-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
207 lines (172 loc) · 6.68 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import numpy as np
import torch
from scattering import (
Scattering2D,
ScatNonLinearity,
ScatNonLinearityAndSkip,
Realifier,
Complexifier,
)
from torchvision import transforms
from projection import ComplexConv2d
from classifier import Classifier
from standardization import Standardization, Normalization
from utils import *
def build_layers(
input_type: SplitTensorType,
modules,
psi_modules=[],
i: int = 0,
num_channels: List[int] = [],
):
"""Builds a list of layers from a list of modules.
:param input_type:
:param modules: list of strings describing the layers
:poaram psi_modules: list of strings describing the layers applied after the high-frequency filters
:param i: index of the current block
:param num_channels: number of output channels for each block
:return: Sequential module
"""
builder = Builder(input_type)
def branching_kwargs(**submodules):
"""Builds kwargs for Branching. Expects a dict of module_name -> architecture list of strings."""
kwargs = {}
for name, arch in submodules.items():
kwargs[f"{name}_module_class"] = build_layers
kwargs[f"{name}_module_kwargs"] = dict(modules=arch, i=i)
return kwargs
for module in modules:
if module == "Fw":
kwargs = dict(
scales_per_octave=1,
L=8,
full_angles=False,
)
two_blocks_per_scale_after_block = len(num_channels) % 2
if i >= two_blocks_per_scale_after_block:
kwargs.update(
factorize_filters=True, i=(i - two_blocks_per_scale_after_block) % 2 # replaced TRUE with FALSE
)
builder.add_layer(Scattering2D, kwargs)
kwargs = dict(phi=[], psi=psi_modules)
builder.add_layer(Branching, branching_kwargs(**kwargs))
elif module == "R":
builder.add_batched(Realifier)
elif module == "C":
builder.add_batched(Complexifier)
elif module in ["mod", "rho"]:
kwargs = dict(
non_linearity="mod",
bias=None,
gain=None,
learned_params=False,
)
if module == "mod":
builder.add_layer(ScatNonLinearity, kwargs)
elif module == "rho":
builder.add_layer(ScatNonLinearityAndSkip, kwargs)
builder.add_layer(
Branching, branching_kwargs(linear=[], non_linear=[])
) # Possibility to add different modules to the linear/non_linear part
elif module == "Std":
builder.add_batched(Standardization, dict(remove_mean=True))
elif module in ["P", "Pr", "Pc"]:
out_channels = {0: num_channels[i]}
# Determine type of weights (default is type of input).
complex_weights = dict(P=None, Pr=True, Pc=False)[module]
kwargs = dict(
complex_weights=complex_weights,
out_channels=out_channels,
)
builder.add_diagonal(ComplexConv2d, kwargs)
elif module == "N":
builder.add_diagonal(Normalization)
elif module == "id":
builder.add_layer(Identity)
else:
assert False
return builder.module()
def load_model():
skip = False # Whether to include a skip-connection over the complex modulus or not
if skip:
arch = ["Fw", "rho", "Std", "P", "N"]
psi_arch = []
else:
arch = ["Fw", "Std", "P", "N"]
psi_arch = ["mod"]
dataset = "imagenet"
num_channels_in = 3
if dataset == "imagenet":
num_channels = [32, 64, 64, 128, 256, 512, 512, 512, 512, 512, 256]
spatial_size = 224
num_classes = 1000
elif dataset == "cifar":
num_channels = [64, 128, 256, 512, 512, 512, 512, 512]
spatial_size = 32
num_classes = 10
num_blocks = len(num_channels)
input_type = TensorType(
num_channels=num_channels_in,
spatial_shape=(spatial_size, spatial_size),
complex=False,
)
builder = Builder(input_type)
builder.add_layer(ToSplitTensor, dict(groups={(0): num_channels_in}))
for i in range(num_blocks):
builder.add_layer(
build_layers,
dict(modules=arch, psi_modules=psi_arch, i=i, num_channels=num_channels),
)
builder.add_layer(ToTensor)
builder.add_layer(
Classifier,
dict(
nb_classes=num_classes,
avg_ker_size=1,
avgpool=False,
bias=True,
batch_norm="affine",
),
)
model = builder.module()
return model
def preprocess(images):
if images.shape[1] != 3:
images = np.transpose(images, (0, -1, 1, 2))
images = torch.Tensor(images)
transform = transforms.Compose(
[
transforms.ToPILImage(),
transforms.Resize((224, 224)),
transforms.ToTensor(),
]
)
images = list(images)
images = [transform(img) for img in list(images)]
images = torch.stack(images)
return images
# from scipy.spatial.distance import pdist, squareform
# from scipy.stats import spearmanr
# import numpy as np
# def perform_rsa(brain_activations, model_activations, metric='correlation'):
# """
# Parameters:
# - brain_activations (np.ndarray): 2D array where rows are different stimuli and columns are brain voxel activations.
# - model_activations (np.ndarray): 2D array where rows are different stimuli and columns are model unit activations.
# - metric (str): Distance metric to use for calculating dissimilarity (e.g., 'correlation', 'euclidean').
# Returns:
# - correlation (float): Spearman correlation between the two similarity matrices.
# """
# # Compute similarity matrices (dissimilarity matrices, to be precise)
# brain_similarity_matrix = squareform(pdist(brain_activations, metric=metric))
# model_similarity_matrix = squareform(pdist(model_activations, metric=metric))
# # Flatten the upper triangular part of the matrices (excluding the diagonal)
# brain_similarity_vector = brain_similarity_matrix[np.triu_indices_from(brain_similarity_matrix, k=1)]
# model_similarity_vector = model_similarity_matrix[np.triu_indices_from(model_similarity_matrix, k=1)]
# # Compute the Spearman correlation between the two similarity vectors
# correlation, _ = spearmanr(brain_similarity_vector, model_similarity_vector)
# return correlation
if __name__ == "__main__":
model = load_model()
print(model)
print(model(torch.randn(1, 3, 224, 224)))