-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclient_fedgc.py
390 lines (310 loc) · 16.1 KB
/
client_fedgc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import copy
import torch
import torch.nn as nn
from util import *
from random import sample
import sys
# sys.path.append('./models')
from models.gcn import GCN
import deeprobust.graph.utils as utils
from torch_sparse import SparseTensor
from warnings import simplefilter
from torch_geometric.loader import NeighborSampler
from sklearn.preprocessing import StandardScaler
import torch.optim as optim
simplefilter(action='ignore', category=FutureWarning)
class Client_general(nn.Module):
def __init__(self, client_id, origin_node_idx, idx_train, idx_val, idx_test, adj, labels, features, class_num, args):
super().__init__()
self.args = args
self.client_id = client_id
self.origin_node_idx = np.array(origin_node_idx)
self.idx_train = np.array(idx_train)
self.idx_test = np.array(idx_test)
self.idx_val = np.array(idx_val)
self.features = np.array(features)
self.features_train = self.features[self.idx_train]
self.features_val = self.features[self.idx_val]
self.features_test = self.features[self.idx_test]
self.labels = np.array(labels)
self.labels_train = self.labels[self.idx_train]
self.labels_val = self.labels[self.idx_val]
self.labels_test = self.labels[self.idx_test]
self.adj = sparse_tensor_to_csr(adj)#sparseTensor
self.adj_train = self.adj[np.ix_(idx_train, idx_train)]
self.adj_val = self.adj[np.ix_(idx_val, idx_val)]
self.adj_test = self.adj[np.ix_(idx_test, idx_test)]
self.class_num = class_num
#self.class_dict = None
self.class_dict2 = None
self.samplers = None
self.best_test_acc = 0
self.optimizer = None
self.gib_model = None
def update(self, gnn_model):
self.gnn_model = copy.deepcopy(gnn_model)
def update_gib_model(self, gib_model):
if(self.gib_model==None):#first init all param
self.gib_model = copy.deepcopy(gib_model)
else:
param = list((_.detach().clone() for _ in list(gib_model.parameters())[0:4]))
ls_model_param_user = list(self.gib_model.parameters())[0:4]
for i in range(len(ls_model_param_user)):
ls_model_param_user[i].data = param[i].data
def update_self_train(self, self_train_model):
self.self_train_model = copy.deepcopy(self_train_model)
def retrieve_class_sampler(self, c, adj, transductive, num=256, args=None, no_self_train=True):
if self.class_dict2 is None:
self.class_dict2 = {}
for i in range(self.class_num):
if transductive:
if(no_self_train==False):
idx = self.relabel_idx_train[self.relabel_labels_train == i]
else:
idx = self.idx_train[self.labels_train == i]
else:
if(no_self_train==False):
idx = np.arange(len(self.relabel_labels_train))[self.relabel_labels_train==i]
else:
idx = np.arange(len(self.labels_train))[self.labels_train==i]
self.class_dict2[i] = idx
if args.nlayers == 1:
sizes = [15]
if args.nlayers == 2:
sizes = [10, 5]
# sizes = [-1, -1]
if args.nlayers == 3:
sizes = [15, 10, 5]
if args.nlayers == 4:
sizes = [15, 10, 5, 5]
if args.nlayers == 5:
sizes = [15, 10, 5, 5, 5]
if self.samplers is None:
self.samplers = {}
for i in range(self.class_num):
node_idx = torch.LongTensor(self.class_dict2[i])
if(len(node_idx)!=0):
#print("yes1")
self.samplers[i] = NeighborSampler(adj,
node_idx=node_idx,
sizes=sizes, batch_size=num,
num_workers=12, return_e_id=False,
num_nodes=adj.size(0),
shuffle=True)
if c not in self.samplers.keys():
#print("yes")
return 0, 0, 0
batch = np.random.permutation(self.class_dict2[c])[:num]
out = self.samplers[c].sample(batch)
return out
def knn_adj(self, z_x):
from sklearn.metrics.pairwise import cosine_similarity
# features[features!=0] = 1
k = 2
sims = cosine_similarity(z_x.cpu().numpy())
sims[(np.arange(len(sims)), np.arange(len(sims)))] = 0
for i in range(len(sims)):
indices_argsort = np.argsort(sims[i])
sims[i, indices_argsort[: -k]] = 0
adj_knn = torch.FloatTensor(sims).to(self.device)
return adj_knn
def self_train(self, ratio=1):
sample_node_set = np.concatenate((self.idx_val, self.idx_test), axis=0)#idx_val
ratio = ratio
label_size = int(len(sample_node_set)*ratio)
sampled_idx = np.array(sample(list(sample_node_set), label_size))
self.relabel_idx_train = np.concatenate((self.idx_train, sampled_idx), axis=0)
self.self_train_model.eval()
output = self.self_train_model.predict(self.features, self.adj)
preds = np.array(output.max(1)[1].cpu())#.type_as(self.labels)
labeled_sample = preds[sampled_idx]
# labels_train = labels_train.to('cpu')
self.relabel_labels_train = np.concatenate((self.labels_train, labeled_sample), axis=0)
self.relabel_labels = self.labels.copy()
self.relabel_labels[self.relabel_idx_train] = self.relabel_labels_train
def train_self_train(self):
features, adj, labels = utils.to_tensor(self.features, self.adj, self.labels, device=self.args.device)#utils.to_tensor(self.features, self.adj, self.labels, device=self.args.device)
if utils.is_sparse_tensor(adj):
adj_norm = utils.normalize_sparse_tensor(adj)
#adj_norm = utils.normalize_adj_tensor(adj, sparse=True)
else:
adj_norm = utils.normalize_sparse_tensor(adj)
adj = adj_norm
adj = SparseTensor(row=adj._indices()[0], col=adj._indices()[1],
value=adj._values(), sparse_sizes=adj.size()).t()
loss =0
BN_flag = False
for module in self.self_train_model.modules():
if 'BatchNorm' in module._get_name(): #BatchNorm
BN_flag = True
if BN_flag:
self.self_train_model.train() # for updating the mu, sigma of BatchNorm
output_real = self.self_train_model.forward(features, adj)
for module in self.self_train_model.modules():
if 'BatchNorm' in module._get_name(): #BatchNorm
module.eval() # fix mu and sigma of every BatchNorm layer
model_parameters = list(self.self_train_model.parameters())
output = self.self_train_model.forward(features, adj)
loss_real = F.nll_loss(output[self.idx_train], labels[self.idx_train])
gw_real = torch.autograd.grad(loss_real, model_parameters)
gw_real = list((_.detach().clone() for _ in gw_real))
loss+=loss_real.item()
return gw_real, loss, self.client_id
def train_gib_model_param(self):
features, adj, labels = utils.to_tensor(self.features, self.adj, self.labels, device=self.args.device)
if utils.is_sparse_tensor(adj):
#print("yes")
adj_norm = utils.normalize_sparse_tensor(adj)
#adj_norm = utils.normalize_adj_tensor(adj, sparse=True)
else:
adj_norm = utils.normalize_sparse_tensor(adj)
adj = adj_norm
adj = SparseTensor(row=adj._indices()[0], col=adj._indices()[1],
value=adj._values(), sparse_sizes=adj.size()).t()
loss =0
if(self.optimizer==None):
self.optimizer = optim.Adam(list(self.gib_model.parameters())[4:8], lr=self.args.gib_lr, weight_decay=0)
self.gib_model.train()
self.optimizer.zero_grad()
output, l2, z_x_temp = self.gib_model.forward(features, adj)
if(self.args.no_self_train==True):
loss_train = F.nll_loss(output[self.idx_train], labels[self.idx_train])
else:
relabel_labels_train = torch.LongTensor(self.relabel_labels_train).to(self.args.device)
loss_train = F.nll_loss(output[self.relabel_idx_train], relabel_labels_train)
loss_real = loss_train +self.args.gib_beta*l2
loss+=loss_real.item()
loss_real.backward()
self.optimizer.step()
param = list((_.detach().clone() for _ in list(self.gib_model.parameters())))
return param, loss
def train_(self, no_self_train=True):#
if(no_self_train==False):
features, adj, labels = utils.to_tensor(self.features, self.adj, self.relabel_labels, device=self.args.device)
else:
features, adj, labels = utils.to_tensor(self.features, self.adj, self.labels, device=self.args.device)
if utils.is_sparse_tensor(adj):
adj_norm = utils.normalize_sparse_tensor(adj)
#adj_norm = utils.normalize_adj_tensor(adj, sparse=True)
else:
adj_norm = utils.normalize_sparse_tensor(adj)
#adj_norm = utils.normalize_adj_tensor(adj)
adj = adj_norm
adj = SparseTensor(row=adj._indices()[0], col=adj._indices()[1],
value=adj._values(), sparse_sizes=adj.size()).t()
real_grad_per_class = {}
loss =0
BN_flag = False
for module in self.gnn_model.modules():
if 'BatchNorm' in module._get_name(): #BatchNorm
BN_flag = True
if BN_flag:
self.gnn_model.train() # for updating the mu, sigma of BatchNorm
output_real = self.gnn_model.forward(features, adj_norm)
for module in self.gnn_model.modules():
if 'BatchNorm' in module._get_name(): #BatchNorm
module.eval() # fix mu and sigma of every BatchNorm layer
model_parameters = list(self.gnn_model.parameters())
for c in range(self.class_num):
batch_size, n_id, adjs = self.retrieve_class_sampler(
c, adj, transductive=True, args=self.args, no_self_train=no_self_train)
if(batch_size==0):
continue
if self.args.nlayers == 1:
adjs = [adjs]
adjs = [adj.to(self.args.device) for adj in adjs]
output = self.gnn_model.forward_sampler(features[n_id], adjs)
#loss_real = F.nll_loss(output, relabel_labels[n_id[:batch_size]])
loss_real = F.nll_loss(output, labels[n_id[:batch_size]])
gw_real = torch.autograd.grad(loss_real, model_parameters)
gw_real = list((_.detach().clone() for _ in gw_real))
real_grad_per_class[c] = gw_real
loss+=loss_real
return real_grad_per_class, self.client_id#loss
def test(self, condensed_graph, verbose=True):
(feat_syn, adj_syn, labels_syn) = condensed_graph
#选择模型
model = GCN(nfeat=feat_syn.shape[1], nhid=self.args.hidden, dropout=0.5,
lr=0.005, weight_decay=5e-4, nlayers=2, #weight_decay:5e-4 lr:0.01
nclass=self.class_num, device=self.args.device).to(self.args.device)
if self.args.dataset in ['ogbn-arxiv']:
model = GCN(nfeat=feat_syn.shape[1], nhid=self.args.hidden, dropout=0.5,
weight_decay=0e-4, nlayers=2, with_bn=False,
nclass=self.class_num, device=self.args.device).to(self.args.device)
data = {'idx_train': self.idx_train, 'idx_val': self.idx_val, 'idx_test':self.idx_test,
'feat_train':self.features_train, 'feat_val':self.features_val, 'feat_test':self.features_test,
'labels_train':self.labels_train, 'labels_val':self.labels_val, 'labels_test':self.labels_test,
'adj_train':self.adj_train, 'adj_val':self.adj_val, 'adj_test':self.adj_test,
'feat_full':self.features, 'adj_full':self.adj}
if(self.args.dataset=='reddit' or self.args.dataset=='ogbn-arxiv' or self.args.dataset=='flickr'):
model.fit_with_val(feat_syn, adj_syn, labels_syn, data,
train_iters=600, normalize=True, noval = True, verbose=False)
else:
model.fit_with_val(feat_syn, adj_syn, labels_syn, data,
train_iters=600, normalize=True, verbose=False)
if(self.args.no_finetune==False):
model.fit_with_val(data['feat_full'], data['adj_full'], data['labels_train'], data, train_iters=30,
initialize=False, normalize=True, verbose=False, finetune=True)
model.eval()
labels_test = torch.LongTensor(self.labels_test).to(self.args.device)#cuda()
labels_train = torch.LongTensor(self.labels_train).to(self.args.device)#cuda()
res = []
output = model.predict(self.features, self.adj)
loss_train = F.nll_loss(output[self.idx_train], labels_train)
acc_train = utils.accuracy(output[self.idx_train], labels_train)
res.append(acc_train.item())
loss_test = F.nll_loss(output[self.idx_test], labels_test)
acc_test = utils.accuracy(output[self.idx_test], labels_test)
res.append(acc_test.item())
return res, self.client_id
def test_gib_model(self, condensed_graph=None, verbose=True):
self.gib_model.eval()
labels_test = torch.LongTensor(self.labels_test).to(self.args.device)#cuda()
labels_train = torch.LongTensor(self.labels_train).to(self.args.device)#cuda()
res = []
if type(self.adj) is not torch.Tensor:
features, adj = utils.to_tensor(self.features, self.adj, device=self.args.device)
if utils.is_sparse_tensor(adj):
adj_norm = utils.normalize_sparse_tensor(adj)
#adj_norm = utils.normalize_adj_tensor(adj, sparse=True)
else:
adj_norm = utils.normalize_sparse_tensor(adj)
adj = adj_norm
adj = SparseTensor(row=adj._indices()[0], col=adj._indices()[1],
value=adj._values(), sparse_sizes=adj.size()).t()
output, _, z_x_temp = self.gib_model.forward(features, adj)
loss_train = F.nll_loss(output[self.idx_train], labels_train)
acc_train = utils.accuracy(output[self.idx_train], labels_train)
res.append(acc_train.item())
loss_test = F.nll_loss(output[self.idx_test], labels_test)
acc_test = utils.accuracy(output[self.idx_test], labels_test)
res.append(acc_test.item())
if(acc_test.item()>self.best_test_acc):
self.best_test_acc = acc_test.item()
self.current_z = z_x_temp.clone().detach()
return res, self.client_id
def test_self_train(self, verbose=True):
self.self_train_model.eval()
labels_test = torch.LongTensor(self.labels_test).to(self.args.device)
labels_train = torch.LongTensor(self.labels_train).to(self.args.device)
res = []
output = self.self_train_model.predict(self.features, self.adj)
loss_train = F.nll_loss(output[self.idx_train], labels_train)
acc_train = utils.accuracy(output[self.idx_train], labels_train)
res.append(acc_train.item())
loss_test = F.nll_loss(output[self.idx_test], labels_test)
acc_test = utils.accuracy(output[self.idx_test], labels_test)
res.append(acc_test.item())
return res, self.client_id
def update_z(self):
self.features_origin = self.features
self.features_train_origin = self.features_train
self.features_val_origin = self.features_val
self.features_test_origin = self.features_test
self.features = self.current_z
scaler = StandardScaler()
scaler.fit(self.features)
self.features = np.array(scaler.transform(self.features))
self.features_train = self.features[self.idx_train]
self.features_val = self.features[self.idx_val]
self.features_test = self.features[self.idx_test]