);
compiled_metrics.update_state(y, y_pred);
return metrics.Select(x => (x.Name, x.result())).ToDictionary(x => x.Item1, x => (float)x.Item2);
}
}
}