-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathredc.py
302 lines (246 loc) · 14.9 KB
/
redc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
from basic import *
import torch
def grid_generator(k, r, n):
"""grid_generator
Parameters
---------
f : filter_size, int
k: kernel_size, int
n: number of grid, int
Returns
-------
torch.Tensor. shape = (n, 2, k, k)
"""
grid_x, grid_y = torch.meshgrid([torch.linspace(k//2, k//2+r-1, steps=r),
torch.linspace(k//2, k//2+r-1, steps=r)])
grid = torch.stack([grid_x, grid_y], 2).view(r, r, 2)
return grid.unsqueeze(0).repeat(n, 1, 1, 1).cuda()
# **********************************************************************************************************************
# The following is the ENet backbone from the paper PENet: https://github.com/JUGGHM/PENet_ICRA2021
# In ReDC, as mentioned in the paper, we study our deformanle refinement module on top of ENet.
class ENet(nn.Module):
def __init__(self, args):
super(ENet, self).__init__()
self.args = args
self.geofeature = None
self.geoplanes = 3
if self.args.convolutional_layer_encoding == "xyz":
self.geofeature = GeometryFeature()
elif self.args.convolutional_layer_encoding == "std":
self.geoplanes = 0
elif self.args.convolutional_layer_encoding == "uv":
self.geoplanes = 2
elif self.args.convolutional_layer_encoding == "z":
self.geoplanes = 1
# rgb encoder
self.rgb_conv_init = convbnrelu(in_channels=4, out_channels=32, kernel_size=5, stride=1, padding=2)
self.rgb_encoder_layer1 = BasicBlockGeo(inplanes=32, planes=64, stride=2, geoplanes=self.geoplanes)
self.rgb_encoder_layer2 = BasicBlockGeo(inplanes=64, planes=64, stride=1, geoplanes=self.geoplanes)
self.rgb_encoder_layer3 = BasicBlockGeo(inplanes=64, planes=128, stride=2, geoplanes=self.geoplanes)
self.rgb_encoder_layer4 = BasicBlockGeo(inplanes=128, planes=128, stride=1, geoplanes=self.geoplanes)
self.rgb_encoder_layer5 = BasicBlockGeo(inplanes=128, planes=256, stride=2, geoplanes=self.geoplanes)
self.rgb_encoder_layer6 = BasicBlockGeo(inplanes=256, planes=256, stride=1, geoplanes=self.geoplanes)
self.rgb_encoder_layer7 = BasicBlockGeo(inplanes=256, planes=512, stride=2, geoplanes=self.geoplanes)
self.rgb_encoder_layer8 = BasicBlockGeo(inplanes=512, planes=512, stride=1, geoplanes=self.geoplanes)
self.rgb_encoder_layer9 = BasicBlockGeo(inplanes=512, planes=1024, stride=2, geoplanes=self.geoplanes)
self.rgb_encoder_layer10 = BasicBlockGeo(inplanes=1024, planes=1024, stride=1, geoplanes=self.geoplanes)
self.rgb_decoder_layer8 = deconvbnrelu(in_channels=1024, out_channels=512, kernel_size=5, stride=2, padding=2, output_padding=1)
self.rgb_decoder_layer6 = deconvbnrelu(in_channels=512, out_channels=256, kernel_size=5, stride=2, padding=2, output_padding=1)
self.rgb_decoder_layer4 = deconvbnrelu(in_channels=256, out_channels=128, kernel_size=5, stride=2, padding=2, output_padding=1)
self.rgb_decoder_layer2 = deconvbnrelu(in_channels=128, out_channels=64, kernel_size=5, stride=2, padding=2, output_padding=1)
self.rgb_decoder_layer0 = deconvbnrelu(in_channels=64, out_channels=32, kernel_size=5, stride=2, padding=2, output_padding=1)
self.rgb_decoder_output = deconvbnrelu(in_channels=32, out_channels=2, kernel_size=3, stride=1, padding=1, output_padding=0)
# depth encoder
self.depth_conv_init = convbnrelu(in_channels=2, out_channels=32, kernel_size=5, stride=1, padding=2)
self.depth_layer1 = BasicBlockGeo(inplanes=32, planes=64, stride=2, geoplanes=self.geoplanes)
self.depth_layer2 = BasicBlockGeo(inplanes=64, planes=64, stride=1, geoplanes=self.geoplanes)
self.depth_layer3 = BasicBlockGeo(inplanes=128, planes=128, stride=2, geoplanes=self.geoplanes)
self.depth_layer4 = BasicBlockGeo(inplanes=128, planes=128, stride=1, geoplanes=self.geoplanes)
self.depth_layer5 = BasicBlockGeo(inplanes=256, planes=256, stride=2, geoplanes=self.geoplanes)
self.depth_layer6 = BasicBlockGeo(inplanes=256, planes=256, stride=1, geoplanes=self.geoplanes)
self.depth_layer7 = BasicBlockGeo(inplanes=512, planes=512, stride=2, geoplanes=self.geoplanes)
self.depth_layer8 = BasicBlockGeo(inplanes=512, planes=512, stride=1, geoplanes=self.geoplanes)
self.depth_layer9 = BasicBlockGeo(inplanes=1024, planes=1024, stride=2, geoplanes=self.geoplanes)
self.depth_layer10 = BasicBlockGeo(inplanes=1024, planes=1024, stride=1, geoplanes=self.geoplanes)
# decoder
self.decoder_layer1 = deconvbnrelu(in_channels=1024, out_channels=512, kernel_size=5, stride=2, padding=2, output_padding=1)
self.decoder_layer2 = deconvbnrelu(in_channels=512, out_channels=256, kernel_size=5, stride=2, padding=2, output_padding=1)
self.decoder_layer3 = deconvbnrelu(in_channels=256, out_channels=128, kernel_size=5, stride=2, padding=2, output_padding=1)
self.decoder_layer4 = deconvbnrelu(in_channels=128, out_channels=64, kernel_size=5, stride=2, padding=2, output_padding=1)
self.decoder_layer5 = deconvbnrelu(in_channels=64, out_channels=32, kernel_size=5, stride=2, padding=2, output_padding=1)
self.decoder_layer6 = convbnrelu(in_channels=32, out_channels=2, kernel_size=3, stride=1, padding=1)
self.softmax = nn.Softmax(dim=1)
self.pooling = nn.AvgPool2d(kernel_size=2)
self.sparsepooling = SparseDownSampleClose(stride=2)
weights_init(self)
def forward(self, input):
#independent input
rgb = input['rgb']
d = input['d']
position = input['position']
K = input['K']
unorm = position[:, 0:1, :, :]
vnorm = position[:, 1:2, :, :]
f352 = K[:, 1, 1]
f352 = f352.unsqueeze(1)
f352 = f352.unsqueeze(2)
f352 = f352.unsqueeze(3)
c352 = K[:, 1, 2]
c352 = c352.unsqueeze(1)
c352 = c352.unsqueeze(2)
c352 = c352.unsqueeze(3)
f1216 = K[:, 0, 0]
f1216 = f1216.unsqueeze(1)
f1216 = f1216.unsqueeze(2)
f1216 = f1216.unsqueeze(3)
c1216 = K[:, 0, 2]
c1216 = c1216.unsqueeze(1)
c1216 = c1216.unsqueeze(2)
c1216 = c1216.unsqueeze(3)
vnorm_s2 = self.pooling(vnorm)
vnorm_s3 = self.pooling(vnorm_s2)
vnorm_s4 = self.pooling(vnorm_s3)
vnorm_s5 = self.pooling(vnorm_s4)
vnorm_s6 = self.pooling(vnorm_s5)
unorm_s2 = self.pooling(unorm)
unorm_s3 = self.pooling(unorm_s2)
unorm_s4 = self.pooling(unorm_s3)
unorm_s5 = self.pooling(unorm_s4)
unorm_s6 = self.pooling(unorm_s5)
valid_mask = torch.where(d>0, torch.full_like(d, 1.0), torch.full_like(d, 0.0))
d_s2, vm_s2 = self.sparsepooling(d, valid_mask)
d_s3, vm_s3 = self.sparsepooling(d_s2, vm_s2)
d_s4, vm_s4 = self.sparsepooling(d_s3, vm_s3)
d_s5, vm_s5 = self.sparsepooling(d_s4, vm_s4)
d_s6, vm_s6 = self.sparsepooling(d_s5, vm_s5)
geo_s1 = None
geo_s2 = None
geo_s3 = None
geo_s4 = None
geo_s5 = None
geo_s6 = None
if self.args.convolutional_layer_encoding == "xyz":
geo_s1 = self.geofeature(d, vnorm, unorm, 352, 1216, c352, c1216, f352, f1216)
geo_s2 = self.geofeature(d_s2, vnorm_s2, unorm_s2, 352 / 2, 1216 / 2, c352, c1216, f352, f1216)
geo_s3 = self.geofeature(d_s3, vnorm_s3, unorm_s3, 352 / 4, 1216 / 4, c352, c1216, f352, f1216)
geo_s4 = self.geofeature(d_s4, vnorm_s4, unorm_s4, 352 / 8, 1216 / 8, c352, c1216, f352, f1216)
geo_s5 = self.geofeature(d_s5, vnorm_s5, unorm_s5, 352 / 16, 1216 / 16, c352, c1216, f352, f1216)
geo_s6 = self.geofeature(d_s6, vnorm_s6, unorm_s6, 352 / 32, 1216 / 32, c352, c1216, f352, f1216)
elif self.args.convolutional_layer_encoding == "uv":
geo_s1 = torch.cat((vnorm, unorm), dim=1)
geo_s2 = torch.cat((vnorm_s2, unorm_s2), dim=1)
geo_s3 = torch.cat((vnorm_s3, unorm_s3), dim=1)
geo_s4 = torch.cat((vnorm_s4, unorm_s4), dim=1)
geo_s5 = torch.cat((vnorm_s5, unorm_s5), dim=1)
geo_s6 = torch.cat((vnorm_s6, unorm_s6), dim=1)
elif self.args.convolutional_layer_encoding == "z":
geo_s1 = d
geo_s2 = d_s2
geo_s3 = d_s3
geo_s4 = d_s4
geo_s5 = d_s5
geo_s6 = d_s6
# b 1 352 1216
rgb_feature = self.rgb_conv_init(torch.cat((rgb, d), dim=1))
rgb_feature1 = self.rgb_encoder_layer1(rgb_feature, geo_s1, geo_s2) # b 32 176 608
rgb_feature2 = self.rgb_encoder_layer2(rgb_feature1, geo_s2, geo_s2) # b 32 176 608
rgb_feature3 = self.rgb_encoder_layer3(rgb_feature2, geo_s2, geo_s3) # b 64 88 304
rgb_feature4 = self.rgb_encoder_layer4(rgb_feature3, geo_s3, geo_s3) # b 64 88 304
rgb_feature5 = self.rgb_encoder_layer5(rgb_feature4, geo_s3, geo_s4) # b 128 44 152
rgb_feature6 = self.rgb_encoder_layer6(rgb_feature5, geo_s4, geo_s4) # b 128 44 152
rgb_feature7 = self.rgb_encoder_layer7(rgb_feature6, geo_s4, geo_s5) # b 256 22 76
rgb_feature8 = self.rgb_encoder_layer8(rgb_feature7, geo_s5, geo_s5) # b 256 22 76
rgb_feature9 = self.rgb_encoder_layer9(rgb_feature8, geo_s5, geo_s6) # b 512 11 38
rgb_feature10 = self.rgb_encoder_layer10(rgb_feature9, geo_s6, geo_s6) # b 512 11 38
rgb_feature_decoder8 = self.rgb_decoder_layer8(rgb_feature10)
rgb_feature8_plus = rgb_feature_decoder8 + rgb_feature8
rgb_feature_decoder6 = self.rgb_decoder_layer6(rgb_feature8_plus)
rgb_feature6_plus = rgb_feature_decoder6 + rgb_feature6
rgb_feature_decoder4 = self.rgb_decoder_layer4(rgb_feature6_plus)
rgb_feature4_plus = rgb_feature_decoder4 + rgb_feature4
rgb_feature_decoder2 = self.rgb_decoder_layer2(rgb_feature4_plus)
rgb_feature2_plus = rgb_feature_decoder2 + rgb_feature2 # b 32 176 608
rgb_feature_decoder0 = self.rgb_decoder_layer0(rgb_feature2_plus)
rgb_feature0_plus = rgb_feature_decoder0 + rgb_feature
rgb_output = self.rgb_decoder_output(rgb_feature0_plus)
rgb_depth = rgb_output[:, 0:1, :, :]
rgb_conf = rgb_output[:, 1:2, :, :]
# -----------------------------------------------------------------------
# mask = torch.where(d>0, torch.full_like(d, 1.0), torch.full_like(d, 0.0))
# input = torch.cat([d, mask], 1)
sparsed_feature = self.depth_conv_init(torch.cat((d, rgb_depth), dim=1))
sparsed_feature1 = self.depth_layer1(sparsed_feature, geo_s1, geo_s2)# b 32 176 608
sparsed_feature2 = self.depth_layer2(sparsed_feature1, geo_s2, geo_s2) # b 32 176 608
sparsed_feature2_plus = torch.cat([rgb_feature2_plus, sparsed_feature2], 1)
sparsed_feature3 = self.depth_layer3(sparsed_feature2_plus, geo_s2, geo_s3) # b 64 88 304
sparsed_feature4 = self.depth_layer4(sparsed_feature3, geo_s3, geo_s3) # b 64 88 304
sparsed_feature4_plus = torch.cat([rgb_feature4_plus, sparsed_feature4], 1)
sparsed_feature5 = self.depth_layer5(sparsed_feature4_plus, geo_s3, geo_s4) # b 128 44 152
sparsed_feature6 = self.depth_layer6(sparsed_feature5, geo_s4, geo_s4) # b 128 44 152
sparsed_feature6_plus = torch.cat([rgb_feature6_plus, sparsed_feature6], 1)
sparsed_feature7 = self.depth_layer7(sparsed_feature6_plus, geo_s4, geo_s5) # b 256 22 76
sparsed_feature8 = self.depth_layer8(sparsed_feature7, geo_s5, geo_s5) # b 256 22 76
sparsed_feature8_plus = torch.cat([rgb_feature8_plus, sparsed_feature8], 1)
sparsed_feature9 = self.depth_layer9(sparsed_feature8_plus, geo_s5, geo_s6) # b 512 11 38
sparsed_feature10 = self.depth_layer10(sparsed_feature9, geo_s6, geo_s6) # b 512 11 38
# -----------------------------------------------------------------------------------------
fusion1 = rgb_feature10 + sparsed_feature10
decoder_feature1 = self.decoder_layer1(fusion1)
fusion2 = sparsed_feature8 + decoder_feature1
decoder_feature2 = self.decoder_layer2(fusion2)
fusion3 = sparsed_feature6 + decoder_feature2
decoder_feature3 = self.decoder_layer3(fusion3)
fusion4 = sparsed_feature4 + decoder_feature3
decoder_feature4 = self.decoder_layer4(fusion4)
fusion5 = sparsed_feature2 + decoder_feature4
decoder_feature5 = self.decoder_layer5(fusion5)
depth_output = self.decoder_layer6(decoder_feature5)
d_depth, d_conf = torch.chunk(depth_output, 2, dim=1)
rgb_conf, d_conf = torch.chunk(self.softmax(torch.cat((rgb_conf, d_conf), dim=1)), 2, dim=1)
output = rgb_conf*rgb_depth + d_conf*d_depth
return torch.cat((rgb_feature0_plus, decoder_feature5), 1), output
# **********************************************************************************************************************
class ReDC(nn.Module):
def __init__(self, args):
super(ReDC, self).__init__()
self.kernel_size = 3
self.filter_size = 15
self.residual = True
self.backbone = ENet(args)
self.dkn_weight = convbnrelu(in_channels=64, out_channels=self.kernel_size**2, kernel_size=3, stride=1, padding=1)
self.dkn_offset = convbn(in_channels=64, out_channels=2*self.kernel_size**2, kernel_size=3, stride=1, padding=1)
def DKN_Interpolate(self, image, depth, weight, offset):
if self.residual:
weight = weight - torch.mean(weight, 1).unsqueeze(1).expand_as(weight)
else:
weight = weight / torch.sum(weight, 1).unsqueeze(1).expand_as(weight)
h, w = image.size(2), image.size(3)
b = image.size(0)
k = self.filter_size
r = self.kernel_size
hw = h*w
offset = offset.permute(0, 2, 3, 1).contiguous().view(b*hw, r, r, 2)
# (b, r**2, h, w) -> (b, h, w, r**2) -> (b*hw, r**2, 1)
weight = weight.permute(0, 2, 3, 1).contiguous().view(b*hw, r*r, 1)
# (b*hw, r, r, 2)
grid = grid_generator(k, r, b*hw)
coord = grid + offset
coord = (coord / k * 2) - 1
# (b, k**2, hw) -> (b*hw, 1, k, k)
depth_col = F.unfold(depth, k, padding=k//2).permute(0, 2, 1).contiguous().view(b*hw, 1, k, k)
# (b*hw, 1, k, k), (b*hw, r, r, 2) => (b*hw, 1, r^2)
depth_sampled = F.grid_sample(
depth_col.float(), coord).view(b*hw, 1, -1)
# (b*w*h, 1, r^2) x (b*w*h, r^2, 1) => (b, 1, h,w)
out = torch.bmm(depth_sampled, weight).view(b, 1, h, w).float()
if self.residual:
out += depth.float()
return out
def forward(self, input):
d = input['d']
rgb = input['rgb']
features, coarse_depth = self.backbone(input)
weight = torch.sigmoid(self.dkn_weight(features))
offset = self.dkn_offset(features)
refined_depth = self.DKN_Interpolate(rgb, coarse_depth, weight, offset)
return refined_depth