-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_llama.py
228 lines (179 loc) · 5.21 KB
/
finetune_llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# -*- coding: utf-8 -*-
import transformers
import textwrap
from transformers import LlamaTokenizer, LlamaForCausalLM
import os
import sys
import json
from typing import List
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
)
import fire
import torch
from datasets import load_dataset
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn as sns
from pylab import rcParams
sns.set(rc={'figure.figsize':(10, 7)})
sns.set(rc={'figure.dpi':100})
sns.set(style='white', palette='muted', font_scale=1.2)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
!gdown 1xQ89cpZCnafsW5T3G3ZQWvR7q682t2BN
df = pd.read_csv("bitcoin-sentiment-tweets.csv")
df.head()
df.value_counts()
df.sentiment.value_counts()
df.sentiment.value_counts().plot(kind='bar');
def sentiment_score_to_name(score: float):
if score > 0:
return "Positive"
elif score < 0:
return "Negative"
return "Neutral"
dataset_data = [
{
"instruction": "Detect the sentiment of the tweet.",
"input": row_dict["tweet"],
"output": sentiment_score_to_name(row_dict["sentiment"])
}
for row_dict in df.to_dict(orient="records")
]
dataset_data[0:90]
with open("alpaca-bitcoin-sentiment-dataset.json", "w") as f:
json.dump(dataset_data, f)
!pip install bitsandbytes>=0.39.0
!pip show bitsandbytes
!pip install accelerate
!pip install -i https://test.pypi.org/simple/ bitsandbytes
#Model Tuning
BASE_MODEL = "decapoda-research/llama-7b-hf" #Example model
#bnb_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type="nf4",
#bnb_4bit_compute_dtype=torch.bfloat16
#)
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto",
#quantization_config=bnb_config //Remove the comment here and above if you want to use specific quantization
)
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
tokenizer.pad_token_id = (
0
)
tokenizer.padding_side = "left"
data = load_dataset("json", data_files="alpaca-bitcoin-sentiment-dataset.json")
data["train"]
def generate_prompt(data_point):
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. # noqa: E501 ignore comment
### Instruction:
{data_point["instruction"]}
### Input:
{data_point["input"]}
### Response:
{data_point["output"]}"""
CUTOFF_LEN = 512
def tokenize(prompt, add_eos_token=True):
result = tokenizer(
prompt,
truncation=True,
max_length=CUTOFF_LEN,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < CUTOFF_LEN
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
full_prompt = generate_prompt(data_point)
tokenized_full_prompt = tokenize(full_prompt)
return tokenized_full_prompt
train_val = data["train"].train_test_split(
test_size=200, shuffle=True, seed=42
)
train_data = (
train_val["train"].map(generate_and_tokenize_prompt)
)
val_data = (
train_val["test"].map(generate_and_tokenize_prompt)
)
LORA_R = 8
LORA_ALPHA = 16
LORA_DROPOUT= 0.05
LORA_TARGET_MODULES = [
"q_proj",
"v_proj",
]
BATCH_SIZE = 128
MICRO_BATCH_SIZE = 4
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
LEARNING_RATE = 3e-4
TRAIN_STEPS = 300
OUTPUT_DIR = "test"
model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=LORA_R,
lora_alpha=LORA_ALPHA,
target_modules=LORA_TARGET_MODULES,
lora_dropout=LORA_DROPOUT,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
model.print_trainable_parameters()
training_arguments = transformers.TrainingArguments(
per_device_train_batch_size=MICRO_BATCH_SIZE,
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
warmup_steps=10,
max_steps=TRAIN_STEPS,
learning_rate=LEARNING_RATE,
fp16=True,
logging_steps=10,
optim="adamw_torch",
evaluation_strategy="steps",
save_strategy="steps",
eval_steps=50,
save_steps=50,
output_dir=OUTPUT_DIR,
save_total_limit=3,
load_best_model_at_end=True,
report_to="tensorboard"
)
data_collator = transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
)
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=training_arguments,
data_collator=data_collator
)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(
self, old_state_dict()
)
).__get__(model, type(model))
model = torch.compile(model)
trainer.train()
model.save_pretrained(OUTPUT_DIR)
from huggingface_hub import notebook_login
notebook_login()
model.push_to_hub("Your/UrlHere", use_auth_token=True)