-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrainNetwork.py
351 lines (273 loc) · 15.1 KB
/
trainNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
'''
CompenNeSt++ training functions
'''
from utils import *
import ImgProc
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import time
import visdom
# for visualization
vis = visdom.Visdom() # default port is 8097
assert vis.check_connection(), 'Visdom: No connection, start visdom first!'
# loss functions
l1_fun = nn.L1Loss()
l2_fun = nn.MSELoss()
ssim_fun = pytorch_ssim.SSIM().cuda()
# %% load training and validation data for CompenNe(S)t++
def loadData(dataset_root, data_name, input_size, data_type='raw', CompenNeSt_only=False):
if CompenNeSt_only:
data_type = 'warpSL'
# data paths
data_root = fullfile(dataset_root, data_name)
cam_ref_path = fullfile(data_root, 'cam/{}/ref'.format(data_type))
cam_train_path = fullfile(data_root, 'cam/{}/train'.format(data_type))
prj_train_path = fullfile(dataset_root, 'train')
cam_valid_path = fullfile(data_root, 'cam/{}/test'.format(data_type))
prj_valid_path = fullfile(dataset_root, 'test')
print("Loading data from '{}'".format(data_root))
# training data
cam_surf = readImgsMT(cam_ref_path, index=[125]) # ref/img_0126.png is cam-captured surface image i.e., s when img_gray.png i.e., x0 projected
cam_train = readImgsMT(cam_train_path)
prj_train = readImgsMT(prj_train_path)
# validation data
cam_valid = readImgsMT(cam_valid_path)
prj_valid = readImgsMT(prj_valid_path)
mask_corners = None
if not CompenNeSt_only:
# find projector FOV mask
im_diff = readImgsMT(cam_ref_path, index=[124], size=input_size) - readImgsMT(cam_ref_path, index=[0], size=input_size)
im_diff = im_diff.numpy().transpose((2, 3, 1, 0))
prj_fov_mask = torch.zeros(cam_surf.shape)
# threshold im_diff with Otsu's method
mask_corners = [None] * im_diff.shape[-1]
for i in range(im_diff.shape[-1]):
im_mask, mask_corners[i] = ImgProc.thresh(im_diff[:, :, :, i])
prj_fov_mask[i, :, :, :] = repeat_np(torch.Tensor(np.uint8(im_mask)).unsqueeze(0), 3, 0)
prj_fov_mask = prj_fov_mask.bool()
# mask out background areas that are out of projector's FOV
cam_surf[~prj_fov_mask] = 0
cam_train = torch.where(prj_fov_mask, cam_train, torch.tensor([0.]))
cam_valid = torch.where(prj_fov_mask, cam_valid, torch.tensor([0.]))
return cam_surf, cam_train, cam_valid, prj_train, prj_valid, mask_corners
# initialize CompenNeSt as an autoencoder (set s=0, see journal paper sec. 3.4.3) without actual projections
def initCompenNeSt(compen_nest, dataset_root, device):
ckpt_file = '../../checkpoint/init_CompenNeSt_l1+ssim_500_24_2000_0.001_0.2_800_0.0001.pth'
if os.path.exists(ckpt_file):
# load weights initialized CompenNet from saved state dict
compen_nest.load_state_dict(torch.load(ckpt_file))
print('CompenNeSt state dict found! Loading...')
else:
# initialize the model if checkpoint file does not exist
print('CompenNeSt state dict not found! Initializing...')
prj_train_path = fullfile(dataset_root, 'train')
# load data
prj_train = readImgsMT(prj_train_path) # x
cam_surf = torch.zeros_like(prj_train) # s = 0
init_data = dict(cam_surf=cam_surf,
cam_train=prj_train,
prj_train=prj_train)
# then initialize compenNeSt as an autoencoder
init_option = {'data_name': 'init', 'num_train': 500, 'max_iters': 2000, 'batch_size': 24, 'lr': 1e-3, 'lr_drop_ratio': 0.2,
'lr_drop_rate': 800, 'loss': 'l1+ssim', 'l2_reg': 1e-4, 'pre-trained': False, 'plot_on': True, 'train_plot_rate': 100,
'valid_rate': 200, 'device': device}
compen_nest, _, _, _ = trainModel(compen_nest, init_data, None, init_option)
return compen_nest
# %% train CompenNeSt_with_SL, CompenNeSt++ and CompenNeSt++FS (journal paper)
def trainModel(net, train_data, valid_data, train_option):
device = train_option['device']
# empty cuda cache before training
if device.type == 'cuda': torch.cuda.empty_cache()
# training data
cam_surf_train = train_data['cam_surf']
cam_train = train_data['cam_train']
prj_train = train_data['prj_train']
# list of parameters to be optimized
params = filter(lambda param: param.requires_grad, net.parameters()) # only optimize parameters that require gradient
# optimizer
optimizer = optim.Adam(params, lr=train_option['lr'], weight_decay=train_option['l2_reg'])
# learning rate drop scheduler
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=train_option['lr_drop_rate'], gamma=train_option['lr_drop_ratio'])
# %% start train
start_time = time.time()
# get model name
if not 'model_name' in train_option: train_option['model_name'] = net.name if hasattr(net, 'name') else net.module.name
# initialize visdom data visualization figure
if 'plot_on' not in train_option: train_option['plot_on'] = True
# title string of current training option
title = optionToString(train_option)
if train_option['plot_on']:
# intialize visdom figures
vis_train_fig = None
vis_valid_fig = None
vis_curve_fig = vis.line(X=np.array([0]), Y=np.array([0]), name='origin',
opts=dict(width=1300, height=500, markers=True, markersize=3,
layoutopts=dict(
plotly=dict(title={'text': title, 'font': {'size': 24}},
font={'family': 'Arial', 'size': 20},
hoverlabel={'font': {'size': 20}},
xaxis={'title': 'Iteration'},
yaxis={'title': 'Metrics', 'hoverformat': '.4f'}))))
# main loop
iters = 0
while iters < train_option['max_iters']:
# randomly sample training batch and send to GPU
idx = random.sample(range(train_option['num_train']), train_option['batch_size'])
cam_surf_train_batch = cam_surf_train[idx, :, :, :].to(device) if cam_surf_train.device.type != 'cuda' else cam_surf_train[idx, :, :, :]
cam_train_batch = cam_train[idx, :, :, :].to(device) if cam_train.device.type != 'cuda' else cam_train[idx, :, :, :]
prj_train_batch = prj_train[idx, :, :, :].to(device) if prj_train.device.type != 'cuda' else prj_train[idx, :, :, :]
# predict and compute loss
net.train() # explicitly set to train mode in case batchNormalization and dropout are used
prj_train_pred = predict(net, dict(cam=cam_train_batch, cam_surf=cam_surf_train_batch))
if train_option['pre-trained']:
# to avoid suboptimal solution (gray area), we first train with l1 loss, since ssim encourages plain gray
if iters <= 200:
train_loss_batch, train_l2_loss_batch = computeLoss(prj_train_pred, prj_train_batch, 'l1')
else:
train_loss_batch, train_l2_loss_batch = computeLoss(prj_train_pred, prj_train_batch, train_option['loss'])
else:
train_loss_batch, train_l2_loss_batch = computeLoss(prj_train_pred, prj_train_batch, train_option['loss'])
train_rmse_batch = math.sqrt(train_l2_loss_batch.item() * 3) # 3 channel, rgb
# backpropagation and update params
optimizer.zero_grad()
train_loss_batch.backward()
optimizer.step()
# record running time
time_lapse = time.strftime('%H:%M:%S', time.gmtime(time.time() - start_time))
# plot train
if train_option['plot_on']:
if iters % train_option['train_plot_rate'] == 0 or iters == train_option['max_iters'] - 1:
vis_train_fig = plotMontage(cam_train_batch, prj_train_pred, prj_train_batch, win=vis_train_fig, title='[Train]' + title)
appendDataPoint(iters, train_loss_batch.item(), vis_curve_fig, 'train_loss')
appendDataPoint(iters, train_rmse_batch, vis_curve_fig, 'train_rmse')
# validation
valid_psnr, valid_rmse, valid_ssim = 0., 0., 0.
if valid_data is not None and (iters % train_option['valid_rate'] == 0 or iters == train_option['max_iters'] - 1):
valid_psnr, valid_rmse, valid_ssim, prj_valid_pred = evaluate(net, valid_data)
# plot validation
if train_option['plot_on']:
idx = np.array([9, 10, 11, 14, 70]) - 1 # fix validatio visulization
vis_valid_fig = plotMontage(valid_data['cam_valid'][idx], prj_valid_pred[idx], valid_data['prj_valid'][idx],
win=vis_valid_fig, title='[Valid]' + title)
appendDataPoint(iters, valid_rmse, vis_curve_fig, 'valid_rmse')
appendDataPoint(iters, valid_ssim, vis_curve_fig, 'valid_ssim')
# print to console
print('Iter:{:5d} | Time: {} | Train Loss: {:.4f} | Train RMSE: {:.4f} | Valid PSNR: {:7s} | Valid RMSE: {:6s} '
'| Valid SSIM: {:6s} | Learn Rate: {:.5f} |'.format(iters, time_lapse, train_loss_batch.item(), train_rmse_batch,
'{:>2.4f}'.format(valid_psnr) if valid_psnr else '',
'{:.4f}'.format(valid_rmse) if valid_rmse else '',
'{:.4f}'.format(valid_ssim) if valid_ssim else '',
optimizer.param_groups[0]['lr']))
lr_scheduler.step() # update learning rate according to schedule
iters += 1
# Done training and save the last epoch model
checkpoint_dir = '../../checkpoint'
if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir)
checkpoint_file_name = fullfile(checkpoint_dir, title + '.pth')
torch.save(net.state_dict(), checkpoint_file_name)
print('Checkpoint saved to {}\n'.format(checkpoint_file_name))
return net, valid_psnr, valid_rmse, valid_ssim
# %% local functions
# compute loss between prediction and ground truth
def computeLoss(prj_pred, prj_train, loss_option):
train_loss = 0
# l1
if 'l1' in loss_option:
l1_loss = l1_fun(prj_pred, prj_train)
train_loss += l1_loss
# l2
l2_loss = l2_fun(prj_pred, prj_train)
if 'l2' in loss_option:
train_loss += l2_loss
# ssim
if 'ssim' in loss_option:
ssim_loss = 1 * (1 - ssim_fun(prj_pred, prj_train))
train_loss += ssim_loss
return train_loss, l2_loss
# append a data point to the curve in win
def appendDataPoint(x, y, win, name, env=None):
vis.line(
X=np.array([x]),
Y=np.array([y]),
env=env,
win=win,
update='append',
name=name,
opts=dict(markers=True, markersize=3)
)
# plot sample predicted images using visdom, more than three rows
def plotMontage(*argv, index=None, win=None, title=None, env=None):
with torch.no_grad(): # just in case
# compute montage grid size
if argv[0].shape[0] > 5:
grid_w = 5
idx = random.sample(range(argv[0].shape[0]), grid_w) if index is None else index
else:
grid_w = argv[0].shape[0]
# idx = random.sample(range(cam_im.shape[0]), grid_w)
idx = range(grid_w)
# resize to (256, 256) for better display
tile_size = (256, 256)
im_resize = torch.empty((len(argv) * grid_w, argv[0].shape[1]) + tile_size)
i = 0
for im in argv:
if im.shape[2] != tile_size[0] or im.shape[3] != tile_size[1]:
im_resize[i:i + grid_w] = F.interpolate(im[idx, :, :, :], tile_size)
else:
im_resize[i:i + grid_w] = im[idx, :, :, :]
i += grid_w
# title
plot_opts = dict(title=title, caption=title, font=dict(size=18), width=1300, store_history=False)
im_montage = torchvision.utils.make_grid(im_resize, nrow=grid_w, padding=10, pad_value=1)
win = vis.image(im_montage, win=win, opts=plot_opts, env=env)
return win
# predict projector input images given input data (do not use with torch.no_grad() within this function)
def predict(net, data):
if 'cam_surf' in data and data['cam_surf'] is not None:
prj_pred = net(data['cam'], data['cam_surf'])
else:
prj_pred = net(data['cam'])
if type(prj_pred) == tuple and len(prj_pred) > 1: prj_pred = prj_pred[0]
return prj_pred
# evaluate model on validation dataset
def evaluate(net, valid_data):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
cam_surf = valid_data['cam_surf']
cam_valid = valid_data['cam_valid']
prj_valid = valid_data['prj_valid']
with torch.no_grad():
net.eval() # explicitly set to eval mode
# if you have limited GPU memory, we need to predict in batch mode
if cam_surf.device.type != device.type:
last_loc = 0
valid_mse, valid_ssim = 0., 0.
prj_valid_pred = torch.zeros(prj_valid.shape)
num_valid = cam_valid.shape[0]
batch_size = 50 if num_valid > 50 else num_valid # default number of test images per dataset
for i in range(0, num_valid // batch_size):
idx = range(last_loc, last_loc + batch_size)
cam_surf_batch = cam_surf[idx, :, :, :].to(device) if cam_surf.device.type != 'cuda' else cam_surf[idx, :, :, :]
cam_valid_batch = cam_valid[idx, :, :, :].to(device) if cam_valid.device.type != 'cuda' else cam_valid[idx, :, :, :]
prj_valid_batch = prj_valid[idx, :, :, :].to(device) if prj_valid.device.type != 'cuda' else prj_valid[idx, :, :, :]
# predict batch
prj_valid_pred_batch = predict(net, dict(cam=cam_valid_batch, cam_surf=cam_surf_batch)).detach()
if type(prj_valid_pred_batch) == tuple and len(prj_valid_pred_batch) > 1: prj_valid_pred_batch = prj_valid_pred_batch[0]
prj_valid_pred[last_loc:last_loc + batch_size, :, :, :] = prj_valid_pred_batch.cpu()
# compute loss
valid_mse += l2_fun(prj_valid_pred_batch, prj_valid_batch).item() * batch_size
valid_ssim += ssim(prj_valid_pred_batch, prj_valid_batch) * batch_size
last_loc += batch_size
# average
valid_mse /= num_valid
valid_ssim /= num_valid
valid_rmse = math.sqrt(valid_mse * 3) # 3 channel image
valid_psnr = 10 * math.log10(1 / valid_mse)
else:
# if all data can be loaded to GPU memory
prj_valid_pred = predict(net, dict(cam=cam_valid, cam_surf=cam_surf)).detach()
valid_mse = l2_fun(prj_valid_pred, prj_valid).item()
valid_rmse = math.sqrt(valid_mse * 3) # 3 channel image
valid_psnr = 10 * math.log10(1 / valid_mse)
valid_ssim = ssim_fun(prj_valid_pred, prj_valid).item()
return valid_psnr, valid_rmse, valid_ssim, prj_valid_pred