-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgap.py
209 lines (174 loc) · 8.63 KB
/
gap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import argparse
import datetime
import dateutil
import git
import pandas
import plotnine as p9
import sys
from statsmodels.duration.survfunc import SurvfuncRight
def dates_to_duration(dates, *, window_size=20):
"""
Convert a list of dates into a list of durations
(between consecutive dates). The resulting list is composed of
'window_size' durations.
"""
dates = sorted(set(dates))
kept = dates[-window_size - 1:] # -1 because intervals vs. bounds
durations = []
for first, second in zip(kept[:-1], kept[1:]):
duration = (second - first).days
durations.append(duration)
return durations
def cli():
parser = argparse.ArgumentParser(description='GAP - Git Activity Predictor')
parser.add_argument('paths', metavar='PATH', type=str, nargs='*', default=['.'], help='Paths to one or more git repositories')
parser.add_argument('--date', type=lambda d: dateutil.parser.parse(d).date(), required=False, default=datetime.date.today(), help='Date used for predictions (default to current date)')
parser.add_argument('--obs', type=int, required=False, default=20, help='Number of observations to consider')
parser.add_argument('--probs', metavar='PROB', type=float, nargs='*', required=False, default=[0.5, 0.6, 0.7, 0.8, 0.9], help='Probabilities to output, strictly in [0,1].')
parser.add_argument('--limit', type=int, required=False, default=30, help='Limit contributors to the one that were active at least once during the last x days (default 30)')
parser.add_argument('--mapping', type=str, nargs='?', help='Mapping file to merge identities. This file must be a csv file where each line contains two values: the name to be merged, and the corresponding identity. Use "IGNORE" as identity to ignore specific names.')
parser.add_argument('--branches', metavar='BRANCH', type=str, nargs='*', default=list(), help='Git branches to analyse (default to all).')
parser.add_argument('--as-dates', dest='as_dates', action='store_true', help='Express predictions using dates instead of time differences in days')
group = parser.add_mutually_exclusive_group()
group.add_argument('--text', action='store_true', help='Print results as text.')
group.add_argument('--csv', action='store_true', help='Print results as csv.')
group.add_argument('--json', action='store_true', help='Print results as json.')
group.add_argument('--plot', nargs='?', const=True, help='Export results to a plot. Filepath can be optionaly specified.')
args = parser.parse_args()
# Default plot location
if args.plot is True:
args.plot = str(args.date) + '.pdf'
# Default to text if not other option is provided
if not args.csv and not args.json and not args.plot:
args.text = True
# Identity mapping
if args.mapping:
d = pandas.read_csv(args.mapping, names=['source', 'target'])
mapping = {r.source: r.target for r in d.itertuples()}
else:
mapping = {}
raw_data = dict() # author -> dates of activity
# Get data from git
for path in args.paths:
try:
repo = git.Repo(path)
except Exception as e: # Must be refined
print('Unable to access repository {} ({}:{})'.format(path, e.__class__.__name__, e))
sys.exit()
# Default branches
if len(args.branches) == 0:
commits = repo.iter_commits('--all')
else:
commits = repo.iter_commits(' '.join(args.branches))
for commit in commits:
try:
author = commit.author.name
identity = mapping.get(author, author)
if author.lower() != 'ignore' and identity.lower() == 'ignore':
continue
date = datetime.date.fromtimestamp(commit.authored_date)
raw_data.setdefault(identity, []).append(date)
except Exception as e:
print('Unable to read commit ({}: {}): {}'.format(e.__class__.__name__, e, commit))
# Compute durations and apply model
data = [] # (author, past activities, predicted durations)
for author, commits in raw_data.items():
commits = sorted([e for e in commits if e <= args.date])
durations = dates_to_duration(commits, window_size=args.obs)
if len(durations) >= args.obs:
# Currently implemented with no censor
surv = SurvfuncRight(durations, [1] * len(durations))
predictions = [surv.quantile(p) for p in args.probs]
last_day = commits[-1]
if last_day >= args.date - datetime.timedelta(args.limit):
data.append((
author,
commits,
predictions,
))
# Prepare dataframe
df = pandas.DataFrame(
index=set([a for a, c, p in data]),
columns=['last'] + args.probs
)
if len(df) == 0:
print('No author has {} observations and was active at least once during the last {} days'.format(args.obs, args.limit))
sys.exit()
df.index.name = 'author'
if not args.plot:
for author, commits, predictions in data:
last = commits[-1]
if args.as_dates:
df.at[author, 'last'] = last
else:
df.at[author, 'last'] = (last - args.date).days
for prob, p in zip(args.probs, predictions):
if args.as_dates:
df.at[author, prob] = last + datetime.timedelta(days=int(p))
else:
df.at[author, prob] = (last + datetime.timedelta(days=int(p)) - args.date).days
df = df.sort_values(['last'] + args.probs, ascending=[False] + [True] * len(args.probs))
df = df.astype(str)
if args.text:
pandas.set_option('expand_frame_repr', False)
pandas.set_option('display.max_columns', 999)
print(df)
elif args.csv:
print(df.to_csv())
elif args.json:
print(df.to_json(orient='index'))
else:
# Because of plotnine's way of initializing matplotlib
import warnings
warnings.filterwarnings("ignore")
VIEW_LIMIT = 28
activities = [] # List of (author, day) where day is a delta w.r.t. given date
forecasts = [] # List of (author, from_day, to_day, p) where probability p
# applies between from_day and to_day (delta w.r.t. given date)
for author, commits, predictions in data:
last = (commits[-1] - args.date).days
for e in commits:
activities.append((author, (e - args.date).days))
previous = previous_previous = 0
for d, p in zip(predictions, args.probs):
if d > previous:
forecasts.append((
author, last + previous, last + d, p
))
previous_previous = previous
previous = d
else:
forecasts.append((
author, last + previous_previous, last + d, p
))
activities = pandas.DataFrame(columns=['author', 'day'], data=activities)
forecasts = pandas.DataFrame(columns=['author', 'fromd', 'tod', 'p'], data=forecasts)
plot = (
p9.ggplot(p9.aes(y='author'))
+ p9.geom_segment(
p9.aes('day - 0.5', 'author', xend='day + 0.5', yend='author'),
data=activities,
size=4,
color='orange',
)
+ p9.geom_segment(
p9.aes('fromd + 0.5', 'author', xend='tod + 0.5', yend='author', alpha='factor(p)'),
data=forecasts.sort_values('p').drop_duplicates(['author', 'fromd', 'tod'], keep='last'),
size=4,
color='steelblue',
)
+ p9.geom_vline(xintercept=0, color='r', alpha=0.5, linetype='dashed')
+ p9.scale_x_continuous(name=' << past days {:^20} future days >>'.format(str(args.date)), breaks=range(-VIEW_LIMIT // 7 * 7, (VIEW_LIMIT // 7 * 7) + 1, 7), minor_breaks=6)
+ p9.scale_y_discrete(name='', limits=activities.sort_values('day', ascending=False)['author'].unique())
+ p9.scale_alpha_discrete(range=(0.2, 1), name=' ')
+ p9.coord_cartesian(xlim=(-VIEW_LIMIT, VIEW_LIMIT))
+ p9.theme_matplotlib()
+ p9.theme(
figure_size=(6, 4 * activities['author'].nunique() / 15)
)
)
fig = plot.draw()
fig.savefig(args.plot, bbox_inches='tight')
print('Plot exported to {}'.format(args.plot))
if __name__ == '__main__':
cli()