-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_time_scaling.py
executable file
·90 lines (60 loc) · 2.15 KB
/
plot_time_scaling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/env python
"""Plot the time scaling of the patch extractor."""
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter, Namespace
from pathlib import Path
from pandas import read_csv
from numpy import array
import matplotlib.pyplot as plt
def _parse_command_line() -> Namespace:
"""Parse the command-line arguments.
Returns
-------
Namespace
The command-line arguments.
"""
parser = ArgumentParser(
description="Plot the patch extractor time scaling.",
formatter_class=ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"profile_csv",
type=Path,
help="Path to the time scaling csv file.",
)
return parser.parse_args()
def plot_time_scaling(args: Namespace):
"""Plot the time scaling of of the patch extractor.
Parameters
----------
args : Namespace
Command-line arguments.
"""
time_data = read_csv(args.profile_csv)
styles = {True: "-o", False: "--"}
figure, axis = plt.subplots(1, 1, figsize=(4, 2))
for patches in [True, False]:
frame = time_data.loc[time_data.patches == patches]
means = frame.groupby("workers").wall_time_secs.mean().reset_index()
print("With patches" if patches is True else "Without patches")
print(means)
print("\n")
axis.plot(
means.workers,
means.wall_time_secs,
styles[patches],
label=("Full patch extraction" if patches is True else "Masking only"),
color=array([122, 1, 119]) / 255.0 if patches is True else "k",
)
axis.set_xticks(sorted(time_data.workers.unique()))
axis.set_xlim(left=time_data.workers.min(), right=time_data.workers.max())
axis.set_xlabel("Workers")
axis.set_ylim(bottom=0.0, top=40.0)
axis.set_ylabel("Wall-clock time (seconds)")
x_min, x_max = axis.get_xlim()
y_min, y_max = axis.get_ylim()
axis.set_aspect(0.5 * (x_max - x_min) / (y_max - y_min))
axis.legend()
figure.tight_layout(pad=0.05)
figure.savefig("time-scaling.pdf", dpi=250)
if __name__ == "__main__":
plot_time_scaling(_parse_command_line())