-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_mask_utils.py
290 lines (206 loc) · 7.28 KB
/
_mask_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
"""Utility functions for creating a tissue mask."""
from typing import Callable, Dict, List
from skimage.util import img_as_ubyte, img_as_float
from skimage.filters import threshold_otsu # pylint: disable=no-name-in-module
from skimage.color import rgb2gray, rgb2lab # pylint: disable=no-name-in-module
from skimage.filters.rank import entropy
from skimage.draw import polygon2mask # pylint: disable=no-name-in-module
from skimage.morphology import binary_dilation, binary_erosion
from skimage.morphology import remove_small_objects
from scipy.ndimage import binary_fill_holes # type: ignore
from sklearn.cluster import KMeans # type: ignore
from numpy import ndarray, ones, floor, log, percentile, bincount, array, zeros
def tissue_mask_from_scratch(
overview_image: ndarray,
method: str,
overview_mpp: float,
element_size: float,
min_obj_size: float,
) -> ndarray:
"""Create a tissue mask.
Parameters
----------
overview_img : ndarray
RGB overview of a WSI.
method : str
Method to create the mask with.]
overview_mpp : float
The microns per pixel of the overview image.
element_size : float
The length of the structuring element, in microns.
min_obj_size : float
The minimum object size, in microns, allowed in the mask.
"""
size = int(floor(element_size / overview_mpp))
if method != "entropy":
mask_img = mask_methods[method](overview_image)
else:
mask_img = mask_methods[method](overview_image, ones((size, size)))
mask_img = binary_dilation(mask_img, footprint=ones((size, size)))
mask_img = binary_erosion(mask_img, footprint=ones((size, size)))
mask_img = binary_fill_holes(mask_img)
pixel_area = overview_mpp * overview_mpp
mask_img = remove_small_objects(mask_img, min_obj_size / pixel_area)
return img_as_ubyte(mask_img)
def tissue_mask_from_polygons(
overview_height: int,
overview_width: int,
polygons: List[ndarray],
slide_mpp: float,
target_mpp: float,
) -> ndarray:
"""Create a tissue mask from a predefined polygon.
Parameters
----------
overview_height : int
The total height of the overview image (in pixels).
overview_width : int
The total width of the overview image (in pixels).
polygons : List[ndarray]
List of arrays of polygon coordinates for the objects in the mask. The
arrays should have shape (N, 2), and each row should be coords of
the form (row, col).
slide_mpp : float
The microns per pixel of the slide, at level zero.
target_mpp : float
The target microns per pixel for the mask image.
Returns
-------
mask : ndarray
A boolean tissue mask.
"""
scale_factor = slide_mpp / target_mpp
mask = zeros((overview_height, overview_width), dtype=bool)
_check_polygons_conform(polygons)
for poly in polygons:
poly = poly.astype(float) * scale_factor
mask = mask | polygon2mask((overview_height, overview_width), poly)
return img_as_ubyte(mask)
def _check_polygons_conform(polys: List[ndarray]):
"""Except if the polygons are not of the correct format.
Parameters
----------
polys : List[ndarray]
A list of polygons.
Raises
------
TypeError
If ``polys`` is not a list.
TypeError
If any of the items in ``polys`` is not an ``ndarray``.
ValueError
If any of the arrays don't have shape (N, 2)
"""
if not isinstance(polys, list):
msg = f"'polygons' should be list, not '{type(polys)}'."
raise TypeError(msg)
if not all(map(lambda x: isinstance(x, ndarray), polys)):
msg = "All items in 'polygons' should be ndarray. Got "
msg += f"{list(map(type, polys))}"
raise TypeError(msg)
if not all(map(lambda x: x.ndim == 2 and x.shape[1] == 2, polys)):
msg = "'polygons' contents should be 2D arrays of shape (N, 2)."
raise ValueError(msg)
def mask_with_otsu(overview_img: ndarray) -> ndarray:
"""Create a tissue mask from``overview_img``.
Parameters
----------
overview_img : ndarray
RGB overview image.
Returns
-------
ndarray
The binary mask image.
"""
overview_img = rgb2gray(overview_img)
return overview_img < threshold_otsu(overview_img)
def mask_with_schreiber(overview_img: ndarray) -> ndarray:
"""Create a tissue mask from ``overview_img``.
Parameters
----------
overview_img : ndarray
The RGB overview image on a WSI.
Returns
-------
ndarray
A binary tissue mask.
"""
overview_img = img_as_float(overview_img)
red = overview_img[:, :, 0]
green = overview_img[:, :, 1]
blue = overview_img[:, :, 2]
representation = (red - green).clip(0.0) * (blue - green).clip(0.0)
return representation > threshold_otsu(representation)
def mask_with_optical_density(overview_img: ndarray):
"""Create a tissue mask using the optical density of ``overview_img``.
Parameters
----------
overview_img : ndarray
A low power, RGB overview of the WSI.
Returns
-------
ndarray
A binary tissue mask.
"""
overview_img = img_as_float(overview_img).clip(1.0 / 255.0, 1.0)
absorbance = -log(overview_img).sum(axis=2)
absorbance = absorbance.clip(*percentile(absorbance, (1, 99)))
return absorbance > threshold_otsu(absorbance)
def mask_with_entropy(overview_img: ndarray, footprint: ndarray) -> ndarray:
"""Create a tissue mask from ``overview_img``.
Parameters
----------
overview_img : ndarray
The RGB overview image on a WSI.
footprint : ndarray
The footprint to use in the entropy filter.
Returns
-------
ndarray
A binary tissue mask.
"""
entropy_img = entropy(
img_as_ubyte(rgb2gray(overview_img)),
footprint=footprint,
)
return entropy_img > threshold_otsu(entropy_img)
def mask_with_luminosity(overview_img: ndarray) -> ndarray:
"""Create a tissue mask from ``overview_img`` using its luminosity.
Parameters
----------
overview_img : ndarray
The RGB overview image on a WSI.
Returns
-------
ndarray
A binary tissue mask.
"""
overview_img = img_as_float(overview_img)
lum = rgb2lab(overview_img)[:, :, 0]
return lum < threshold_otsu(lum)
def mask_with_kmeans(overview_img: ndarray) -> ndarray:
"""Create a tissue mask from ``overview_img`` by clustering RGB vecs..
Parameters
----------
overview_img : ndarray
The RGB overview image on a WSI.
Returns
-------
ndarray
A binary tissue mask.
"""
overview_img = img_as_float(overview_img)
height, width, channels = overview_img.shape
overview_img = overview_img.reshape(-1, channels)
k_means = KMeans(n_clusters=2, random_state=123)
mask = k_means.fit_predict(overview_img).reshape(height, width)
smallest_cluster = array(bincount(mask.flatten(), minlength=2)).argmin()
return mask == smallest_cluster
mask_methods: Dict[str, Callable] = {
"otsu": mask_with_otsu,
"schreiber": mask_with_schreiber,
"entropy": mask_with_entropy,
"od": mask_with_optical_density,
"luminosity": mask_with_luminosity,
"kmeans": mask_with_kmeans,
}