-
Notifications
You must be signed in to change notification settings - Fork 0
/
TGlow_40X_farm_V2.cppipe
452 lines (424 loc) · 32.4 KB
/
TGlow_40X_farm_V2.cppipe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
CellProfiler Pipeline: http://www.cellprofiler.org
Version:5
DateRevision:425
GitHash:
ModuleCount:28
HasImagePlaneDetails:False
Images:[module_num:1|svn_version:'Unknown'|variable_revision_number:2|show_window:False|notes:['To begin creating your project, use the Images module to compile a list of files and/or folders that you want to analyze. You can also specify a set of rules to include only the desired files in your selected folders.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
:
Filter images?:Images only
Select the rule criteria:and (extension does isimage) (directory doesnot containregexp "[\\\\/]\\.")
Metadata:[module_num:2|svn_version:'Unknown'|variable_revision_number:6|show_window:False|notes:['The Metadata module optionally allows you to extract information describing your images (i.e, metadata) which will be stored along with your measurements. This information can be contained in the file name and/or location, or in an external file.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Extract metadata?:Yes
Metadata data type:Text
Metadata types:{}
Extraction method count:1
Metadata extraction method:Extract from image file headers
Metadata source:File name
Regular expression to extract from file name:^(?P<Plate>.*)_(?P<Well>[A-P][0-9]{2})_s(?P<Site>[0-9])_w(?P<ChannelNumber>[0-9])
Regular expression to extract from folder name:(?P<Date>[0-9]{4}_[0-9]{2}_[0-9]{2})$
Extract metadata from:All images
Select the filtering criteria:and (file does contain "")
Metadata file location:Elsewhere...|
Match file and image metadata:[]
Use case insensitive matching?:No
Metadata file name:None
Does cached metadata exist?:Yes
NamesAndTypes:[module_num:3|svn_version:'Unknown'|variable_revision_number:8|show_window:False|notes:['The NamesAndTypes module allows you to assign a meaningful name to each image by which other modules will refer to it.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Assign a name to:Images matching rules
Select the image type:Grayscale image
Name to assign these images:DNA
Match metadata:[]
Image set matching method:Order
Set intensity range from:Image metadata
Assignments count:4
Single images count:0
Maximum intensity:255.0
Process as 3D?:No
Relative pixel spacing in X:1.0
Relative pixel spacing in Y:1.0
Relative pixel spacing in Z:1.0
Select the rule criteria:and (metadata does T "3")
Name to assign these images:DNA
Name to assign these objects:Cell
Select the image type:Grayscale image
Set intensity range from:Image metadata
Maximum intensity:255.0
Select the rule criteria:and (metadata does T "0")
Name to assign these images:CD25_Ki67
Name to assign these objects:Cell
Select the image type:Grayscale image
Set intensity range from:Image metadata
Maximum intensity:255.0
Select the rule criteria:and (metadata does T "1")
Name to assign these images:Actin
Name to assign these objects:Cell
Select the image type:Grayscale image
Set intensity range from:Image metadata
Maximum intensity:255.0
Select the rule criteria:and (metadata does T "2")
Name to assign these images:Mitochondria
Name to assign these objects:Cell
Select the image type:Grayscale image
Set intensity range from:Image metadata
Maximum intensity:255.0
Groups:[module_num:4|svn_version:'Unknown'|variable_revision_number:2|show_window:False|notes:['The Groups module optionally allows you to split your list of images into image subsets (groups) which will be processed independently of each other. Examples of groupings include screening batches, microtiter plates, time-lapse movies, etc.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Do you want to group your images?:No
grouping metadata count:1
Metadata category:None
MeasureImageQuality:[module_num:5|svn_version:'Unknown'|variable_revision_number:6|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Calculate metrics for which images?:All loaded images
Image count:1
Scale count:1
Threshold count:1
Select the images to measure:Actin, CD25_Ki67, DNA, Mitochondria
Include the image rescaling value?:Yes
Calculate blur metrics?:No
Spatial scale for blur measurements:20
Calculate saturation metrics?:Yes
Calculate intensity metrics?:Yes
Calculate thresholds?:No
Use all thresholding methods?:No
Select a thresholding method:Otsu
Typical fraction of the image covered by objects:0.1
Two-class or three-class thresholding?:Two classes
Minimize the weighted variance or the entropy?:Weighted variance
Assign pixels in the middle intensity class to the foreground or the background?:Foreground
ImageMath:[module_num:6|svn_version:'Unknown'|variable_revision_number:5|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Operation:Add
Raise the power of the result by:1.0
Multiply the result by:1.0
Add to result:0.0
Set values less than 0 equal to 0?:Yes
Set values greater than 1 equal to 1?:Yes
Replace invalid values with 0?:Yes
Ignore the image masks?:Yes
Name the output image:Ki67_plus_MC
Image or measurement?:Image
Select the first image:Mitochondria
Multiply the first image by:5
Measurement:
Image or measurement?:Image
Select the second image:CD25_Ki67
Multiply the second image by:10
Measurement:
Image or measurement?:Image
Select the third image:Actin
Multiply the third image by:20
Measurement:
Image or measurement?:Image
Select the fourth image:DNA
Multiply the fourth image by:1.0
Measurement:
IdentifyPrimaryObjects:[module_num:7|svn_version:'Unknown'|variable_revision_number:15|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:DNA
Name the primary objects to be identified:Nuclei
Typical diameter of objects, in pixel units (Min,Max):10,80
Discard objects outside the diameter range?:Yes
Discard objects touching the border of the image?:Yes
Method to distinguish clumped objects:Shape
Method to draw dividing lines between clumped objects:Shape
Size of smoothing filter:20
Suppress local maxima that are closer than this minimum allowed distance:20
Speed up by using lower-resolution image to find local maxima?:No
Fill holes in identified objects?:Never
Automatically calculate size of smoothing filter for declumping?:No
Automatically calculate minimum allowed distance between local maxima?:No
Handling of objects if excessive number of objects identified:Continue
Maximum number of objects:500
Use advanced settings?:Yes
Threshold setting version:12
Threshold strategy:Global
Thresholding method:Otsu
Threshold smoothing scale:0
Threshold correction factor:1.0
Lower and upper bounds on threshold:0.0,1.0
Manual threshold:0.0
Select the measurement to threshold with:None
Two-class or three-class thresholding?:Two classes
Log transform before thresholding?:No
Assign pixels in the middle intensity class to the foreground or the background?:Foreground
Size of adaptive window:50
Lower outlier fraction:0.05
Upper outlier fraction:0.05
Averaging method:Mean
Variance method:Standard deviation
# of deviations:2.0
Thresholding method:Minimum Cross-Entropy
IdentifyPrimaryObjects:[module_num:8|svn_version:'Unknown'|variable_revision_number:15|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:CD25_Ki67
Name the primary objects to be identified:Ki67
Typical diameter of objects, in pixel units (Min,Max):5,100
Discard objects outside the diameter range?:Yes
Discard objects touching the border of the image?:Yes
Method to distinguish clumped objects:None
Method to draw dividing lines between clumped objects:Intensity
Size of smoothing filter:20
Suppress local maxima that are closer than this minimum allowed distance:20
Speed up by using lower-resolution image to find local maxima?:No
Fill holes in identified objects?:Never
Automatically calculate size of smoothing filter for declumping?:No
Automatically calculate minimum allowed distance between local maxima?:No
Handling of objects if excessive number of objects identified:Continue
Maximum number of objects:500
Use advanced settings?:Yes
Threshold setting version:12
Threshold strategy:Global
Thresholding method:Robust Background
Threshold smoothing scale:1.3488
Threshold correction factor:1.0
Lower and upper bounds on threshold:0.001,1.0
Manual threshold:0.0
Select the measurement to threshold with:None
Two-class or three-class thresholding?:Two classes
Log transform before thresholding?:Yes
Assign pixels in the middle intensity class to the foreground or the background?:Foreground
Size of adaptive window:50
Lower outlier fraction:0.05
Upper outlier fraction:0.05
Averaging method:Mean
Variance method:Standard deviation
# of deviations:2.0
Thresholding method:Minimum Cross-Entropy
IdentifyPrimaryObjects:[module_num:9|svn_version:'Unknown'|variable_revision_number:15|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:Actin
Name the primary objects to be identified:actin
Typical diameter of objects, in pixel units (Min,Max):10,100
Discard objects outside the diameter range?:No
Discard objects touching the border of the image?:Yes
Method to distinguish clumped objects:None
Method to draw dividing lines between clumped objects:Intensity
Size of smoothing filter:10
Suppress local maxima that are closer than this minimum allowed distance:7.0
Speed up by using lower-resolution image to find local maxima?:Yes
Fill holes in identified objects?:Never
Automatically calculate size of smoothing filter for declumping?:Yes
Automatically calculate minimum allowed distance between local maxima?:Yes
Handling of objects if excessive number of objects identified:Continue
Maximum number of objects:500
Use advanced settings?:Yes
Threshold setting version:12
Threshold strategy:Adaptive
Thresholding method:Minimum Cross-Entropy
Threshold smoothing scale:1.3488
Threshold correction factor:1.0
Lower and upper bounds on threshold:0.004,1.0
Manual threshold:0.0
Select the measurement to threshold with:None
Two-class or three-class thresholding?:Two classes
Log transform before thresholding?:Yes
Assign pixels in the middle intensity class to the foreground or the background?:Foreground
Size of adaptive window:100
Lower outlier fraction:0.05
Upper outlier fraction:0.05
Averaging method:Mean
Variance method:Standard deviation
# of deviations:2.0
Thresholding method:Robust Background
IdentifyPrimaryObjects:[module_num:10|svn_version:'Unknown'|variable_revision_number:15|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input image:Mitochondria
Name the primary objects to be identified:MC
Typical diameter of objects, in pixel units (Min,Max):20,100
Discard objects outside the diameter range?:No
Discard objects touching the border of the image?:Yes
Method to distinguish clumped objects:Shape
Method to draw dividing lines between clumped objects:Shape
Size of smoothing filter:10
Suppress local maxima that are closer than this minimum allowed distance:7.0
Speed up by using lower-resolution image to find local maxima?:Yes
Fill holes in identified objects?:Never
Automatically calculate size of smoothing filter for declumping?:Yes
Automatically calculate minimum allowed distance between local maxima?:Yes
Handling of objects if excessive number of objects identified:Continue
Maximum number of objects:500
Use advanced settings?:Yes
Threshold setting version:12
Threshold strategy:Global
Thresholding method:Otsu
Threshold smoothing scale:1.3488
Threshold correction factor:1.0
Lower and upper bounds on threshold:0,1.0
Manual threshold:0.0
Select the measurement to threshold with:None
Two-class or three-class thresholding?:Two classes
Log transform before thresholding?:Yes
Assign pixels in the middle intensity class to the foreground or the background?:Foreground
Size of adaptive window:50
Lower outlier fraction:0.05
Upper outlier fraction:0.05
Averaging method:Mean
Variance method:Standard deviation
# of deviations:2.0
Thresholding method:Minimum Cross-Entropy
IdentifySecondaryObjects:[module_num:11|svn_version:'Unknown'|variable_revision_number:10|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the input objects:Nuclei
Name the objects to be identified:cell
Select the method to identify the secondary objects:Propagation
Select the input image:Ki67_plus_MC
Number of pixels by which to expand the primary objects:10
Regularization factor:0.05
Discard secondary objects touching the border of the image?:No
Discard the associated primary objects?:No
Name the new primary objects:FilteredNuclei
Fill holes in identified objects?:Yes
Threshold setting version:12
Threshold strategy:Adaptive
Thresholding method:Minimum Cross-Entropy
Threshold smoothing scale:0.0
Threshold correction factor:1.0
Lower and upper bounds on threshold:0.0,1.0
Manual threshold:0.0
Select the measurement to threshold with:None
Two-class or three-class thresholding?:Three classes
Log transform before thresholding?:No
Assign pixels in the middle intensity class to the foreground or the background?:Foreground
Size of adaptive window:50
Lower outlier fraction:0.05
Upper outlier fraction:0.05
Averaging method:Mean
Variance method:Standard deviation
# of deviations:2.0
Thresholding method:Otsu
RelateObjects:[module_num:12|svn_version:'Unknown'|variable_revision_number:5|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Parent objects:cell
Child objects:Ki67
Calculate child-parent distances?:None
Calculate per-parent means for all child measurements?:Yes
Calculate distances to other parents?:No
Do you want to save the children with parents as a new object set?:No
Name the output object:CellwithMC
Parent name:None
RelateObjects:[module_num:13|svn_version:'Unknown'|variable_revision_number:5|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Parent objects:cell
Child objects:MC
Calculate child-parent distances?:None
Calculate per-parent means for all child measurements?:Yes
Calculate distances to other parents?:No
Do you want to save the children with parents as a new object set?:No
Name the output object:CellwithMCwithKi67
Parent name:None
RelateObjects:[module_num:14|svn_version:'Unknown'|variable_revision_number:5|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Parent objects:cell
Child objects:actin
Calculate child-parent distances?:None
Calculate per-parent means for all child measurements?:Yes
Calculate distances to other parents?:No
Do you want to save the children with parents as a new object set?:No
Name the output object:CellwithMCwithKi67
Parent name:None
RelateObjects:[module_num:15|svn_version:'Unknown'|variable_revision_number:5|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Parent objects:cell
Child objects:Nuclei
Calculate child-parent distances?:None
Calculate per-parent means for all child measurements?:Yes
Calculate distances to other parents?:No
Do you want to save the children with parents as a new object set?:No
Name the output object:CellwithMCwithKi67
Parent name:None
MeasureImageIntensity:[module_num:16|svn_version:'Unknown'|variable_revision_number:4|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select images to measure:DNA
Measure the intensity only from areas enclosed by objects?:Yes
Select input object sets:cell
Calculate custom percentiles:Yes
Specify percentiles to measure:10,90
MeasureImageIntensity:[module_num:17|svn_version:'Unknown'|variable_revision_number:4|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select images to measure:Mitochondria
Measure the intensity only from areas enclosed by objects?:Yes
Select input object sets:cell
Calculate custom percentiles:Yes
Specify percentiles to measure:10,90
MeasureImageIntensity:[module_num:18|svn_version:'Unknown'|variable_revision_number:4|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select images to measure:CD25_Ki67
Measure the intensity only from areas enclosed by objects?:Yes
Select input object sets:cell
Calculate custom percentiles:Yes
Specify percentiles to measure:10,90
MeasureObjectIntensity:[module_num:19|svn_version:'Unknown'|variable_revision_number:4|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select images to measure:Mitochondria
Select objects to measure:cell
MeasureObjectIntensity:[module_num:20|svn_version:'Unknown'|variable_revision_number:4|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select images to measure:CD25_Ki67
Select objects to measure:cell
MeasureObjectIntensity:[module_num:21|svn_version:'Unknown'|variable_revision_number:4|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select images to measure:Actin
Select objects to measure:cell
MeasureObjectIntensity:[module_num:22|svn_version:'Unknown'|variable_revision_number:4|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select images to measure:DNA
Select objects to measure:cell
MeasureObjectSizeShape:[module_num:23|svn_version:'Unknown'|variable_revision_number:3|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select object sets to measure:MC, cell
Calculate the Zernike features?:Yes
Calculate the advanced features?:Yes
MeasureColocalization:[module_num:24|svn_version:'Unknown'|variable_revision_number:5|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select images to measure:DNA, Mitochondria
Set threshold as percentage of maximum intensity for the images:15.0
Select where to measure correlation:Within objects
Select objects to measure:MC, Nuclei
Run all metrics?:No
Calculate correlation and slope metrics?:No
Calculate the Manders coefficients?:No
Calculate the Rank Weighted Colocalization coefficients?:No
Calculate the Overlap coefficients?:Yes
Calculate the Manders coefficients using Costes auto threshold?:No
Method for Costes thresholding:Faster
MeasureTexture:[module_num:25|svn_version:'Unknown'|variable_revision_number:7|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select images to measure:DNA
Select objects to measure:Nuclei
Enter how many gray levels to measure the texture at:256
Hidden:1
Measure whole images or objects?:Objects
Texture scale to measure:2
MeasureTexture:[module_num:26|svn_version:'Unknown'|variable_revision_number:7|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select images to measure:Mitochondria
Select objects to measure:MC
Enter how many gray levels to measure the texture at:256
Hidden:1
Measure whole images or objects?:Objects
Texture scale to measure:2
MeasureGranularity:[module_num:27|svn_version:'Unknown'|variable_revision_number:4|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select images to measure:Mitochondria
Measure within objects?:Yes
Select objects to measure:cell
Subsampling factor for granularity measurements:0.25
Subsampling factor for background reduction:0.25
Radius of structuring element:1
Range of the granular spectrum:6
ExportToSpreadsheet:[module_num:28|svn_version:'Unknown'|variable_revision_number:13|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False]
Select the column delimiter:Comma (",")
Add image metadata columns to your object data file?:No
Add image file and folder names to your object data file?:Yes
Select the measurements to export:No
Calculate the per-image mean values for object measurements?:No
Calculate the per-image median values for object measurements?:No
Calculate the per-image standard deviation values for object measurements?:No
Output file location:Default Output Folder|Desktop/Julie/20230728_TCA/results_test_farm
Create a GenePattern GCT file?:No
Select source of sample row name:Metadata
Select the image to use as the identifier:None
Select the metadata to use as the identifier:None
Export all measurement types?:Yes
Press button to select measurements:Image|Granularity_3_Mitochondria,Image|Granularity_9_Mitochondria,Image|Granularity_5_Mitochondria,Image|Granularity_8_Mitochondria,Image|Granularity_2_Mitochondria,Image|Granularity_14_Mitochondria,Image|Granularity_12_Mitochondria,Image|Granularity_1_Mitochondria,Image|Granularity_7_Mitochondria,Image|Granularity_6_Mitochondria,Image|Granularity_10_Mitochondria,Image|Granularity_4_Mitochondria,Image|Granularity_16_Mitochondria,Image|Granularity_13_Mitochondria,Image|Granularity_11_Mitochondria,Image|Granularity_15_Mitochondria,Image|Intensity_Percentile_10_Mitochondria_MC,Image|Intensity_Percentile_10_DNA_Nuclei,Image|Intensity_Percentile_10_CD25_Ki67_Ki67,Image|Intensity_Percentile_90_DNA_Nuclei,Image|Intensity_Percentile_90_Mitochondria_MC,Image|Intensity_Percentile_90_CD25_Ki67_Ki67,Image|Intensity_TotalIntensity_DNA_Nuclei,Image|Intensity_TotalIntensity_Mitochondria_MC,Image|Intensity_TotalIntensity_CD25_Ki67_Ki67,Image|Intensity_UpperQuartileIntensity_DNA_Nuclei,Image|Intensity_UpperQuartileIntensity_Mitochondria_MC,Image|Intensity_UpperQuartileIntensity_CD25_Ki67_Ki67,Image|Intensity_MeanIntensity_Mitochondria_MC,Image|Intensity_MeanIntensity_DNA_Nuclei,Image|Intensity_MeanIntensity_CD25_Ki67_Ki67,Image|Intensity_TotalArea_DNA_Nuclei,Image|Intensity_TotalArea_CD25_Ki67_Ki67,Image|Intensity_TotalArea_Mitochondria_MC,Image|Intensity_LowerQuartileIntensity_Mitochondria_MC,Image|Intensity_LowerQuartileIntensity_CD25_Ki67_Ki67,Image|Intensity_LowerQuartileIntensity_DNA_Nuclei,Image|Intensity_MedianIntensity_DNA_Nuclei,Image|Intensity_MedianIntensity_Mitochondria_MC,Image|Intensity_MedianIntensity_CD25_Ki67_Ki67,Image|Intensity_MADIntensity_DNA_Nuclei,Image|Intensity_MADIntensity_CD25_Ki67_Ki67,Image|Intensity_MADIntensity_Mitochondria_MC,Image|Intensity_StdIntensity_DNA_Nuclei,Image|Intensity_StdIntensity_Mitochondria_MC,Image|Intensity_StdIntensity_CD25_Ki67_Ki67,Image|Intensity_MinIntensity_CD25_Ki67_Ki67,Image|Intensity_MinIntensity_DNA_Nuclei,Image|Intensity_MinIntensity_Mitochondria_MC,Image|Intensity_MaxIntensity_CD25_Ki67_Ki67,Image|Intensity_MaxIntensity_Mitochondria_MC,Image|Intensity_MaxIntensity_DNA_Nuclei,Image|Intensity_PercentMaximal_DNA_Nuclei,Image|Intensity_PercentMaximal_Mitochondria_MC,Image|Intensity_PercentMaximal_CD25_Ki67_Ki67,Image|Metadata_SizeX,Image|Metadata_FileLocation,Image|Metadata_SizeC,Image|Metadata_Series,Image|Metadata_SizeT,Image|Metadata_Plate,Image|Metadata_T,Image|Metadata_ColorFormat,Image|Metadata_Z,Image|Metadata_SizeZ,Image|Metadata_Well,Image|Metadata_ChannelName,Image|Metadata_Frame,Image|Metadata_Site,Image|Metadata_C,Image|Metadata_SizeY,Image|ModuleError_02Metadata,Image|ModuleError_15RelateObjects,Image|ModuleError_10IdentifyPrimaryObjects,Image|ModuleError_08IdentifyPrimaryObjects,Image|ModuleError_04Groups,Image|ModuleError_24MeasureObjectNeighbors,Image|ModuleError_32MeasureTexture,Image|ModuleError_19MeasureImageIntensity,Image|ModuleError_17RelateObjects,Image|ModuleError_21MeasureObjectIntensity,Image|ModuleError_03NamesAndTypes,Image|ModuleError_30MeasureObjectSizeShape,Image|ModuleError_01Images,Image|ModuleError_29MeasureGranularity,Image|ModuleError_13IdentifySecondaryObjects,Image|ModuleError_31MeasureObjectSizeShape,Image|ModuleError_23MeasureColocalization,Image|ModuleError_18MeasureImageIntensity,Image|ModuleError_09IdentifyPrimaryObjects,Image|ModuleError_16RelateObjects,Image|ModuleError_22MeasureObjectIntensity,Image|ModuleError_06ImageMath,Image|ModuleError_20MeasureImageIntensity,Image|ModuleError_14RelateObjects,Image|ModuleError_07IdentifyPrimaryObjects,Image|MD5Digest_CD25_Ki67,Image|MD5Digest_DNA,Image|MD5Digest_Actin,Image|MD5Digest_Mitochondria,Image|ExecutionTime_32MeasureTexture,Image|ExecutionTime_24MeasureObjectNeighbors,Image|ExecutionTime_15RelateObjects,Image|ExecutionTime_09IdentifyPrimaryObjects,Image|ExecutionTime_08IdentifyPrimaryObjects,Image|ExecutionTime_10IdentifyPrimaryObjects,Image|ExecutionTime_02Metadata,Image|ExecutionTime_19MeasureImageIntensity,Image|ExecutionTime_13IdentifySecondaryObjects,Image|ExecutionTime_20MeasureImageIntensity,Image|ExecutionTime_30MeasureObjectSizeShape,Image|ExecutionTime_04Groups,Image|ExecutionTime_03NamesAndTypes,Image|ExecutionTime_23MeasureColocalization,Image|ExecutionTime_18MeasureImageIntensity,Image|ExecutionTime_22MeasureObjectIntensity,Image|ExecutionTime_16RelateObjects,Image|ExecutionTime_07IdentifyPrimaryObjects,Image|ExecutionTime_29MeasureGranularity,Image|ExecutionTime_01Images,Image|ExecutionTime_06ImageMath,Image|ExecutionTime_31MeasureObjectSizeShape,Image|ExecutionTime_14RelateObjects,Image|ExecutionTime_21MeasureObjectIntensity,Image|ExecutionTime_17RelateObjects,Image|Threshold_OrigThreshold_Ki67,Image|Threshold_OrigThreshold_Nuclei,Image|Threshold_OrigThreshold_cell2,Image|Threshold_OrigThreshold_MC,Image|Threshold_OrigThreshold_actin,Image|Threshold_FinalThreshold_Nuclei,Image|Threshold_FinalThreshold_MC,Image|Threshold_FinalThreshold_cell2,Image|Threshold_FinalThreshold_Ki67,Image|Threshold_FinalThreshold_actin,Image|Threshold_WeightedVariance_Ki67,Image|Threshold_WeightedVariance_MC,Image|Threshold_WeightedVariance_Nuclei,Image|Threshold_WeightedVariance_actin,Image|Threshold_WeightedVariance_cell2,Image|Threshold_SumOfEntropies_actin,Image|Threshold_SumOfEntropies_Ki67,Image|Threshold_SumOfEntropies_MC,Image|Threshold_SumOfEntropies_Nuclei,Image|Threshold_SumOfEntropies_cell2,Image|Threshold_GuideThreshold_actin,Image|PathName_Mitochondria,Image|PathName_CD25_Ki67,Image|PathName_Actin,Image|PathName_DNA,Image|FileName_Mitochondria,Image|FileName_DNA,Image|FileName_CD25_Ki67,Image|FileName_Actin,Image|URL_Mitochondria,Image|URL_DNA,Image|URL_Actin,Image|URL_CD25_Ki67,Image|Series_DNA,Image|Series_CD25_Ki67,Image|Series_Mitochondria,Image|Series_Actin,Image|Scaling_DNA,Image|Scaling_Mitochondria,Image|Scaling_Actin,Image|Scaling_CD25_Ki67,Image|Width_Mitochondria,Image|Width_Actin,Image|Width_DNA,Image|Width_CD25_Ki67,Image|Frame_Mitochondria,Image|Frame_DNA,Image|Frame_CD25_Ki67,Image|Frame_Actin,Image|Group_Index,Image|Group_Number,Image|Group_Length,Image|Count_MC,Image|Count_actin,Image|Count_cell2,Image|Count_Nuclei,Image|Count_Ki67,Image|Height_Actin,Image|Height_DNA,Image|Height_CD25_Ki67,Image|Height_Mitochondria,cell2|Location_Center_Z,cell2|Location_Center_Y,cell2|Location_Center_X,cell2|Location_MaxIntensity_Y_Mitochondria,cell2|Location_MaxIntensity_Y_CD25_Ki67,cell2|Location_MaxIntensity_Z_CD25_Ki67,cell2|Location_MaxIntensity_Z_Mitochondria,cell2|Location_MaxIntensity_X_CD25_Ki67,cell2|Location_MaxIntensity_X_Mitochondria,cell2|Location_CenterMassIntensity_Y_CD25_Ki67,cell2|Location_CenterMassIntensity_Y_Mitochondria,cell2|Location_CenterMassIntensity_Z_CD25_Ki67,cell2|Location_CenterMassIntensity_Z_Mitochondria,cell2|Location_CenterMassIntensity_X_Mitochondria,cell2|Location_CenterMassIntensity_X_CD25_Ki67,cell2|Intensity_StdIntensityEdge_CD25_Ki67,cell2|Intensity_StdIntensityEdge_Mitochondria,cell2|Intensity_MinIntensityEdge_CD25_Ki67,cell2|Intensity_MinIntensityEdge_Mitochondria,cell2|Intensity_MADIntensity_Mitochondria,cell2|Intensity_MADIntensity_CD25_Ki67,cell2|Intensity_MedianIntensity_CD25_Ki67,cell2|Intensity_MedianIntensity_Mitochondria,cell2|Intensity_IntegratedIntensity_Mitochondria,cell2|Intensity_IntegratedIntensity_CD25_Ki67,cell2|Intensity_MassDisplacement_CD25_Ki67,cell2|Intensity_MassDisplacement_Mitochondria,cell2|Intensity_LowerQuartileIntensity_Mitochondria,cell2|Intensity_LowerQuartileIntensity_CD25_Ki67,cell2|Intensity_MeanIntensityEdge_CD25_Ki67,cell2|Intensity_MeanIntensityEdge_Mitochondria,cell2|Intensity_UpperQuartileIntensity_CD25_Ki67,cell2|Intensity_UpperQuartileIntensity_Mitochondria,cell2|Intensity_MinIntensity_CD25_Ki67,cell2|Intensity_MinIntensity_Mitochondria,cell2|Intensity_MaxIntensityEdge_Mitochondria,cell2|Intensity_MaxIntensityEdge_CD25_Ki67,cell2|Intensity_StdIntensity_Mitochondria,cell2|Intensity_StdIntensity_CD25_Ki67,cell2|Intensity_MaxIntensity_Mitochondria,cell2|Intensity_MaxIntensity_CD25_Ki67,cell2|Intensity_IntegratedIntensityEdge_Mitochondria,cell2|Intensity_IntegratedIntensityEdge_CD25_Ki67,cell2|Intensity_MeanIntensity_CD25_Ki67,cell2|Intensity_MeanIntensity_Mitochondria,cell2|Mean_actin_Number_Object_Number,cell2|Mean_actin_Location_Center_Y,cell2|Mean_actin_Location_Center_Z,cell2|Mean_actin_Location_Center_X,cell2|Mean_Ki67_Number_Object_Number,cell2|Mean_Ki67_Location_Center_Z,cell2|Mean_Ki67_Location_Center_Y,cell2|Mean_Ki67_Location_Center_X,cell2|Mean_Nuclei_Children_cell2_Count,cell2|Mean_Nuclei_Location_Center_Z,cell2|Mean_Nuclei_Location_Center_Y,cell2|Mean_Nuclei_Location_Center_X,cell2|Mean_Nuclei_Number_Object_Number,cell2|Mean_MC_Location_Center_X,cell2|Mean_MC_Location_Center_Z,cell2|Mean_MC_Location_Center_Y,cell2|Mean_MC_Number_Object_Number,cell2|Children_Ki67_Count,cell2|Children_Nuclei_Count,cell2|Children_actin_Count,cell2|Children_MC_Count,cell2|Parent_Nuclei,cell2|Number_Object_Number,MC|Correlation_K_CD25_Ki67_Mitochondria,MC|Correlation_K_Mitochondria_CD25_Ki67,MC|Correlation_Overlap_CD25_Ki67_Mitochondria,MC|Parent_cell2,MC|Location_Center_Y,MC|Location_Center_X,MC|Location_Center_Z,MC|Number_Object_Number,Ki67|Correlation_K_Mitochondria_CD25_Ki67,Ki67|Correlation_K_CD25_Ki67_Mitochondria,Ki67|Correlation_Overlap_CD25_Ki67_Mitochondria,Ki67|Location_Center_X,Ki67|Location_Center_Z,Ki67|Location_Center_Y,Ki67|Number_Object_Number,Ki67|Parent_cell2,actin|Location_Center_Y,actin|Location_Center_X,actin|Location_Center_Z,actin|Parent_cell2,actin|Number_Object_Number,Nuclei|Location_Center_Z,Nuclei|Location_Center_X,Nuclei|Location_Center_Y,Nuclei|Neighbors_FirstClosestDistance_5,Nuclei|Neighbors_PercentTouching_5,Nuclei|Neighbors_FirstClosestObjectNumber_5,Nuclei|Neighbors_SecondClosestObjectNumber_5,Nuclei|Neighbors_NumberOfNeighbors_5,Nuclei|Neighbors_AngleBetweenNeighbors_5,Nuclei|Neighbors_SecondClosestDistance_5,Nuclei|Parent_cell2,Nuclei|Number_Object_Number,Nuclei|Children_cell2_Count,Experiment|CellProfiler_Version,Experiment|Modification_Timestamp,Experiment|Run_Timestamp,Experiment|Metadata_GroupingTags,Experiment|Pipeline_Pipeline
Representation of Nan/Inf:NaN
Add a prefix to file names?:Yes
Filename prefix:MyExpt_
Overwrite existing files without warning?:No
Data to export:Image
Combine these object measurements with those of the previous object?:No
File name:DATA.csv
Use the object name for the file name?:Yes
Data to export:Experiment
Combine these object measurements with those of the previous object?:No
File name:DATA.csv
Use the object name for the file name?:Yes
Data to export:Object relationships
Combine these object measurements with those of the previous object?:No
File name:DATA.csv
Use the object name for the file name?:Yes
Data to export:Nuclei
Combine these object measurements with those of the previous object?:No
File name:DATA.csv
Use the object name for the file name?:Yes
Data to export:cell2
Combine these object measurements with those of the previous object?:No
File name:DATA.csv
Use the object name for the file name?:Yes