-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOOAFT.java
210 lines (176 loc) · 8.22 KB
/
OOAFT.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
package MetaheuristicsNew.OOA;
import MetaheuristicsNew.MetaheuristicAlgorithmFT;
import MetaheuristicsNew.MetaheuristicFitnessFunction;
import MetaheuristicsNew.MetaheuristicTask;
import MetaheuristicsNew.MetaheuristicUtil;
import utils.Constants;
import utils.GenerateMatrices;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Random;
public class OOAFT implements MetaheuristicAlgorithmFT {
private final int popSize;
private final int maxIter;
private final double[] lb;
private final double[] ub;
private int varSize;
private final MetaheuristicFitnessFunction fitFunc;
private final double[] deadlineMatrix;
public OOAFT(){
this.popSize = Constants.POPULATION_SIZE;
this.maxIter = Constants.MAX_ITERATION;
this.lb = Constants.getLB();
this.ub = Constants.getUB();
this.varSize = Constants.NO_OF_TASKS * 2; //for each task, there is a backup
this.fitFunc = new MetaheuristicFitnessFunction();
this.deadlineMatrix = GenerateMatrices.getDeadlineMatrix();
}
public ArrayList<MetaheuristicTask> runFT() {
// Initialization
double[][] X = new double[popSize][varSize];
double[] fit = new double[popSize];
Random random = new Random();
for (int i = 0; i < popSize; i++) {
for (int j = 0; j < varSize; j++) {
X[i][j] = lb[0] + random.nextDouble() * (ub[0] - lb[0]);
}
fit[i] = fitFunc.evaluate(X[i]); // Calculate fitness for each agent
}
MetaheuristicTask[][] XTask = initializationTask(popSize, varSize, X);
double[] bestPos = new double[varSize];
double bestScore = Double.MAX_VALUE;
int bestIndex = -1;
// Main optimization loop
for (int t = 0; t < maxIter; t++) {
// Update the best proposed solution
double fBest = Double.MAX_VALUE;
int bLocation = -1;
for (int i = 0; i < popSize; i++) {
if (fit[i] < fBest) {
fBest = fit[i];
bLocation = i;
}
}
if (t == 0 || fBest < bestScore) {
bestScore = fBest;
bestPos = X[bLocation].clone();
bestIndex = bLocation;
}
for (int i = 0; i < popSize; i++) {
// Phase 1: Position Identification and Hunting the Fish (Exploration)
int[] fishPosition = new int[0];
for (int j = 0; j < popSize; j++) {
if (fit[j] < fit[i]) {
int[] temp = new int[fishPosition.length + 1];
System.arraycopy(fishPosition, 0, temp, 0, fishPosition.length);
temp[fishPosition.length] = j;
fishPosition = temp;
}
}
double[] selectedFish;
if (fishPosition.length == 0) {
selectedFish = bestPos.clone();
} else {
if (random.nextDouble() < 0.5) {
selectedFish = bestPos.clone();
} else {
int k = random.nextInt(fishPosition.length);
selectedFish = X[fishPosition[k]].clone();
}
}
int I = random.nextInt(2) + 1;
double[] XNewP1 = new double[varSize];
for (int j = 0; j < varSize; j++) {
XNewP1[j] = X[i][j] + random.nextDouble() * (selectedFish[j] - I * X[i][j]);
XNewP1[j] = Math.max(XNewP1[j], lb[0]);
XNewP1[j] = Math.min(XNewP1[j], ub[0]);
}
double fitNewP1 = fitFunc.evaluate(XNewP1);
if (fitNewP1 < fit[i]) {
X[i] = XNewP1.clone();
fit[i] = fitNewP1;
}
// Phase 2: Carrying the Fish to the Suitable Position (Exploitation)
double[] XNewP2 = new double[varSize];
for (int j = 0; j < varSize; j++) {
XNewP2[j] = X[i][j] + (lb[0] + random.nextDouble() * (ub[0] - lb[0])) / (t + 1);
XNewP2[j] = Math.max(XNewP2[j], lb[0]);
XNewP2[j] = Math.min(XNewP2[j], ub[0]);
}
double fitNewP2 = fitFunc.evaluate(XNewP2);
if (fitNewP2 < fit[i]) {
X[i] = XNewP2.clone();
fit[i] = fitNewP2;
}
}
for (int j = 0; j < popSize; j++) {
//Working only on this Vulture (each vulture has varSize number of positions)
MetaheuristicTask[] tasks = XTask[j];
double[] position = X[j];
//Update position of tasks according to position particle
for (int k = 0; k < varSize; k++) {
MetaheuristicTask task = tasks[k];
task.setMapping((int) position[k]);
}
//Check if backup and primary tasks are not on the same VM (and move backup task to more powerful VM)
for (int k = 0; k < varSize; k++) {
MetaheuristicTask task = tasks[k];
if(task.isPrimary() && !task.isBackupDropped() && task.getMapping() == task.getBackup().getMapping()){
MetaheuristicTask backupTask = task.getBackup();
int changedPosition = MetaheuristicUtil.getBetterVM((int) backupTask.getMapping());
backupTask.setMapping(changedPosition);
position[k+1] = changedPosition;
}
}
//Drop backup of tasks that didn't miss their deadline
tasks = MetaheuristicUtil.setTaskDeadlineInfos(tasks);
ArrayList<Integer> droppedBackups = new ArrayList<>();
for (int k = 0; k < varSize; k++) {
MetaheuristicTask task = tasks[k];
if(task.isPrimary() && !task.isBackupDropped() && !task.isMissedDeadline()){
droppedBackups.add(k+1);
}
}
droppedBackups.sort(Collections.reverseOrder()); //Reverse it so we can delete from the end
varSize -= droppedBackups.size();
for (int k = 0; k < popSize; k++) {
MetaheuristicTask[] tas = XTask[k];
double[] po = X[k];
for (Integer droppedBackup : droppedBackups) {
MetaheuristicTask pTask = tas[droppedBackup - 1];
pTask.setBackup(null);
pTask.setBackupDropped(true);
tas = MetaheuristicUtil.removeElementAtIndexMHTask(tas, droppedBackup);
po = MetaheuristicUtil.removeElementAtIndexDouble(po, droppedBackup);
}
XTask[k] = tas;
X[k] = po;
}
}
System.arraycopy(X[bestIndex], 0, bestPos, 0, varSize);
}
MetaheuristicTask[] res = XTask[bestIndex];
return new ArrayList<>(Arrays.asList(res));
}
private MetaheuristicTask[][] initializationTask(int popSize, int varSize, double[][] X){
MetaheuristicTask[][] XTasks = new MetaheuristicTask[popSize][varSize];
MetaheuristicTask pTask = null;
for (int i = 0; i < popSize; i++) {
for (int j = 0; j < varSize; j++) {
int idx = (int) j/2;
//Create primary and backup tasks (primary task is even, backup task is odd)
if(j%2 == 0){
MetaheuristicTask primaryTask = new MetaheuristicTask(true, X[i][j], null, idx, deadlineMatrix[idx]);
pTask = primaryTask;
XTasks[i][j] = primaryTask;
}else{
MetaheuristicTask backupTask = new MetaheuristicTask(false, X[i][j], pTask, idx, deadlineMatrix[idx]);
pTask.setBackup(backupTask);
XTasks[i][j] = backupTask;
}
}
}
return XTasks;
}
}