-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathGetModularity.m
55 lines (49 loc) · 1.42 KB
/
GetModularity.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
function [Q e a out_clusters] = GetModularity(adjacent_matrix, clusters)
%% 获取无向无权网络的某种划分的模块度
%% 模块度的提出和计算方法见如下文献:
% 《Finding and evaluating community structure in network》(2004)
% 输入
% adjacent_matrix - 网络的邻接矩阵
% clusters - 网络的社团划分,第1行是节点标号,第2行是社团标号的变换,第3行是社团标号
% 输出
% Q - 划分的模块度
% e - k*k矩阵,k是社团数目,其中元素的定义见上述文献
% a - 意义见上述定义
% out_clusters - 与输入含义相同
uni = unique(clusters(3,:));
for i = 1:length(uni)
idices = find(clusters(3,:) == uni(i));
clusters(2,idices) = i;
end
m = sum(sum(adjacent_matrix))/2; % 网络的边的数目
Q = 0 ;
k = numel(unique(clusters(2,:))); % 社团数目
e = zeros(k);
for i=1:k
idx = find(clusters(2,:)==i);
labelsi = clusters(1,idx); %找到在i社团中的所有节点
for j=1:k
idx = find(clusters(2,:)==j);
labelsj = clusters(1,idx); %找到在j社团中的所有节点
for ii=1:length(labelsi)
vi = labelsi(ii); %对于i社团中的节点ii
for jj=1:length(labelsj)
vj = labelsj(jj); %对于j社团中的节点jj
e(i,j) = e(i,j)+adjacent_matrix(vi,vj);
end
end
end
end
e = e/2;
% for i=1:k
% e(i,i) = e(i,i)*2;
% end
e = e/m;
a = [];
for i=1:k
ai = sum(e(i,:));
a = [a; ai];
Q = Q + e(i,i)-ai^2;
end
out_clusters = clusters;
end