-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
314 lines (216 loc) · 9.95 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
from urlextract import URLExtract
from wordcloud import WordCloud
import pandas as pd
from collections import Counter
import numpy as np
from PIL import Image
import emoji as emt
import re
from googletrans import Translator
extract = URLExtract()
def start_end(df):
def get_day_with_suffix(day):
if 4 <= day <= 20 or 24 <= day <= 30:
suffix = "th"
else:
suffix = ["st", "nd", "rd"][day % 10 - 1]
return str(day) + suffix
day_number = df['day'].iloc[0]
day_with_suffix = get_day_with_suffix(day_number)
start_day = df['day_name'].iloc[0] + ', ' + str(df['month'].iloc[0]) + ' ' + day_with_suffix + ' ' + str(df['year'].iloc[0])
day_number = df['day'].iloc[-1]
day_with_suffix = get_day_with_suffix(day_number)
end_day = df['day_name'].iloc[-1] + ', ' + str(df['month'].iloc[-1]) + ' ' + day_with_suffix + ' ' + str(df['year'].iloc[-1])
return start_day,end_day
def fetch_stats(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
# fetch the number of messages
num_messages = df.shape[0]
# fetch the total number of words
words = []
for message in df['message']:
words.extend(message.split())
# fetch number of media messages
num_media_messages = df[df['message'] == '<Media omitted>\n'].shape[0]
# fetch number of links shared
links = []
for message in df['message']:
links.extend(extract.find_urls(message))
return num_messages,len(words),num_media_messages,len(links)
def dictionary(df):
dicto = {}
for i in range(24):
dicto[i] = 0
x = df['hour'].value_counts()
labels = x.index.tolist()
values = x.values.tolist()
for i in range(len(labels)):
dicto[labels[i]] = values[i]
return dicto
def most_busy_users(df, num_users):
x = df['user'].value_counts()
top_users = x.head(num_users).index.tolist()
other_users = x.tail(len(x) - num_users).index.tolist()
return top_users, other_users
def most_busy_users_by_emoji(df, num_users):
user_emoji_counts = {}
for user, messages in df.groupby('user')['message']:
emojis = []
for message in messages:
emojis.extend([c for c in message if emt.emoji_count(c) > 0])
emoji_counter = Counter(emojis)
user_emoji_counts[user] = sum(emoji_counter.values())
sorted_users = sorted(user_emoji_counts.items(), key=lambda x: x[1], reverse=True)
top_users_dict = {user[0]: user[1] for user in sorted_users[:num_users]}
other_users_dict = {user[0]: user[1] for user in sorted_users[num_users:]}
return top_users_dict, other_users_dict
def create_wordcloud(selected_user, df, frequency, num_words):
f = open('stop_hinglish.txt', 'r')
stop_words = f.read()
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
temp = df[df['user'] != 'group_notification']
temp = temp[temp['message'] != '<Media omitted>\n']
def remove_stop_words(message):
y = []
for word in message.lower().split():
if word not in stop_words:
y.append(word)
return " ".join(y)
# Load your custom shape image
mask = np.array(Image.open("comment.png"))
wc = WordCloud(width=500, height=500, min_font_size=10, background_color='white', max_words=num_words, max_font_size=frequency, mask=mask, contour_color='steelblue', contour_width=1)
temp['message'] = temp['message'].apply(remove_stop_words)
# Generate the word cloud image
wordcloud = wc.generate(temp['message'].str.cat(sep=" "))
return wordcloud
def most_common_words(selected_user,df):
f = open('stop_hinglish.txt','r')
stop_words = f.read()
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
temp = df[df['user'] != 'group_notification']
temp = temp[temp['message'] != '<Media omitted>\n']
words = []
for message in temp['message']:
for word in message.lower().split():
if word not in stop_words:
words.append(word)
most_common_df = pd.DataFrame(Counter(words).most_common(20))
return most_common_df
def emoji_helper(selected_user, df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
emojis = []
for message in df['message']:
emojis.extend([c for c in message if emt.emoji_count(c) > 0])
emoji_counter = Counter(emojis)
top_3_emojis = emoji_counter.most_common(3)
top_3_emoji_string = ''.join([emoji for emoji, _ in top_3_emojis])
return top_3_emoji_string
def emoji_occurrences(selected_user, df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
emojis = []
for message in df['message']:
emojis.extend([c for c in message if emt.emoji_count(c) > 0])
emoji_counter = Counter(emojis)
emoji_data = {'Emoji': [], 'Occurrences': []}
for emoji, count in emoji_counter.items():
emoji_data['Emoji'].append(emoji)
emoji_data['Occurrences'].append(count)
emoji_df = pd.DataFrame(emoji_data)
emoji_df = emoji_df.sort_values(by='Occurrences', ascending=False)
emoji_df = emoji_df.reset_index(drop=True)
return emoji_df
def monthly_timeline(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
timeline = df.groupby(['year', 'month_num', 'month']).count()['message'].reset_index()
time = []
for i in range(timeline.shape[0]):
time.append(timeline['month'][i] + "-" + str(timeline['year'][i]))
timeline['time'] = time
return timeline
def daily_timeline(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
daily_timeline = df.groupby('only_date').count()['message'].reset_index()
return daily_timeline
def week_activity_map(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
return df['day_name'].value_counts()
def month_activity_map(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
return df['month'].value_counts()
def activity_heatmap(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
heatmap_data = df.groupby(['day_name', 'hour']).size().unstack(fill_value=0)
return heatmap_data
def read_whatsapp_chat(data):
pattern = r'\d{1,2}/\d{1,2}/\d{2},\s\d{1,2}:\d{1,2}\s(?:am|pm)\s-\s'
message = re.split(pattern, data)[1:]
dates = re.findall(pattern, data)
dates = [date.replace('\u202f', '') for date in dates]
df = pd.DataFrame({'Date': dates, 'Message': message})
df['Date'] = pd.to_datetime(df['Date'], format='%d/%m/%y, %I:%M%p - ')
users = []
messages = []
for message in df['Message']:
entry = re.split('([\w\W]+?):\s', message)
if entry[1:]:
users.append(entry[1])
messages.append(" ".join(entry[2:]))
else:
users.append('group_notification')
messages.append(entry[0])
df['user'] = users
df['message'] = messages
df.drop(columns=['Message'], inplace=True)
return df
def format_message(sender, message, date, user_name, target_lang='en'):
translator = Translator()
translated_message = translator.translate(message, dest=target_lang).text
timestamp = date.strftime("%d/%m/%Y %I:%M %p")
if sender.strip() == user_name:
return f'<div class="chat-bubble sender"><span class="sender-name">{sender}:</span> {translated_message}<br><span class="timestamp">{timestamp}</span></div>'
elif sender.strip() == "group_notification":
return f'<div class="chat-bubble center">{translated_message}<br><span class="timestamp">{timestamp}</span></div>'
else:
return f'<div class="chat-bubble receiver"><span class="sender-name">{sender}:</span> {translated_message}<br><span class="timestamp">{timestamp}</span></div>'
def chat_summarizer(df, start_date, end_date):
start_date = pd.Timestamp(start_date)
end_date = pd.Timestamp(end_date)
filtered_df = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
# Calculate message length for each message
filtered_df['Message Length'] = filtered_df['message'].apply(lambda x: len(x.split()))
# Calculate average message length per user
avg_msg_length_per_user = filtered_df.groupby('user')['Message Length'].mean().to_dict()
total_emojis_per_user = filtered_df.groupby('user')['message'].apply(lambda x: sum([emt.emoji_count(c) for c in x])).to_dict()
avg_messages = filtered_df.groupby('user').size().mean()
summary = {
'Total Messages': filtered_df.shape[0],
'Users': filtered_df['user'].nunique(),
'Top 5 Active Users': filtered_df['user'].value_counts().head().to_dict(),
'Average Messages per User': filtered_df.groupby('user').size().mean(),
'Average Message length per User': dict(sorted(avg_msg_length_per_user.items(), key=lambda item: item[1])[::-1]),
'Total Emojis per Person': dict(sorted(total_emojis_per_user.items(), key=lambda item: item[1])[::-1])
}
return summary
def senti(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
return df['sentiment'].value_counts()
def senti2(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
sentiment_over_time = df.groupby([pd.Grouper(key='Date', freq='D'), 'sentiment']).size().unstack(fill_value=0)
return sentiment_over_time
def loveu(selected_user,df):
if selected_user != 'Overall':
df = df[df['user'] == selected_user]
return df