diff --git a/Graphs.docx b/Graphs.docx new file mode 100644 index 0000000..d6f195e Binary files /dev/null and b/Graphs.docx differ diff --git a/README.md b/README.md index fc0e545..2871ab3 100644 --- a/README.md +++ b/README.md @@ -1,123 +1,17 @@ -Instructions - Vulkan Grass Rendering +Vulkan Grass Rendering ======================== -This is due **Sunday 11/4, evening at midnight**. +* Vasu Mahesh + * [LinkedIn](http://linkedin.com/in/vasumahesh) + * [Code Blog](http://www.codeplaysleep.com) -**Summary:** -In this project, you will use Vulkan to implement a grass simulator and renderer. You will -use compute shaders to perform physics calculations on Bezier curves that represent individual -grass blades in your application. Since rendering every grass blade on every frame will is fairly -inefficient, you will also use compute shaders to cull grass blades that don't contribute to a given frame. -The remaining blades will be passed to a graphics pipeline, in which you will write several shaders. -You will write a vertex shader to transform Bezier control points, tessellation shaders to dynamically create -the grass geometry from the Bezier curves, and a fragment shader to shade the grass blades. -The base code provided includes all of the basic Vulkan setup, including a compute pipeline that will run your compute -shaders and two graphics pipelines, one for rendering the geometry that grass will be placed on and the other for -rendering the grass itself. Your job will be to write the shaders for the grass graphics pipeline and the compute pipeline, -as well as binding any resources (descriptors) you may need to accomplish the tasks described in this assignment. +![](img/main.gif) -![](img/grass.gif) ![](img/grass2.gif) -You are not required to use this base code if you don't want -to. You may also change any part of the base code as you please. -**This is YOUR project.** The above .gifs are just examples that you -can use as a reference to compare to. Feel free to get creative with your implementations! +### Representing Grass -**Important:** -- If you are not in CGGT/DMD, you may replace this project with a GPU compute -project. You MUST get this pre-approved by Ottavio before continuing! - -### Contents - -* `src/` C++/Vulkan source files. - * `shaders/` glsl shader source files - * `images/` images used as textures within graphics pipelines -* `external/` Includes and static libraries for 3rd party libraries. -* `img/` Screenshots and images to use in your READMEs - -### Installing Vulkan - -In order to run a Vulkan project, you first need to download and install the [Vulkan SDK](https://vulkan.lunarg.com/). -Make sure to run the downloaded installed as administrator so that the installer can set the appropriate environment -variables for you. - -Once you have done this, you need to make sure your GPU driver supports Vulkan. Download and install a -[Vulkan driver](https://developer.nvidia.com/vulkan-driver) from NVIDIA's website. - -Finally, to check that Vulkan is ready for use, go to your Vulkan SDK directory (`C:/VulkanSDK/` unless otherwise specified) -and run the `cube.exe` example within the `Bin` directory. IF you see a rotating gray cube with the LunarG logo, then you -are all set! - -### Running the code - -While developing your grass renderer, you will want to keep validation layers enabled so that error checking is turned on. -The project is set up such that when you are in `debug` mode, validation layers are enabled, and when you are in `release` mode, -validation layers are disabled. After building the code, you should be able to run the project without any errors. You will see a plane with a grass texture on it to begin with. - -![](img/cube_demo.png) - -## Requirements - -**Ask on the mailing list for any clarifications.** - -In this project, you are given the following code: - -* The basic setup for a Vulkan project, including the swapchain, physical device, logical device, and the pipelines described above. -* Structs for some of the uniform buffers you will be using. -* Some buffer creation utility functions. -* A simple interactive camera using the mouse. - -You need to implement the following features/pipeline stages: - -* Compute shader (`shaders/compute.comp`) -* Grass pipeline stages - * Vertex shader (`shaders/grass.vert') - * Tessellation control shader (`shaders/grass.tesc`) - * Tessellation evaluation shader (`shaders/grass.tese`) - * Fragment shader (`shaders/grass.frag`) -* Binding of any extra descriptors you may need - -See below for more guidance. - -## Base Code Tour - -Areas that you need to complete are -marked with a `TODO` comment. Functions that are useful -for reference are marked with the comment `CHECKITOUT`. - -* `src/main.cpp` is the entry point of our application. -* `src/Instance.cpp` sets up the application state, initializes the Vulkan library, and contains functions that will create our -physical and logical device handles. -* `src/Device.cpp` manages the logical device and sets up the queues that our command buffers will be submitted to. -* `src/Renderer.cpp` contains most of the rendering implementation, including Vulkan setup and resource creation. You will -likely have to make changes to this file in order to support changes to your pipelines. -* `src/Camera.cpp` manages the camera state. -* `src/Model.cpp` manages the state of the model that grass will be created on. Currently a plane is hardcoded, but feel free to -update this with arbitrary model loading! -* `src/Blades.cpp` creates the control points corresponding to the grass blades. There are many parameters that you can play with -here that will change the behavior of your rendered grass blades. -* `src/Scene.cpp` manages the scene state, including the model, blades, and simualtion time. -* `src/BufferUtils.cpp` provides helper functions for creating buffers to be used as descriptors. - -We left out descriptions for a couple files that you likely won't have to modify. Feel free to investigate them to understand their -importance within the scope of the project. - -## Grass Rendering - -This project is an implementation of the paper, [Responsive Real-Time Grass Rendering for General 3D Scenes](https://www.cg.tuwien.ac.at/research/publications/2017/JAHRMANN-2017-RRTG/JAHRMANN-2017-RRTG-draft.pdf). -Please make sure to use this paper as a primary resource while implementing your grass renderers. It does a great job of explaining -the key algorithms and math you will be using. Below is a brief description of the different components in chronological order of how your renderer will -execute, but feel free to develop the components in whatever order you prefer. - -We recommend starting with trying to display the grass blades without any forces on them before trying to add any forces on the blades themselves. Here is an example of what that may look like: - -![](img/grass_basic.gif) - -### Representing Grass as Bezier Curves - -In this project, grass blades will be represented as Bezier curves while performing physics calculations and culling operations. -Each Bezier curve has three control points. +Grass is represented as Bezier Curves * `v0`: the position of the grass blade on the geomtry * `v1`: a Bezier curve guide that is always "above" `v0` with respect to the grass blade's up vector (explained soon) * `v2`: a physical guide for which we simulate forces on @@ -136,68 +30,49 @@ We can pack all this data into four `vec4`s, such that `v0.w` holds orientation, ### Simulating Forces -In this project, you will be simulating forces on grass blades while they are still Bezier curves. This will be done in a compute -shader using the compute pipeline that has been created for you. Remember that `v2` is our physical guide, so we will be -applying transformations to `v2` initially, then correcting for potential errors. We will finally update `v1` to maintain the appropriate -length of our grass blade. +Following forces were implemented: -#### Binding Resources +- Gravity -In order to update the state of your grass blades on every frame, you will need to create a storage buffer to maintain the grass data. -You will also need to pass information about how much time has passed in the simulation and the time since the last frame. To do this, -you can extend or create descriptor sets that will be bound to the compute pipeline. - -#### Gravity - -Given a gravity direction, `D.xyz`, and the magnitude of acceleration, `D.w`, we can compute the environmental gravity in -our scene as `gE = normalize(D.xyz) * D.w`. + Given a gravity direction, `D.xyz`, and the magnitude of acceleration, `D.w`, we can compute the environmental gravity in + our scene as `gE = normalize(D.xyz) * D.w`. -We then determine the contribution of the gravity with respect to the front facing direction of the blade, `f`, -as a term called the "front gravity". Front gravity is computed as `gF = (1/4) * ||gE|| * f`. + We then determine the contribution of the gravity with respect to the front facing direction of the blade, `f`, + as a term called the "front gravity". Front gravity is computed as `gF = (1/4) * ||gE|| * f`. -We can then determine the total gravity on the grass blade as `g = gE + gF`. + We can then determine the total gravity on the grass blade as `g = gE + gF`. -#### Recovery +- Recovery + + Recovery corresponds to the counter-force that brings our grass blade back into equilibrium. This is derived in the paper using Hooke's law. + In order to determine the recovery force, we need to compare the current position of `v2` to its original position before + simulation started, `iv2`. At the beginning of our simulation, `v1` and `v2` are initialized to be a distance of the blade height along the `up` vector. -Recovery corresponds to the counter-force that brings our grass blade back into equilibrium. This is derived in the paper using Hooke's law. -In order to determine the recovery force, we need to compare the current position of `v2` to its original position before -simulation started, `iv2`. At the beginning of our simulation, `v1` and `v2` are initialized to be a distance of the blade height along the `up` vector. + Once we have `iv2`, we can compute the recovery forces as `r = (iv2 - v2) * stiffness`. -Once we have `iv2`, we can compute the recovery forces as `r = (iv2 - v2) * stiffness`. +- Wind -#### Wind + Basic wind function that accepts the blade origin and returns the wind vec3. -In order to simulate wind, you are at liberty to create any wind function you want! In order to have something interesting, -you can make the function depend on the position of `v0` and a function that changes with time. Consider using some combination -of sine or cosine functions. -Your wind function will determine a wind direction that is affecting the blade, but it is also worth noting that wind has a larger impact on -grass blades whose forward directions are parallel to the wind direction. The paper describes this as a "wind alignment" term. We won't go -over the exact math here, but use the paper as a reference when implementing this. It does a great job of explaining this! - -Once you have a wind direction and a wind alignment term, your total wind force (`w`) will be `windDirection * windAlignment`. - -#### Total force +#### Binding Resources -We can then determine a translation for `v2` based on the forces as `tv2 = (gravity + recovery + wind) * deltaTime`. However, we can't simply -apply this translation and expect the simulation to be robust. Our forces might push `v2` under the ground! Similarly, moving `v2` but leaving -`v1` in the same position will cause our grass blade to change length, which doesn't make sense. +In order to update the state of your grass blades on every frame, you will need to create a storage buffer to maintain the grass data. +You will also need to pass information about how much time has passed in the simulation and the time since the last frame. To do this, +you can extend or create descriptor sets that will be bound to the compute pipeline. -Read section 5.2 of the paper in order to learn how to determine the corrected final positions for `v1` and `v2`. ### Culling tests -Although we need to simulate forces on every grass blade at every frame, there are many blades that we won't need to render -due to a variety of reasons. Here are some heuristics we can use to cull blades that won't contribute positively to a given frame. #### Orientation culling -Consider the scenario in which the front face direction of the grass blade is perpendicular to the view vector. Since our grass blades -won't have width, we will end up trying to render parts of the grass that are actually smaller than the size of a pixel. This could -lead to aliasing artifacts. +If the grass blade is perpendicular to the look axis, we can cull the blade. + -In order to remedy this, we can cull these blades! Simply do a dot product test to see if the view vector and front face direction of -the blade are perpendicular. The paper uses a threshold value of `0.9` to cull, but feel free to use what you think looks best. +Example of an aggressive orientation cull: + +![](img/orientation_cull.gif) #### View-frustum culling @@ -210,6 +85,10 @@ If all three points are outside of the view-frustum, we will cull the grass blad blades a little more conservatively. This can help with cases in which the Bezier curve is technically not visible, but we might be able to see the blade if we consider its width. +Example of an aggressive frustum cull: + +![](img/frustum_cull.gif) + #### Distance culling Similarly to orientation culling, we can end up with grass blades that at large distances are smaller than the size of a pixel. This could lead to additional @@ -222,31 +101,26 @@ You are free to define two parameters here. Define a function such that the grass blades in the bucket closest to the camera are kept while an increasing number of grass blades are culled with each farther bucket. -#### Occlusion culling (extra credit) +Example of an aggressive distance cull: -This type of culling only makes sense if our scene has additional objects aside from the plane and the grass blades. We want to cull grass blades that -are occluded by other geometry. Think about how you can use a depth map to accomplish this! +![](img/distance_cull.gif) -### Tessellating Bezier curves into grass blades -In this project, you should pass in each Bezier curve as a single patch to be processed by your grass graphics pipeline. You will tessellate this patch into -a quad with a shape of your choosing (as long as it looks sufficiently like grass of course). The paper has some examples of grass shapes you can use as inspiration. +## Performance Analysis of Culling -In the tessellation control shader, specify the amount of tessellation you want to occur. Remember that you need to provide enough detail to create the curvature of a grass blade. -The generated vertices will be passed to the tessellation evaluation shader, where you will place the vertices in world space, respecting the width, height, and orientation information -of each blade. Once you have determined the world space position of each vector, make sure to set the output `gl_Position` in clip space! +Culling improves performance by over 50%. Orientation cull saw the most significant drop. The graph below is for 8192 blades. -** Extra Credit**: Tessellate to varying levels of detail as a function of how far the grass blade is from the camera. For example, if the blade is very far, only generate four vertices in the tessellation control shader. +![](img/graph1.PNG) -To build more intuition on how tessellation works, I highly recommend playing with the [helloTessellation sample](https://github.com/CIS565-Fall-2018/Vulkan-Samples/tree/master/samples/5_helloTessellation) -and reading this [tutorial on tessellation](http://in2gpu.com/2014/07/12/tessellation-tutorial-opengl-4-3/). +## Performance Analysis of Grass Blade Count -## Resources +No suprise here that as the number of grass blades increase, performance drops. We can see quite a large increase in frame times for around 500K grass blades. This graph also includes the performance gains from all the culling methods as well. -### Links +![](img/graph2.PNG) -The following resources may be useful for this project. + +### References * [Responsive Real-Time Grass Grass Rendering for General 3D Scenes](https://www.cg.tuwien.ac.at/research/publications/2017/JAHRMANN-2017-RRTG/JAHRMANN-2017-RRTG-draft.pdf) * [CIS565 Vulkan samples](https://github.com/CIS565-Fall-2018/Vulkan-Samples) @@ -254,47 +128,3 @@ The following resources may be useful for this project. * [Vulkan tutorial](https://vulkan-tutorial.com/) * [RenderDoc blog on Vulkan](https://renderdoc.org/vulkan-in-30-minutes.html) * [Tessellation tutorial](http://in2gpu.com/2014/07/12/tessellation-tutorial-opengl-4-3/) - - -## Third-Party Code Policy - -* Use of any third-party code must be approved by asking on our Google Group. -* If it is approved, all students are welcome to use it. Generally, we approve - use of third-party code that is not a core part of the project. For example, - for the path tracer, we would approve using a third-party library for loading - models, but would not approve copying and pasting a CUDA function for doing - refraction. -* Third-party code **MUST** be credited in README.md. -* Using third-party code without its approval, including using another - student's code, is an academic integrity violation, and will, at minimum, - result in you receiving an F for the semester. - - -## README - -* A brief description of the project and the specific features you implemented. -* GIFs of your project in its different stages with the different features being added incrementally. -* A performance analysis (described below). - -### Performance Analysis - -The performance analysis is where you will investigate how... -* Your renderer handles varying numbers of grass blades -* The improvement you get by culling using each of the three culling tests - -## Submit - -If you have modified any of the `CMakeLists.txt` files at all (aside from the -list of `SOURCE_FILES`), mentions it explicity. -Beware of any build issues discussed on the Google Group. - -Open a GitHub pull request so that we can see that you have finished. -The title should be "Project 6: YOUR NAME". -The template of the comment section of your pull request is attached below, you can do some copy and paste: - -* [Repo Link](https://link-to-your-repo) -* (Briefly) Mentions features that you've completed. Especially those bells and whistles you want to highlight - * Feature 0 - * Feature 1 - * ... -* Feedback on the project itself, if any. diff --git a/img/distance_cull.gif b/img/distance_cull.gif new file mode 100644 index 0000000..614356f Binary files /dev/null and b/img/distance_cull.gif differ diff --git a/img/frustum_cull.gif b/img/frustum_cull.gif new file mode 100644 index 0000000..f1840df Binary files /dev/null and b/img/frustum_cull.gif differ diff --git a/img/graph1.PNG b/img/graph1.PNG new file mode 100644 index 0000000..0d4563e Binary files /dev/null and b/img/graph1.PNG differ diff --git a/img/graph2.PNG b/img/graph2.PNG new file mode 100644 index 0000000..d888b78 Binary files /dev/null and b/img/graph2.PNG differ diff --git a/img/main.gif b/img/main.gif new file mode 100644 index 0000000..33992db Binary files /dev/null and b/img/main.gif differ diff --git a/img/orientation_cull.gif b/img/orientation_cull.gif new file mode 100644 index 0000000..99c1600 Binary files /dev/null and b/img/orientation_cull.gif differ diff --git a/src/Blades.cpp b/src/Blades.cpp index 80e3d76..8b901be 100644 --- a/src/Blades.cpp +++ b/src/Blades.cpp @@ -45,7 +45,7 @@ Blades::Blades(Device* device, VkCommandPool commandPool, float planeDim) : Mode indirectDraw.firstInstance = 0; BufferUtils::CreateBufferFromData(device, commandPool, blades.data(), NUM_BLADES * sizeof(Blade), VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, bladesBuffer, bladesBufferMemory); - BufferUtils::CreateBuffer(device, NUM_BLADES * sizeof(Blade), VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, culledBladesBuffer, culledBladesBufferMemory); + BufferUtils::CreateBuffer(device, NUM_BLADES * sizeof(Blade), VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, culledBladesBuffer, culledBladesBufferMemory); BufferUtils::CreateBufferFromData(device, commandPool, &indirectDraw, sizeof(BladeDrawIndirect), VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT, numBladesBuffer, numBladesBufferMemory); } @@ -61,6 +61,11 @@ VkBuffer Blades::GetNumBladesBuffer() const { return numBladesBuffer; } +VkDescriptorSet Blades::GetDescriptorSet() const +{ + return bladesDescriptorSet; +} + Blades::~Blades() { vkDestroyBuffer(device->GetVkDevice(), bladesBuffer, nullptr); vkFreeMemory(device->GetVkDevice(), bladesBufferMemory, nullptr); diff --git a/src/Blades.h b/src/Blades.h index 9bd1eed..c16a02e 100644 --- a/src/Blades.h +++ b/src/Blades.h @@ -4,7 +4,7 @@ #include #include "Model.h" -constexpr static unsigned int NUM_BLADES = 1 << 13; +constexpr static unsigned int NUM_BLADES = 1 << 16; constexpr static float MIN_HEIGHT = 1.3f; constexpr static float MAX_HEIGHT = 2.5f; constexpr static float MIN_WIDTH = 0.1f; @@ -80,9 +80,13 @@ class Blades : public Model { VkDeviceMemory numBladesBufferMemory; public: + VkDescriptorSet bladesDescriptorSet; + VkDescriptorSet grassDescriptorSet; + Blades(Device* device, VkCommandPool commandPool, float planeDim); VkBuffer GetBladesBuffer() const; VkBuffer GetCulledBladesBuffer() const; VkBuffer GetNumBladesBuffer() const; + VkDescriptorSet GetDescriptorSet() const; ~Blades(); }; diff --git a/src/Renderer.cpp b/src/Renderer.cpp index b445d04..3442353 100644 --- a/src/Renderer.cpp +++ b/src/Renderer.cpp @@ -5,6 +5,7 @@ #include "Blades.h" #include "Camera.h" #include "Image.h" +#include "BufferUtils.h" static constexpr unsigned int WORKGROUP_SIZE = 32; @@ -198,6 +199,39 @@ void Renderer::CreateComputeDescriptorSetLayout() { // TODO: Create the descriptor set layout for the compute pipeline // Remember this is like a class definition stating why types of information // will be stored at each binding + // Describe the binding of the descriptor set layout + VkDescriptorSetLayoutBinding allBlades = {}; + allBlades.binding = 0; + allBlades.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; + allBlades.descriptorCount = 1; + allBlades.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT; + allBlades.pImmutableSamplers = nullptr; + + VkDescriptorSetLayoutBinding culledBlades = {}; + culledBlades.binding = 1; + culledBlades.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; + culledBlades.descriptorCount = 1; + culledBlades.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT; + culledBlades.pImmutableSamplers = nullptr; + + VkDescriptorSetLayoutBinding indirectDraw = {}; + indirectDraw.binding = 2; + indirectDraw.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; + indirectDraw.descriptorCount = 1; + indirectDraw.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT; + indirectDraw.pImmutableSamplers = nullptr; + + std::vector bindings = { allBlades, culledBlades, indirectDraw }; + + // Create the descriptor set layout + VkDescriptorSetLayoutCreateInfo layoutInfo = {}; + layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; + layoutInfo.bindingCount = static_cast(bindings.size()); + layoutInfo.pBindings = bindings.data(); + + if (vkCreateDescriptorSetLayout(logicalDevice, &layoutInfo, nullptr, &bladesSetLayout) != VK_SUCCESS) { + throw std::runtime_error("Failed to create descriptor set layout"); + } } void Renderer::CreateDescriptorPool() { @@ -215,6 +249,9 @@ void Renderer::CreateDescriptorPool() { // Time (compute) { VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER , 1 }, + // Blades + { VK_DESCRIPTOR_TYPE_STORAGE_BUFFER , 3 }, + // TODO: Add any additional types and counts of descriptors you will need to allocate }; @@ -320,6 +357,44 @@ void Renderer::CreateModelDescriptorSets() { void Renderer::CreateGrassDescriptorSets() { // TODO: Create Descriptor sets for the grass. // This should involve creating descriptor sets which point to the model matrix of each group of grass blades + + auto& bladeGroups = scene->GetBlades(); + + for (auto& bladeGroup : bladeGroups) { + + VkDescriptorSetLayout layouts[] = { modelDescriptorSetLayout }; + VkDescriptorSetAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; + allocInfo.descriptorPool = descriptorPool; + allocInfo.descriptorSetCount = 1; + allocInfo.pSetLayouts = layouts; + + // Allocate descriptor sets + if (vkAllocateDescriptorSets(logicalDevice, &allocInfo, &bladeGroup->grassDescriptorSet) != VK_SUCCESS) { + throw std::runtime_error("Failed to allocate blades descriptor set"); + } + + // Configure the descriptors to refer to buffers + VkDescriptorBufferInfo grassBufferInfo = {}; + grassBufferInfo.buffer = bladeGroup->GetModelBuffer(); + grassBufferInfo.offset = 0; + grassBufferInfo.range = sizeof(ModelBufferObject); + + std::array descriptorWrites = {}; + descriptorWrites[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + descriptorWrites[0].dstSet = bladeGroup->grassDescriptorSet; + descriptorWrites[0].dstBinding = 0; + descriptorWrites[0].dstArrayElement = 0; + descriptorWrites[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; + descriptorWrites[0].descriptorCount = 1; + descriptorWrites[0].pBufferInfo = &grassBufferInfo; + descriptorWrites[0].pImageInfo = nullptr; + descriptorWrites[0].pTexelBufferView = nullptr; + + // Update descriptor sets + vkUpdateDescriptorSets(logicalDevice, static_cast(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr); + } + } void Renderer::CreateTimeDescriptorSet() { @@ -360,6 +435,74 @@ void Renderer::CreateTimeDescriptorSet() { void Renderer::CreateComputeDescriptorSets() { // TODO: Create Descriptor sets for the compute pipeline // The descriptors should point to Storage buffers which will hold the grass blades, the culled grass blades, and the output number of grass blades + // Describe the desciptor set + + auto& bladeGroups = scene->GetBlades(); + + for (auto& bladeGroup : bladeGroups) { + + VkDescriptorSetLayout layouts[] = { bladesSetLayout }; + VkDescriptorSetAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; + allocInfo.descriptorPool = descriptorPool; + allocInfo.descriptorSetCount = 1; + allocInfo.pSetLayouts = layouts; + + // Allocate descriptor sets + if (vkAllocateDescriptorSets(logicalDevice, &allocInfo, &bladeGroup->bladesDescriptorSet) != VK_SUCCESS) { + throw std::runtime_error("Failed to allocate blades descriptor set"); + } + + // Configure the descriptors to refer to buffers + VkDescriptorBufferInfo bladesBufferInfo = {}; + bladesBufferInfo.buffer = bladeGroup->GetBladesBuffer(); + bladesBufferInfo.offset = 0; + bladesBufferInfo.range = sizeof(Blade) * NUM_BLADES; + + VkDescriptorBufferInfo culledBladesBufferInfo = {}; + culledBladesBufferInfo.buffer = bladeGroup->GetCulledBladesBuffer(); + culledBladesBufferInfo.offset = 0; + culledBladesBufferInfo.range = sizeof(Blade) * NUM_BLADES; + + VkDescriptorBufferInfo indirectDrawBufferInfo = {}; + indirectDrawBufferInfo.buffer = bladeGroup->GetNumBladesBuffer(); + indirectDrawBufferInfo.offset = 0; + indirectDrawBufferInfo.range = sizeof(BladeDrawIndirect); + + std::array descriptorWrites = {}; + descriptorWrites[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + descriptorWrites[0].dstSet = bladeGroup->bladesDescriptorSet; + descriptorWrites[0].dstBinding = 0; + descriptorWrites[0].dstArrayElement = 0; + descriptorWrites[0].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; + descriptorWrites[0].descriptorCount = 1; + descriptorWrites[0].pBufferInfo = &bladesBufferInfo; + descriptorWrites[0].pImageInfo = nullptr; + descriptorWrites[0].pTexelBufferView = nullptr; + + descriptorWrites[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + descriptorWrites[1].dstSet = bladeGroup->bladesDescriptorSet; + descriptorWrites[1].dstBinding = 1; + descriptorWrites[1].dstArrayElement = 0; + descriptorWrites[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; + descriptorWrites[1].descriptorCount = 1; + descriptorWrites[1].pBufferInfo = &culledBladesBufferInfo; + descriptorWrites[1].pImageInfo = nullptr; + descriptorWrites[1].pTexelBufferView = nullptr; + + descriptorWrites[2].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + descriptorWrites[2].dstSet = bladeGroup->bladesDescriptorSet; + descriptorWrites[2].dstBinding = 2; + descriptorWrites[2].dstArrayElement = 0; + descriptorWrites[2].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; + descriptorWrites[2].descriptorCount = 1; + descriptorWrites[2].pBufferInfo = &indirectDrawBufferInfo; + descriptorWrites[2].pImageInfo = nullptr; + descriptorWrites[2].pTexelBufferView = nullptr; + + // Update descriptor sets + vkUpdateDescriptorSets(logicalDevice, static_cast(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr); + } } void Renderer::CreateGraphicsPipeline() { @@ -717,7 +860,7 @@ void Renderer::CreateComputePipeline() { computeShaderStageInfo.pName = "main"; // TODO: Add the compute dsecriptor set layout you create to this list - std::vector descriptorSetLayouts = { cameraDescriptorSetLayout, timeDescriptorSetLayout }; + std::vector descriptorSetLayouts = { cameraDescriptorSetLayout, timeDescriptorSetLayout, bladesSetLayout }; // Create pipeline layout VkPipelineLayoutCreateInfo pipelineLayoutInfo = {}; @@ -885,6 +1028,13 @@ void Renderer::RecordComputeCommandBuffer() { // TODO: For each group of blades bind its descriptor set and dispatch + auto& bladeGroups = scene->GetBlades(); + + for (auto& bladeGroup : bladeGroups) { + vkCmdBindDescriptorSets(computeCommandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipelineLayout, 2, 1, &bladeGroup->bladesDescriptorSet, 0, nullptr); + vkCmdDispatch(computeCommandBuffer, (NUM_BLADES + WORKGROUP_SIZE - 1) / WORKGROUP_SIZE, 1, 1); + } + // ~ End recording ~ if (vkEndCommandBuffer(computeCommandBuffer) != VK_SUCCESS) { throw std::runtime_error("Failed to record compute command buffer"); @@ -976,13 +1126,14 @@ void Renderer::RecordCommandBuffers() { VkBuffer vertexBuffers[] = { scene->GetBlades()[j]->GetCulledBladesBuffer() }; VkDeviceSize offsets[] = { 0 }; // TODO: Uncomment this when the buffers are populated - // vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets); + vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets); // TODO: Bind the descriptor set for each grass blades model + vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, grassPipelineLayout, 1, 1, &scene->GetBlades()[j]->grassDescriptorSet, 0, nullptr); // Draw // TODO: Uncomment this when the buffers are populated - // vkCmdDrawIndirect(commandBuffers[i], scene->GetBlades()[j]->GetNumBladesBuffer(), 0, 1, sizeof(BladeDrawIndirect)); + vkCmdDrawIndirect(commandBuffers[i], scene->GetBlades()[j]->GetNumBladesBuffer(), 0, 1, sizeof(BladeDrawIndirect)); } // End render pass diff --git a/src/Renderer.cpp~RF48f3c243.TMP b/src/Renderer.cpp~RF48f3c243.TMP new file mode 100644 index 0000000..2d5168f --- /dev/null +++ b/src/Renderer.cpp~RF48f3c243.TMP @@ -0,0 +1,1158 @@ +#include "Renderer.h" +#include "Instance.h" +#include "ShaderModule.h" +#include "Vertex.h" +#include "Blades.h" +#include "Camera.h" +#include "Image.h" +#include "BufferUtils.h" + +static constexpr unsigned int WORKGROUP_SIZE = 32; + +Renderer::Renderer(Device* device, SwapChain* swapChain, Scene* scene, Camera* camera) + : device(device), + logicalDevice(device->GetVkDevice()), + swapChain(swapChain), + scene(scene), + camera(camera) { + + CreateCommandPools(); + CreateRenderPass(); + CreateCameraDescriptorSetLayout(); + CreateModelDescriptorSetLayout(); + CreateTimeDescriptorSetLayout(); + CreateComputeDescriptorSetLayout(); + CreateDescriptorPool(); + CreateCameraDescriptorSet(); + CreateModelDescriptorSets(); + CreateGrassDescriptorSets(); + CreateTimeDescriptorSet(); + CreateComputeDescriptorSets(); + CreateFrameResources(); + CreateGraphicsPipeline(); + CreateGrassPipeline(); + CreateComputePipeline(); + RecordCommandBuffers(); + RecordComputeCommandBuffer(); +} + +void Renderer::CreateCommandPools() { + VkCommandPoolCreateInfo graphicsPoolInfo = {}; + graphicsPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; + graphicsPoolInfo.queueFamilyIndex = device->GetInstance()->GetQueueFamilyIndices()[QueueFlags::Graphics]; + graphicsPoolInfo.flags = 0; + + if (vkCreateCommandPool(logicalDevice, &graphicsPoolInfo, nullptr, &graphicsCommandPool) != VK_SUCCESS) { + throw std::runtime_error("Failed to create command pool"); + } + + VkCommandPoolCreateInfo computePoolInfo = {}; + computePoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; + computePoolInfo.queueFamilyIndex = device->GetInstance()->GetQueueFamilyIndices()[QueueFlags::Compute]; + computePoolInfo.flags = 0; + + if (vkCreateCommandPool(logicalDevice, &computePoolInfo, nullptr, &computeCommandPool) != VK_SUCCESS) { + throw std::runtime_error("Failed to create command pool"); + } +} + +void Renderer::CreateRenderPass() { + // Color buffer attachment represented by one of the images from the swap chain + VkAttachmentDescription colorAttachment = {}; + colorAttachment.format = swapChain->GetVkImageFormat(); + colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT; + colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; + colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; + colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; + colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; + colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; + colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; + + // Create a color attachment reference to be used with subpass + VkAttachmentReference colorAttachmentRef = {}; + colorAttachmentRef.attachment = 0; + colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; + + // Depth buffer attachment + VkFormat depthFormat = device->GetInstance()->GetSupportedFormat({ VK_FORMAT_D32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_D24_UNORM_S8_UINT }, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT); + VkAttachmentDescription depthAttachment = {}; + depthAttachment.format = depthFormat; + depthAttachment.samples = VK_SAMPLE_COUNT_1_BIT; + depthAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; + depthAttachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; + depthAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; + depthAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; + depthAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; + depthAttachment.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; + + // Create a depth attachment reference + VkAttachmentReference depthAttachmentRef = {}; + depthAttachmentRef.attachment = 1; + depthAttachmentRef.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; + + // Create subpass description + VkSubpassDescription subpass = {}; + subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; + subpass.colorAttachmentCount = 1; + subpass.pColorAttachments = &colorAttachmentRef; + subpass.pDepthStencilAttachment = &depthAttachmentRef; + + std::array attachments = { colorAttachment, depthAttachment }; + + // Specify subpass dependency + VkSubpassDependency dependency = {}; + dependency.srcSubpass = VK_SUBPASS_EXTERNAL; + dependency.dstSubpass = 0; + dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; + dependency.srcAccessMask = 0; + dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; + dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; + + // Create render pass + VkRenderPassCreateInfo renderPassInfo = {}; + renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; + renderPassInfo.attachmentCount = static_cast(attachments.size()); + renderPassInfo.pAttachments = attachments.data(); + renderPassInfo.subpassCount = 1; + renderPassInfo.pSubpasses = &subpass; + renderPassInfo.dependencyCount = 1; + renderPassInfo.pDependencies = &dependency; + + if (vkCreateRenderPass(logicalDevice, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) { + throw std::runtime_error("Failed to create render pass"); + } +} + +void Renderer::CreateCameraDescriptorSetLayout() { + // Describe the binding of the descriptor set layout + VkDescriptorSetLayoutBinding uboLayoutBinding = {}; + uboLayoutBinding.binding = 0; + uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; + uboLayoutBinding.descriptorCount = 1; + uboLayoutBinding.stageFlags = VK_SHADER_STAGE_ALL; + uboLayoutBinding.pImmutableSamplers = nullptr; + + std::vector bindings = { uboLayoutBinding }; + + // Create the descriptor set layout + VkDescriptorSetLayoutCreateInfo layoutInfo = {}; + layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; + layoutInfo.bindingCount = static_cast(bindings.size()); + layoutInfo.pBindings = bindings.data(); + + if (vkCreateDescriptorSetLayout(logicalDevice, &layoutInfo, nullptr, &cameraDescriptorSetLayout) != VK_SUCCESS) { + throw std::runtime_error("Failed to create descriptor set layout"); + } +} + +void Renderer::CreateModelDescriptorSetLayout() { + VkDescriptorSetLayoutBinding uboLayoutBinding = {}; + uboLayoutBinding.binding = 0; + uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; + uboLayoutBinding.descriptorCount = 1; + uboLayoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT; + uboLayoutBinding.pImmutableSamplers = nullptr; + + VkDescriptorSetLayoutBinding samplerLayoutBinding = {}; + samplerLayoutBinding.binding = 1; + samplerLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; + samplerLayoutBinding.descriptorCount = 1; + samplerLayoutBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; + samplerLayoutBinding.pImmutableSamplers = nullptr; + + std::vector bindings = { uboLayoutBinding, samplerLayoutBinding }; + + // Create the descriptor set layout + VkDescriptorSetLayoutCreateInfo layoutInfo = {}; + layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; + layoutInfo.bindingCount = static_cast(bindings.size()); + layoutInfo.pBindings = bindings.data(); + + if (vkCreateDescriptorSetLayout(logicalDevice, &layoutInfo, nullptr, &modelDescriptorSetLayout) != VK_SUCCESS) { + throw std::runtime_error("Failed to create descriptor set layout"); + } +} + +void Renderer::CreateTimeDescriptorSetLayout() { + // Describe the binding of the descriptor set layout + VkDescriptorSetLayoutBinding uboLayoutBinding = {}; + uboLayoutBinding.binding = 0; + uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; + uboLayoutBinding.descriptorCount = 1; + uboLayoutBinding.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT; + uboLayoutBinding.pImmutableSamplers = nullptr; + + std::vector bindings = { uboLayoutBinding }; + + // Create the descriptor set layout + VkDescriptorSetLayoutCreateInfo layoutInfo = {}; + layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; + layoutInfo.bindingCount = static_cast(bindings.size()); + layoutInfo.pBindings = bindings.data(); + + if (vkCreateDescriptorSetLayout(logicalDevice, &layoutInfo, nullptr, &timeDescriptorSetLayout) != VK_SUCCESS) { + throw std::runtime_error("Failed to create descriptor set layout"); + } +} + +void Renderer::CreateComputeDescriptorSetLayout() { + // TODO: Create the descriptor set layout for the compute pipeline + // Remember this is like a class definition stating why types of information + // will be stored at each binding + // Describe the binding of the descriptor set layout + VkDescriptorSetLayoutBinding allBlades = {}; + allBlades.binding = 0; + allBlades.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; + allBlades.descriptorCount = 1; + allBlades.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT; + allBlades.pImmutableSamplers = nullptr; + + VkDescriptorSetLayoutBinding culledBlades = {}; + culledBlades.binding = 1; + culledBlades.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; + culledBlades.descriptorCount = 1; + culledBlades.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT; + culledBlades.pImmutableSamplers = nullptr; + + std::vector bindings = { allBlades, culledBlades }; + + // Create the descriptor set layout + VkDescriptorSetLayoutCreateInfo layoutInfo = {}; + layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; + layoutInfo.bindingCount = static_cast(bindings.size()); + layoutInfo.pBindings = bindings.data(); + + if (vkCreateDescriptorSetLayout(logicalDevice, &layoutInfo, nullptr, &bladesSetLayout) != VK_SUCCESS) { + throw std::runtime_error("Failed to create descriptor set layout"); + } +} + +void Renderer::CreateDescriptorPool() { + // Describe which descriptor types that the descriptor sets will contain + std::vector poolSizes = { + // Camera + { VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER , 1}, + + // Models + Blades + { VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER , static_cast(scene->GetModels().size() + scene->GetBlades().size()) }, + + // Models + Blades + { VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER , static_cast(scene->GetModels().size() + scene->GetBlades().size()) }, + + // Time (compute) + { VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER , 1 }, + + // Blades + { VK_DESCRIPTOR_TYPE_STORAGE_BUFFER , 2 }, + + // TODO: Add any additional types and counts of descriptors you will need to allocate + }; + + VkDescriptorPoolCreateInfo poolInfo = {}; + poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; + poolInfo.poolSizeCount = static_cast(poolSizes.size()); + poolInfo.pPoolSizes = poolSizes.data(); + poolInfo.maxSets = 5; + + if (vkCreateDescriptorPool(logicalDevice, &poolInfo, nullptr, &descriptorPool) != VK_SUCCESS) { + throw std::runtime_error("Failed to create descriptor pool"); + } +} + +void Renderer::CreateCameraDescriptorSet() { + // Describe the desciptor set + VkDescriptorSetLayout layouts[] = { cameraDescriptorSetLayout }; + VkDescriptorSetAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; + allocInfo.descriptorPool = descriptorPool; + allocInfo.descriptorSetCount = 1; + allocInfo.pSetLayouts = layouts; + + // Allocate descriptor sets + if (vkAllocateDescriptorSets(logicalDevice, &allocInfo, &cameraDescriptorSet) != VK_SUCCESS) { + throw std::runtime_error("Failed to allocate descriptor set"); + } + + // Configure the descriptors to refer to buffers + VkDescriptorBufferInfo cameraBufferInfo = {}; + cameraBufferInfo.buffer = camera->GetBuffer(); + cameraBufferInfo.offset = 0; + cameraBufferInfo.range = sizeof(CameraBufferObject); + + std::array descriptorWrites = {}; + descriptorWrites[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + descriptorWrites[0].dstSet = cameraDescriptorSet; + descriptorWrites[0].dstBinding = 0; + descriptorWrites[0].dstArrayElement = 0; + descriptorWrites[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; + descriptorWrites[0].descriptorCount = 1; + descriptorWrites[0].pBufferInfo = &cameraBufferInfo; + descriptorWrites[0].pImageInfo = nullptr; + descriptorWrites[0].pTexelBufferView = nullptr; + + // Update descriptor sets + vkUpdateDescriptorSets(logicalDevice, static_cast(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr); +} + +void Renderer::CreateModelDescriptorSets() { + modelDescriptorSets.resize(scene->GetModels().size()); + + // Describe the desciptor set + VkDescriptorSetLayout layouts[] = { modelDescriptorSetLayout }; + VkDescriptorSetAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; + allocInfo.descriptorPool = descriptorPool; + allocInfo.descriptorSetCount = static_cast(modelDescriptorSets.size()); + allocInfo.pSetLayouts = layouts; + + // Allocate descriptor sets + if (vkAllocateDescriptorSets(logicalDevice, &allocInfo, modelDescriptorSets.data()) != VK_SUCCESS) { + throw std::runtime_error("Failed to allocate descriptor set"); + } + + std::vector descriptorWrites(2 * modelDescriptorSets.size()); + + for (uint32_t i = 0; i < scene->GetModels().size(); ++i) { + VkDescriptorBufferInfo modelBufferInfo = {}; + modelBufferInfo.buffer = scene->GetModels()[i]->GetModelBuffer(); + modelBufferInfo.offset = 0; + modelBufferInfo.range = sizeof(ModelBufferObject); + + // Bind image and sampler resources to the descriptor + VkDescriptorImageInfo imageInfo = {}; + imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; + imageInfo.imageView = scene->GetModels()[i]->GetTextureView(); + imageInfo.sampler = scene->GetModels()[i]->GetTextureSampler(); + + descriptorWrites[2 * i + 0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + descriptorWrites[2 * i + 0].dstSet = modelDescriptorSets[i]; + descriptorWrites[2 * i + 0].dstBinding = 0; + descriptorWrites[2 * i + 0].dstArrayElement = 0; + descriptorWrites[2 * i + 0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; + descriptorWrites[2 * i + 0].descriptorCount = 1; + descriptorWrites[2 * i + 0].pBufferInfo = &modelBufferInfo; + descriptorWrites[2 * i + 0].pImageInfo = nullptr; + descriptorWrites[2 * i + 0].pTexelBufferView = nullptr; + + descriptorWrites[2 * i + 1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + descriptorWrites[2 * i + 1].dstSet = modelDescriptorSets[i]; + descriptorWrites[2 * i + 1].dstBinding = 1; + descriptorWrites[2 * i + 1].dstArrayElement = 0; + descriptorWrites[2 * i + 1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; + descriptorWrites[2 * i + 1].descriptorCount = 1; + descriptorWrites[2 * i + 1].pImageInfo = &imageInfo; + } + + // Update descriptor sets + vkUpdateDescriptorSets(logicalDevice, static_cast(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr); +} + +void Renderer::CreateGrassDescriptorSets() { + // TODO: Create Descriptor sets for the grass. + // This should involve creating descriptor sets which point to the model matrix of each group of grass blades +} + +void Renderer::CreateTimeDescriptorSet() { + // Describe the desciptor set + VkDescriptorSetLayout layouts[] = { timeDescriptorSetLayout }; + VkDescriptorSetAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; + allocInfo.descriptorPool = descriptorPool; + allocInfo.descriptorSetCount = 1; + allocInfo.pSetLayouts = layouts; + + // Allocate descriptor sets + if (vkAllocateDescriptorSets(logicalDevice, &allocInfo, &timeDescriptorSet) != VK_SUCCESS) { + throw std::runtime_error("Failed to allocate descriptor set"); + } + + // Configure the descriptors to refer to buffers + VkDescriptorBufferInfo timeBufferInfo = {}; + timeBufferInfo.buffer = scene->GetTimeBuffer(); + timeBufferInfo.offset = 0; + timeBufferInfo.range = sizeof(Time); + + std::array descriptorWrites = {}; + descriptorWrites[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + descriptorWrites[0].dstSet = timeDescriptorSet; + descriptorWrites[0].dstBinding = 0; + descriptorWrites[0].dstArrayElement = 0; + descriptorWrites[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; + descriptorWrites[0].descriptorCount = 1; + descriptorWrites[0].pBufferInfo = &timeBufferInfo; + descriptorWrites[0].pImageInfo = nullptr; + descriptorWrites[0].pTexelBufferView = nullptr; + + // Update descriptor sets + vkUpdateDescriptorSets(logicalDevice, static_cast(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr); +} + +void Renderer::CreateComputeDescriptorSets() { + // TODO: Create Descriptor sets for the compute pipeline + // The descriptors should point to Storage buffers which will hold the grass blades, the culled grass blades, and the output number of grass blades + // Describe the desciptor set + + auto& bladeGroups = scene->GetBlades(); + + for (auto& bladeGroup : bladeGroups) { + + VkDescriptorSetLayout layouts[] = { bladesSetLayout }; + VkDescriptorSetAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; + allocInfo.descriptorPool = descriptorPool; + allocInfo.descriptorSetCount = 1; + allocInfo.pSetLayouts = layouts; + + // Allocate descriptor sets + if (vkAllocateDescriptorSets(logicalDevice, &allocInfo, &bladeGroup->bladesDescriptorSet) != VK_SUCCESS) { + throw std::runtime_error("Failed to allocate blades descriptor set"); + } + + // Configure the descriptors to refer to buffers + VkDescriptorBufferInfo bladesBufferInfo = {}; + bladesBufferInfo.buffer = bladeGroup->GetBladesBuffer(); + bladesBufferInfo.offset = 0; + bladesBufferInfo.range = sizeof(Blade) * NUM_BLADES; + + VkDescriptorBufferInfo culledBladesBufferInfo = {}; + culledBladesBufferInfo.buffer = bladeGroup->GetCulledBladesBuffer(); + culledBladesBufferInfo.offset = 0; + culledBladesBufferInfo.range = sizeof(Blade) * NUM_BLADES; + + std::array descriptorWrites = {}; + descriptorWrites[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + descriptorWrites[0].dstSet = bladeGroup->bladesDescriptorSet; + descriptorWrites[0].dstBinding = 0; + descriptorWrites[0].dstArrayElement = 0; + descriptorWrites[0].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; + descriptorWrites[0].descriptorCount = 1; + descriptorWrites[0].pBufferInfo = &bladesBufferInfo; + descriptorWrites[0].pImageInfo = nullptr; + descriptorWrites[0].pTexelBufferView = nullptr; + + descriptorWrites[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + descriptorWrites[1].dstSet = bladeGroup->bladesDescriptorSet; + descriptorWrites[1].dstBinding = 1; + descriptorWrites[1].dstArrayElement = 0; + descriptorWrites[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; + descriptorWrites[1].descriptorCount = 1; + descriptorWrites[1].pBufferInfo = &culledBladesBufferInfo; + descriptorWrites[1].pImageInfo = nullptr; + descriptorWrites[1].pTexelBufferView = nullptr; + + // Update descriptor sets + vkUpdateDescriptorSets(logicalDevice, static_cast(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr); + } +} + +void Renderer::CreateGraphicsPipeline() { + VkShaderModule vertShaderModule = ShaderModule::Create("shaders/graphics.vert.spv", logicalDevice); + VkShaderModule fragShaderModule = ShaderModule::Create("shaders/graphics.frag.spv", logicalDevice); + + // Assign each shader module to the appropriate stage in the pipeline + VkPipelineShaderStageCreateInfo vertShaderStageInfo = {}; + vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT; + vertShaderStageInfo.module = vertShaderModule; + vertShaderStageInfo.pName = "main"; + + VkPipelineShaderStageCreateInfo fragShaderStageInfo = {}; + fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT; + fragShaderStageInfo.module = fragShaderModule; + fragShaderStageInfo.pName = "main"; + + VkPipelineShaderStageCreateInfo shaderStages[] = { vertShaderStageInfo, fragShaderStageInfo }; + + // --- Set up fixed-function stages --- + + // Vertex input + VkPipelineVertexInputStateCreateInfo vertexInputInfo = {}; + vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; + + auto bindingDescription = Vertex::getBindingDescription(); + auto attributeDescriptions = Vertex::getAttributeDescriptions(); + + vertexInputInfo.vertexBindingDescriptionCount = 1; + vertexInputInfo.pVertexBindingDescriptions = &bindingDescription; + vertexInputInfo.vertexAttributeDescriptionCount = static_cast(attributeDescriptions.size()); + vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data(); + + // Input assembly + VkPipelineInputAssemblyStateCreateInfo inputAssembly = {}; + inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; + inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; + inputAssembly.primitiveRestartEnable = VK_FALSE; + + // Viewports and Scissors (rectangles that define in which regions pixels are stored) + VkViewport viewport = {}; + viewport.x = 0.0f; + viewport.y = 0.0f; + viewport.width = static_cast(swapChain->GetVkExtent().width); + viewport.height = static_cast(swapChain->GetVkExtent().height); + viewport.minDepth = 0.0f; + viewport.maxDepth = 1.0f; + + VkRect2D scissor = {}; + scissor.offset = { 0, 0 }; + scissor.extent = swapChain->GetVkExtent(); + + VkPipelineViewportStateCreateInfo viewportState = {}; + viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; + viewportState.viewportCount = 1; + viewportState.pViewports = &viewport; + viewportState.scissorCount = 1; + viewportState.pScissors = &scissor; + + // Rasterizer + VkPipelineRasterizationStateCreateInfo rasterizer = {}; + rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; + rasterizer.depthClampEnable = VK_FALSE; + rasterizer.rasterizerDiscardEnable = VK_FALSE; + rasterizer.polygonMode = VK_POLYGON_MODE_FILL; + rasterizer.lineWidth = 1.0f; + rasterizer.cullMode = VK_CULL_MODE_BACK_BIT; + rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; + rasterizer.depthBiasEnable = VK_FALSE; + rasterizer.depthBiasConstantFactor = 0.0f; + rasterizer.depthBiasClamp = 0.0f; + rasterizer.depthBiasSlopeFactor = 0.0f; + + // Multisampling (turned off here) + VkPipelineMultisampleStateCreateInfo multisampling = {}; + multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; + multisampling.sampleShadingEnable = VK_FALSE; + multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; + multisampling.minSampleShading = 1.0f; + multisampling.pSampleMask = nullptr; + multisampling.alphaToCoverageEnable = VK_FALSE; + multisampling.alphaToOneEnable = VK_FALSE; + + // Depth testing + VkPipelineDepthStencilStateCreateInfo depthStencil = {}; + depthStencil.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; + depthStencil.depthTestEnable = VK_TRUE; + depthStencil.depthWriteEnable = VK_TRUE; + depthStencil.depthCompareOp = VK_COMPARE_OP_LESS; + depthStencil.depthBoundsTestEnable = VK_FALSE; + depthStencil.minDepthBounds = 0.0f; + depthStencil.maxDepthBounds = 1.0f; + depthStencil.stencilTestEnable = VK_FALSE; + + // Color blending (turned off here, but showing options for learning) + // --> Configuration per attached framebuffer + VkPipelineColorBlendAttachmentState colorBlendAttachment = {}; + colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; + colorBlendAttachment.blendEnable = VK_FALSE; + colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; + colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; + colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; + colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; + colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; + colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; + + // --> Global color blending settings + VkPipelineColorBlendStateCreateInfo colorBlending = {}; + colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; + colorBlending.logicOpEnable = VK_FALSE; + colorBlending.logicOp = VK_LOGIC_OP_COPY; + colorBlending.attachmentCount = 1; + colorBlending.pAttachments = &colorBlendAttachment; + colorBlending.blendConstants[0] = 0.0f; + colorBlending.blendConstants[1] = 0.0f; + colorBlending.blendConstants[2] = 0.0f; + colorBlending.blendConstants[3] = 0.0f; + + std::vector descriptorSetLayouts = { cameraDescriptorSetLayout, modelDescriptorSetLayout }; + + // Pipeline layout: used to specify uniform values + VkPipelineLayoutCreateInfo pipelineLayoutInfo = {}; + pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; + pipelineLayoutInfo.setLayoutCount = static_cast(descriptorSetLayouts.size()); + pipelineLayoutInfo.pSetLayouts = descriptorSetLayouts.data(); + pipelineLayoutInfo.pushConstantRangeCount = 0; + pipelineLayoutInfo.pPushConstantRanges = 0; + + if (vkCreatePipelineLayout(logicalDevice, &pipelineLayoutInfo, nullptr, &graphicsPipelineLayout) != VK_SUCCESS) { + throw std::runtime_error("Failed to create pipeline layout"); + } + + // --- Create graphics pipeline --- + VkGraphicsPipelineCreateInfo pipelineInfo = {}; + pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; + pipelineInfo.stageCount = 2; + pipelineInfo.pStages = shaderStages; + pipelineInfo.pVertexInputState = &vertexInputInfo; + pipelineInfo.pInputAssemblyState = &inputAssembly; + pipelineInfo.pViewportState = &viewportState; + pipelineInfo.pRasterizationState = &rasterizer; + pipelineInfo.pMultisampleState = &multisampling; + pipelineInfo.pDepthStencilState = &depthStencil; + pipelineInfo.pColorBlendState = &colorBlending; + pipelineInfo.pDynamicState = nullptr; + pipelineInfo.layout = graphicsPipelineLayout; + pipelineInfo.renderPass = renderPass; + pipelineInfo.subpass = 0; + pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; + pipelineInfo.basePipelineIndex = -1; + + if (vkCreateGraphicsPipelines(logicalDevice, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) { + throw std::runtime_error("Failed to create graphics pipeline"); + } + + vkDestroyShaderModule(logicalDevice, vertShaderModule, nullptr); + vkDestroyShaderModule(logicalDevice, fragShaderModule, nullptr); +} + +void Renderer::CreateGrassPipeline() { + // --- Set up programmable shaders --- + VkShaderModule vertShaderModule = ShaderModule::Create("shaders/grass.vert.spv", logicalDevice); + VkShaderModule tescShaderModule = ShaderModule::Create("shaders/grass.tesc.spv", logicalDevice); + VkShaderModule teseShaderModule = ShaderModule::Create("shaders/grass.tese.spv", logicalDevice); + VkShaderModule fragShaderModule = ShaderModule::Create("shaders/grass.frag.spv", logicalDevice); + + // Assign each shader module to the appropriate stage in the pipeline + VkPipelineShaderStageCreateInfo vertShaderStageInfo = {}; + vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT; + vertShaderStageInfo.module = vertShaderModule; + vertShaderStageInfo.pName = "main"; + + VkPipelineShaderStageCreateInfo tescShaderStageInfo = {}; + tescShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + tescShaderStageInfo.stage = VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT; + tescShaderStageInfo.module = tescShaderModule; + tescShaderStageInfo.pName = "main"; + + VkPipelineShaderStageCreateInfo teseShaderStageInfo = {}; + teseShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + teseShaderStageInfo.stage = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT; + teseShaderStageInfo.module = teseShaderModule; + teseShaderStageInfo.pName = "main"; + + VkPipelineShaderStageCreateInfo fragShaderStageInfo = {}; + fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT; + fragShaderStageInfo.module = fragShaderModule; + fragShaderStageInfo.pName = "main"; + + VkPipelineShaderStageCreateInfo shaderStages[] = { vertShaderStageInfo, tescShaderStageInfo, teseShaderStageInfo, fragShaderStageInfo }; + + // --- Set up fixed-function stages --- + + // Vertex input + VkPipelineVertexInputStateCreateInfo vertexInputInfo = {}; + vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; + + auto bindingDescription = Blade::getBindingDescription(); + auto attributeDescriptions = Blade::getAttributeDescriptions(); + + vertexInputInfo.vertexBindingDescriptionCount = 1; + vertexInputInfo.pVertexBindingDescriptions = &bindingDescription; + vertexInputInfo.vertexAttributeDescriptionCount = static_cast(attributeDescriptions.size()); + vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data(); + + // Input Assembly + VkPipelineInputAssemblyStateCreateInfo inputAssembly = {}; + inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; + inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_PATCH_LIST; + inputAssembly.primitiveRestartEnable = VK_FALSE; + + // Viewports and Scissors (rectangles that define in which regions pixels are stored) + VkViewport viewport = {}; + viewport.x = 0.0f; + viewport.y = 0.0f; + viewport.width = static_cast(swapChain->GetVkExtent().width); + viewport.height = static_cast(swapChain->GetVkExtent().height); + viewport.minDepth = 0.0f; + viewport.maxDepth = 1.0f; + + VkRect2D scissor = {}; + scissor.offset = { 0, 0 }; + scissor.extent = swapChain->GetVkExtent(); + + VkPipelineViewportStateCreateInfo viewportState = {}; + viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; + viewportState.viewportCount = 1; + viewportState.pViewports = &viewport; + viewportState.scissorCount = 1; + viewportState.pScissors = &scissor; + + // Rasterizer + VkPipelineRasterizationStateCreateInfo rasterizer = {}; + rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; + rasterizer.depthClampEnable = VK_FALSE; + rasterizer.rasterizerDiscardEnable = VK_FALSE; + rasterizer.polygonMode = VK_POLYGON_MODE_FILL; + rasterizer.lineWidth = 1.0f; + rasterizer.cullMode = VK_CULL_MODE_NONE; + rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; + rasterizer.depthBiasEnable = VK_FALSE; + rasterizer.depthBiasConstantFactor = 0.0f; + rasterizer.depthBiasClamp = 0.0f; + rasterizer.depthBiasSlopeFactor = 0.0f; + + // Multisampling (turned off here) + VkPipelineMultisampleStateCreateInfo multisampling = {}; + multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; + multisampling.sampleShadingEnable = VK_FALSE; + multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; + multisampling.minSampleShading = 1.0f; + multisampling.pSampleMask = nullptr; + multisampling.alphaToCoverageEnable = VK_FALSE; + multisampling.alphaToOneEnable = VK_FALSE; + + // Depth testing + VkPipelineDepthStencilStateCreateInfo depthStencil = {}; + depthStencil.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; + depthStencil.depthTestEnable = VK_TRUE; + depthStencil.depthWriteEnable = VK_TRUE; + depthStencil.depthCompareOp = VK_COMPARE_OP_LESS; + depthStencil.depthBoundsTestEnable = VK_FALSE; + depthStencil.minDepthBounds = 0.0f; + depthStencil.maxDepthBounds = 1.0f; + depthStencil.stencilTestEnable = VK_FALSE; + + // Color blending (turned off here, but showing options for learning) + // --> Configuration per attached framebuffer + VkPipelineColorBlendAttachmentState colorBlendAttachment = {}; + colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; + colorBlendAttachment.blendEnable = VK_FALSE; + colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; + colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; + colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; + colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; + colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; + colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; + + // --> Global color blending settings + VkPipelineColorBlendStateCreateInfo colorBlending = {}; + colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; + colorBlending.logicOpEnable = VK_FALSE; + colorBlending.logicOp = VK_LOGIC_OP_COPY; + colorBlending.attachmentCount = 1; + colorBlending.pAttachments = &colorBlendAttachment; + colorBlending.blendConstants[0] = 0.0f; + colorBlending.blendConstants[1] = 0.0f; + colorBlending.blendConstants[2] = 0.0f; + colorBlending.blendConstants[3] = 0.0f; + + std::vector descriptorSetLayouts = { cameraDescriptorSetLayout, modelDescriptorSetLayout }; + + // Pipeline layout: used to specify uniform values + VkPipelineLayoutCreateInfo pipelineLayoutInfo = {}; + pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; + pipelineLayoutInfo.setLayoutCount = static_cast(descriptorSetLayouts.size()); + pipelineLayoutInfo.pSetLayouts = descriptorSetLayouts.data(); + pipelineLayoutInfo.pushConstantRangeCount = 0; + pipelineLayoutInfo.pPushConstantRanges = 0; + + if (vkCreatePipelineLayout(logicalDevice, &pipelineLayoutInfo, nullptr, &grassPipelineLayout) != VK_SUCCESS) { + throw std::runtime_error("Failed to create pipeline layout"); + } + + // Tessellation state + VkPipelineTessellationStateCreateInfo tessellationInfo = {}; + tessellationInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO; + tessellationInfo.pNext = NULL; + tessellationInfo.flags = 0; + tessellationInfo.patchControlPoints = 1; + + // --- Create graphics pipeline --- + VkGraphicsPipelineCreateInfo pipelineInfo = {}; + pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; + pipelineInfo.stageCount = 4; + pipelineInfo.pStages = shaderStages; + pipelineInfo.pVertexInputState = &vertexInputInfo; + pipelineInfo.pInputAssemblyState = &inputAssembly; + pipelineInfo.pViewportState = &viewportState; + pipelineInfo.pRasterizationState = &rasterizer; + pipelineInfo.pMultisampleState = &multisampling; + pipelineInfo.pDepthStencilState = &depthStencil; + pipelineInfo.pColorBlendState = &colorBlending; + pipelineInfo.pTessellationState = &tessellationInfo; + pipelineInfo.pDynamicState = nullptr; + pipelineInfo.layout = grassPipelineLayout; + pipelineInfo.renderPass = renderPass; + pipelineInfo.subpass = 0; + pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; + pipelineInfo.basePipelineIndex = -1; + + if (vkCreateGraphicsPipelines(logicalDevice, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &grassPipeline) != VK_SUCCESS) { + throw std::runtime_error("Failed to create graphics pipeline"); + } + + // No need for the shader modules anymore + vkDestroyShaderModule(logicalDevice, vertShaderModule, nullptr); + vkDestroyShaderModule(logicalDevice, tescShaderModule, nullptr); + vkDestroyShaderModule(logicalDevice, teseShaderModule, nullptr); + vkDestroyShaderModule(logicalDevice, fragShaderModule, nullptr); +} + +void Renderer::CreateComputePipeline() { + // Set up programmable shaders + VkShaderModule computeShaderModule = ShaderModule::Create("shaders/compute.comp.spv", logicalDevice); + + VkPipelineShaderStageCreateInfo computeShaderStageInfo = {}; + computeShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + computeShaderStageInfo.stage = VK_SHADER_STAGE_COMPUTE_BIT; + computeShaderStageInfo.module = computeShaderModule; + computeShaderStageInfo.pName = "main"; + + // TODO: Add the compute dsecriptor set layout you create to this list + std::vector descriptorSetLayouts = { cameraDescriptorSetLayout, timeDescriptorSetLayout, bladesSetLayout }; + + // Create pipeline layout + VkPipelineLayoutCreateInfo pipelineLayoutInfo = {}; + pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; + pipelineLayoutInfo.setLayoutCount = static_cast(descriptorSetLayouts.size()); + pipelineLayoutInfo.pSetLayouts = descriptorSetLayouts.data(); + pipelineLayoutInfo.pushConstantRangeCount = 0; + pipelineLayoutInfo.pPushConstantRanges = 0; + + if (vkCreatePipelineLayout(logicalDevice, &pipelineLayoutInfo, nullptr, &computePipelineLayout) != VK_SUCCESS) { + throw std::runtime_error("Failed to create pipeline layout"); + } + + // Create compute pipeline + VkComputePipelineCreateInfo pipelineInfo = {}; + pipelineInfo.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO; + pipelineInfo.stage = computeShaderStageInfo; + pipelineInfo.layout = computePipelineLayout; + pipelineInfo.pNext = nullptr; + pipelineInfo.flags = 0; + pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; + pipelineInfo.basePipelineIndex = -1; + + if (vkCreateComputePipelines(logicalDevice, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &computePipeline) != VK_SUCCESS) { + throw std::runtime_error("Failed to create compute pipeline"); + } + + // No need for shader modules anymore + vkDestroyShaderModule(logicalDevice, computeShaderModule, nullptr); +} + +void Renderer::CreateFrameResources() { + imageViews.resize(swapChain->GetCount()); + + for (uint32_t i = 0; i < swapChain->GetCount(); i++) { + // --- Create an image view for each swap chain image --- + VkImageViewCreateInfo createInfo = {}; + createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; + createInfo.image = swapChain->GetVkImage(i); + + // Specify how the image data should be interpreted + createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; + createInfo.format = swapChain->GetVkImageFormat(); + + // Specify color channel mappings (can be used for swizzling) + createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY; + createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY; + createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY; + createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY; + + // Describe the image's purpose and which part of the image should be accessed + createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + createInfo.subresourceRange.baseMipLevel = 0; + createInfo.subresourceRange.levelCount = 1; + createInfo.subresourceRange.baseArrayLayer = 0; + createInfo.subresourceRange.layerCount = 1; + + // Create the image view + if (vkCreateImageView(logicalDevice, &createInfo, nullptr, &imageViews[i]) != VK_SUCCESS) { + throw std::runtime_error("Failed to create image views"); + } + } + + VkFormat depthFormat = device->GetInstance()->GetSupportedFormat({ VK_FORMAT_D32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_D24_UNORM_S8_UINT }, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT); + // CREATE DEPTH IMAGE + Image::Create(device, + swapChain->GetVkExtent().width, + swapChain->GetVkExtent().height, + depthFormat, + VK_IMAGE_TILING_OPTIMAL, + VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, + VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, + depthImage, + depthImageMemory + ); + + depthImageView = Image::CreateView(device, depthImage, depthFormat, VK_IMAGE_ASPECT_DEPTH_BIT); + + // Transition the image for use as depth-stencil + Image::TransitionLayout(device, graphicsCommandPool, depthImage, depthFormat, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); + + + // CREATE FRAMEBUFFERS + framebuffers.resize(swapChain->GetCount()); + for (size_t i = 0; i < swapChain->GetCount(); i++) { + std::vector attachments = { + imageViews[i], + depthImageView + }; + + VkFramebufferCreateInfo framebufferInfo = {}; + framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; + framebufferInfo.renderPass = renderPass; + framebufferInfo.attachmentCount = static_cast(attachments.size()); + framebufferInfo.pAttachments = attachments.data(); + framebufferInfo.width = swapChain->GetVkExtent().width; + framebufferInfo.height = swapChain->GetVkExtent().height; + framebufferInfo.layers = 1; + + if (vkCreateFramebuffer(logicalDevice, &framebufferInfo, nullptr, &framebuffers[i]) != VK_SUCCESS) { + throw std::runtime_error("Failed to create framebuffer"); + } + + } +} + +void Renderer::DestroyFrameResources() { + for (size_t i = 0; i < imageViews.size(); i++) { + vkDestroyImageView(logicalDevice, imageViews[i], nullptr); + } + + vkDestroyImageView(logicalDevice, depthImageView, nullptr); + vkFreeMemory(logicalDevice, depthImageMemory, nullptr); + vkDestroyImage(logicalDevice, depthImage, nullptr); + + for (size_t i = 0; i < framebuffers.size(); i++) { + vkDestroyFramebuffer(logicalDevice, framebuffers[i], nullptr); + } +} + +void Renderer::RecreateFrameResources() { + vkDestroyPipeline(logicalDevice, graphicsPipeline, nullptr); + vkDestroyPipeline(logicalDevice, grassPipeline, nullptr); + vkDestroyPipelineLayout(logicalDevice, graphicsPipelineLayout, nullptr); + vkDestroyPipelineLayout(logicalDevice, grassPipelineLayout, nullptr); + vkFreeCommandBuffers(logicalDevice, graphicsCommandPool, static_cast(commandBuffers.size()), commandBuffers.data()); + + DestroyFrameResources(); + CreateFrameResources(); + CreateGraphicsPipeline(); + CreateGrassPipeline(); + RecordCommandBuffers(); +} + +void Renderer::RecordComputeCommandBuffer() { + // Specify the command pool and number of buffers to allocate + VkCommandBufferAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; + allocInfo.commandPool = computeCommandPool; + allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; + allocInfo.commandBufferCount = 1; + + if (vkAllocateCommandBuffers(logicalDevice, &allocInfo, &computeCommandBuffer) != VK_SUCCESS) { + throw std::runtime_error("Failed to allocate command buffers"); + } + + VkCommandBufferBeginInfo beginInfo = {}; + beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; + beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT; + beginInfo.pInheritanceInfo = nullptr; + + // ~ Start recording ~ + if (vkBeginCommandBuffer(computeCommandBuffer, &beginInfo) != VK_SUCCESS) { + throw std::runtime_error("Failed to begin recording compute command buffer"); + } + + // Bind to the compute pipeline + vkCmdBindPipeline(computeCommandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipeline); + + // Bind camera descriptor set + vkCmdBindDescriptorSets(computeCommandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipelineLayout, 0, 1, &cameraDescriptorSet, 0, nullptr); + + // Bind descriptor set for time uniforms + vkCmdBindDescriptorSets(computeCommandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipelineLayout, 1, 1, &timeDescriptorSet, 0, nullptr); + + // TODO: For each group of blades bind its descriptor set and dispatch + + auto& bladeGroups = scene->GetBlades(); + + for (auto& bladeGroup : bladeGroups) { + vkCmdBindDescriptorSets(computeCommandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipelineLayout, 2, 1, &bladeGroup->bladesDescriptorSet, 0, nullptr); + + vkCmdDispatch(computeCommandBuffer, ); + } + + // ~ End recording ~ + if (vkEndCommandBuffer(computeCommandBuffer) != VK_SUCCESS) { + throw std::runtime_error("Failed to record compute command buffer"); + } +} + +void Renderer::RecordCommandBuffers() { + commandBuffers.resize(swapChain->GetCount()); + + // Specify the command pool and number of buffers to allocate + VkCommandBufferAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; + allocInfo.commandPool = graphicsCommandPool; + allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; + allocInfo.commandBufferCount = static_cast(commandBuffers.size()); + + if (vkAllocateCommandBuffers(logicalDevice, &allocInfo, commandBuffers.data()) != VK_SUCCESS) { + throw std::runtime_error("Failed to allocate command buffers"); + } + + // Start command buffer recording + for (size_t i = 0; i < commandBuffers.size(); i++) { + VkCommandBufferBeginInfo beginInfo = {}; + beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; + beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT; + beginInfo.pInheritanceInfo = nullptr; + + // ~ Start recording ~ + if (vkBeginCommandBuffer(commandBuffers[i], &beginInfo) != VK_SUCCESS) { + throw std::runtime_error("Failed to begin recording command buffer"); + } + + // Begin the render pass + VkRenderPassBeginInfo renderPassInfo = {}; + renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; + renderPassInfo.renderPass = renderPass; + renderPassInfo.framebuffer = framebuffers[i]; + renderPassInfo.renderArea.offset = { 0, 0 }; + renderPassInfo.renderArea.extent = swapChain->GetVkExtent(); + + std::array clearValues = {}; + clearValues[0].color = { 0.0f, 0.0f, 0.0f, 1.0f }; + clearValues[1].depthStencil = { 1.0f, 0 }; + renderPassInfo.clearValueCount = static_cast(clearValues.size()); + renderPassInfo.pClearValues = clearValues.data(); + + std::vector barriers(scene->GetBlades().size()); + for (uint32_t j = 0; j < barriers.size(); ++j) { + barriers[j].sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER; + barriers[j].srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT; + barriers[j].dstAccessMask = VK_ACCESS_INDIRECT_COMMAND_READ_BIT; + barriers[j].srcQueueFamilyIndex = device->GetQueueIndex(QueueFlags::Compute); + barriers[j].dstQueueFamilyIndex = device->GetQueueIndex(QueueFlags::Graphics); + barriers[j].buffer = scene->GetBlades()[j]->GetNumBladesBuffer(); + barriers[j].offset = 0; + barriers[j].size = sizeof(BladeDrawIndirect); + } + + vkCmdPipelineBarrier(commandBuffers[i], VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT, 0, 0, nullptr, barriers.size(), barriers.data(), 0, nullptr); + + // Bind the camera descriptor set. This is set 0 in all pipelines so it will be inherited + vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipelineLayout, 0, 1, &cameraDescriptorSet, 0, nullptr); + + vkCmdBeginRenderPass(commandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE); + + // Bind the graphics pipeline + vkCmdBindPipeline(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline); + + for (uint32_t j = 0; j < scene->GetModels().size(); ++j) { + // Bind the vertex and index buffers + VkBuffer vertexBuffers[] = { scene->GetModels()[j]->getVertexBuffer() }; + VkDeviceSize offsets[] = { 0 }; + vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets); + + vkCmdBindIndexBuffer(commandBuffers[i], scene->GetModels()[j]->getIndexBuffer(), 0, VK_INDEX_TYPE_UINT32); + + // Bind the descriptor set for each model + vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipelineLayout, 1, 1, &modelDescriptorSets[j], 0, nullptr); + + // Draw + std::vector indices = scene->GetModels()[j]->getIndices(); + vkCmdDrawIndexed(commandBuffers[i], static_cast(indices.size()), 1, 0, 0, 0); + } + + // Bind the grass pipeline + vkCmdBindPipeline(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, grassPipeline); + + for (uint32_t j = 0; j < scene->GetBlades().size(); ++j) { + VkBuffer vertexBuffers[] = { scene->GetBlades()[j]->GetCulledBladesBuffer() }; + VkDeviceSize offsets[] = { 0 }; + // TODO: Uncomment this when the buffers are populated + // vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets); + + // TODO: Bind the descriptor set for each grass blades model + + // Draw + // TODO: Uncomment this when the buffers are populated + // vkCmdDrawIndirect(commandBuffers[i], scene->GetBlades()[j]->GetNumBladesBuffer(), 0, 1, sizeof(BladeDrawIndirect)); + } + + // End render pass + vkCmdEndRenderPass(commandBuffers[i]); + + // ~ End recording ~ + if (vkEndCommandBuffer(commandBuffers[i]) != VK_SUCCESS) { + throw std::runtime_error("Failed to record command buffer"); + } + } +} + +void Renderer::Frame() { + + VkSubmitInfo computeSubmitInfo = {}; + computeSubmitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; + + computeSubmitInfo.commandBufferCount = 1; + computeSubmitInfo.pCommandBuffers = &computeCommandBuffer; + + if (vkQueueSubmit(device->GetQueue(QueueFlags::Compute), 1, &computeSubmitInfo, VK_NULL_HANDLE) != VK_SUCCESS) { + throw std::runtime_error("Failed to submit draw command buffer"); + } + + if (!swapChain->Acquire()) { + RecreateFrameResources(); + return; + } + + // Submit the command buffer + VkSubmitInfo submitInfo = {}; + submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; + + VkSemaphore waitSemaphores[] = { swapChain->GetImageAvailableVkSemaphore() }; + VkPipelineStageFlags waitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT }; + submitInfo.waitSemaphoreCount = 1; + submitInfo.pWaitSemaphores = waitSemaphores; + submitInfo.pWaitDstStageMask = waitStages; + + submitInfo.commandBufferCount = 1; + submitInfo.pCommandBuffers = &commandBuffers[swapChain->GetIndex()]; + + VkSemaphore signalSemaphores[] = { swapChain->GetRenderFinishedVkSemaphore() }; + submitInfo.signalSemaphoreCount = 1; + submitInfo.pSignalSemaphores = signalSemaphores; + + if (vkQueueSubmit(device->GetQueue(QueueFlags::Graphics), 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) { + throw std::runtime_error("Failed to submit draw command buffer"); + } + + if (!swapChain->Present()) { + RecreateFrameResources(); + } +} + +Renderer::~Renderer() { + vkDeviceWaitIdle(logicalDevice); + + // TODO: destroy any resources you created + + vkFreeCommandBuffers(logicalDevice, graphicsCommandPool, static_cast(commandBuffers.size()), commandBuffers.data()); + vkFreeCommandBuffers(logicalDevice, computeCommandPool, 1, &computeCommandBuffer); + + vkDestroyPipeline(logicalDevice, graphicsPipeline, nullptr); + vkDestroyPipeline(logicalDevice, grassPipeline, nullptr); + vkDestroyPipeline(logicalDevice, computePipeline, nullptr); + + vkDestroyPipelineLayout(logicalDevice, graphicsPipelineLayout, nullptr); + vkDestroyPipelineLayout(logicalDevice, grassPipelineLayout, nullptr); + vkDestroyPipelineLayout(logicalDevice, computePipelineLayout, nullptr); + + vkDestroyDescriptorSetLayout(logicalDevice, cameraDescriptorSetLayout, nullptr); + vkDestroyDescriptorSetLayout(logicalDevice, modelDescriptorSetLayout, nullptr); + vkDestroyDescriptorSetLayout(logicalDevice, timeDescriptorSetLayout, nullptr); + + vkDestroyDescriptorPool(logicalDevice, descriptorPool, nullptr); + + vkDestroyRenderPass(logicalDevice, renderPass, nullptr); + DestroyFrameResources(); + vkDestroyCommandPool(logicalDevice, computeCommandPool, nullptr); + vkDestroyCommandPool(logicalDevice, graphicsCommandPool, nullptr); +} diff --git a/src/Renderer.cpp~RF48f7fa47.TMP b/src/Renderer.cpp~RF48f7fa47.TMP new file mode 100644 index 0000000..93d99d9 --- /dev/null +++ b/src/Renderer.cpp~RF48f7fa47.TMP @@ -0,0 +1,1165 @@ +#include "Renderer.h" +#include "Instance.h" +#include "ShaderModule.h" +#include "Vertex.h" +#include "Blades.h" +#include "Camera.h" +#include "Image.h" +#include "BufferUtils.h" + +static constexpr unsigned int WORKGROUP_SIZE = 32; + +Renderer::Renderer(Device* device, SwapChain* swapChain, Scene* scene, Camera* camera) + : device(device), + logicalDevice(device->GetVkDevice()), + swapChain(swapChain), + scene(scene), + camera(camera) { + + CreateCommandPools(); + CreateRenderPass(); + CreateCameraDescriptorSetLayout(); + CreateModelDescriptorSetLayout(); + CreateTimeDescriptorSetLayout(); + CreateComputeDescriptorSetLayout(); + CreateDescriptorPool(); + CreateCameraDescriptorSet(); + CreateModelDescriptorSets(); + CreateGrassDescriptorSets(); + CreateTimeDescriptorSet(); + CreateComputeDescriptorSets(); + CreateFrameResources(); + CreateGraphicsPipeline(); + CreateGrassPipeline(); + CreateComputePipeline(); + RecordCommandBuffers(); + RecordComputeCommandBuffer(); +} + +void Renderer::CreateCommandPools() { + VkCommandPoolCreateInfo graphicsPoolInfo = {}; + graphicsPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; + graphicsPoolInfo.queueFamilyIndex = device->GetInstance()->GetQueueFamilyIndices()[QueueFlags::Graphics]; + graphicsPoolInfo.flags = 0; + + if (vkCreateCommandPool(logicalDevice, &graphicsPoolInfo, nullptr, &graphicsCommandPool) != VK_SUCCESS) { + throw std::runtime_error("Failed to create command pool"); + } + + VkCommandPoolCreateInfo computePoolInfo = {}; + computePoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; + computePoolInfo.queueFamilyIndex = device->GetInstance()->GetQueueFamilyIndices()[QueueFlags::Compute]; + computePoolInfo.flags = 0; + + if (vkCreateCommandPool(logicalDevice, &computePoolInfo, nullptr, &computeCommandPool) != VK_SUCCESS) { + throw std::runtime_error("Failed to create command pool"); + } +} + +void Renderer::CreateRenderPass() { + // Color buffer attachment represented by one of the images from the swap chain + VkAttachmentDescription colorAttachment = {}; + colorAttachment.format = swapChain->GetVkImageFormat(); + colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT; + colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; + colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; + colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; + colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; + colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; + colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; + + // Create a color attachment reference to be used with subpass + VkAttachmentReference colorAttachmentRef = {}; + colorAttachmentRef.attachment = 0; + colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; + + // Depth buffer attachment + VkFormat depthFormat = device->GetInstance()->GetSupportedFormat({ VK_FORMAT_D32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_D24_UNORM_S8_UINT }, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT); + VkAttachmentDescription depthAttachment = {}; + depthAttachment.format = depthFormat; + depthAttachment.samples = VK_SAMPLE_COUNT_1_BIT; + depthAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; + depthAttachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; + depthAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; + depthAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; + depthAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; + depthAttachment.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; + + // Create a depth attachment reference + VkAttachmentReference depthAttachmentRef = {}; + depthAttachmentRef.attachment = 1; + depthAttachmentRef.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; + + // Create subpass description + VkSubpassDescription subpass = {}; + subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; + subpass.colorAttachmentCount = 1; + subpass.pColorAttachments = &colorAttachmentRef; + subpass.pDepthStencilAttachment = &depthAttachmentRef; + + std::array attachments = { colorAttachment, depthAttachment }; + + // Specify subpass dependency + VkSubpassDependency dependency = {}; + dependency.srcSubpass = VK_SUBPASS_EXTERNAL; + dependency.dstSubpass = 0; + dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; + dependency.srcAccessMask = 0; + dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; + dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; + + // Create render pass + VkRenderPassCreateInfo renderPassInfo = {}; + renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; + renderPassInfo.attachmentCount = static_cast(attachments.size()); + renderPassInfo.pAttachments = attachments.data(); + renderPassInfo.subpassCount = 1; + renderPassInfo.pSubpasses = &subpass; + renderPassInfo.dependencyCount = 1; + renderPassInfo.pDependencies = &dependency; + + if (vkCreateRenderPass(logicalDevice, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) { + throw std::runtime_error("Failed to create render pass"); + } +} + +void Renderer::CreateCameraDescriptorSetLayout() { + // Describe the binding of the descriptor set layout + VkDescriptorSetLayoutBinding uboLayoutBinding = {}; + uboLayoutBinding.binding = 0; + uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; + uboLayoutBinding.descriptorCount = 1; + uboLayoutBinding.stageFlags = VK_SHADER_STAGE_ALL; + uboLayoutBinding.pImmutableSamplers = nullptr; + + std::vector bindings = { uboLayoutBinding }; + + // Create the descriptor set layout + VkDescriptorSetLayoutCreateInfo layoutInfo = {}; + layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; + layoutInfo.bindingCount = static_cast(bindings.size()); + layoutInfo.pBindings = bindings.data(); + + if (vkCreateDescriptorSetLayout(logicalDevice, &layoutInfo, nullptr, &cameraDescriptorSetLayout) != VK_SUCCESS) { + throw std::runtime_error("Failed to create descriptor set layout"); + } +} + +void Renderer::CreateModelDescriptorSetLayout() { + VkDescriptorSetLayoutBinding uboLayoutBinding = {}; + uboLayoutBinding.binding = 0; + uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; + uboLayoutBinding.descriptorCount = 1; + uboLayoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT; + uboLayoutBinding.pImmutableSamplers = nullptr; + + VkDescriptorSetLayoutBinding samplerLayoutBinding = {}; + samplerLayoutBinding.binding = 1; + samplerLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; + samplerLayoutBinding.descriptorCount = 1; + samplerLayoutBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; + samplerLayoutBinding.pImmutableSamplers = nullptr; + + std::vector bindings = { uboLayoutBinding, samplerLayoutBinding }; + + // Create the descriptor set layout + VkDescriptorSetLayoutCreateInfo layoutInfo = {}; + layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; + layoutInfo.bindingCount = static_cast(bindings.size()); + layoutInfo.pBindings = bindings.data(); + + if (vkCreateDescriptorSetLayout(logicalDevice, &layoutInfo, nullptr, &modelDescriptorSetLayout) != VK_SUCCESS) { + throw std::runtime_error("Failed to create descriptor set layout"); + } +} + +void Renderer::CreateTimeDescriptorSetLayout() { + // Describe the binding of the descriptor set layout + VkDescriptorSetLayoutBinding uboLayoutBinding = {}; + uboLayoutBinding.binding = 0; + uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; + uboLayoutBinding.descriptorCount = 1; + uboLayoutBinding.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT; + uboLayoutBinding.pImmutableSamplers = nullptr; + + std::vector bindings = { uboLayoutBinding }; + + // Create the descriptor set layout + VkDescriptorSetLayoutCreateInfo layoutInfo = {}; + layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; + layoutInfo.bindingCount = static_cast(bindings.size()); + layoutInfo.pBindings = bindings.data(); + + if (vkCreateDescriptorSetLayout(logicalDevice, &layoutInfo, nullptr, &timeDescriptorSetLayout) != VK_SUCCESS) { + throw std::runtime_error("Failed to create descriptor set layout"); + } +} + +void Renderer::CreateComputeDescriptorSetLayout() { + // TODO: Create the descriptor set layout for the compute pipeline + // Remember this is like a class definition stating why types of information + // will be stored at each binding + // Describe the binding of the descriptor set layout + VkDescriptorSetLayoutBinding allBlades = {}; + allBlades.binding = 0; + allBlades.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; + allBlades.descriptorCount = 1; + allBlades.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT; + allBlades.pImmutableSamplers = nullptr; + + VkDescriptorSetLayoutBinding culledBlades = {}; + culledBlades.binding = 1; + culledBlades.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; + culledBlades.descriptorCount = 1; + culledBlades.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT; + culledBlades.pImmutableSamplers = nullptr; + + VkDescriptorSetLayoutBinding indirectDraw = {}; + indirectDraw.binding = 1; + indirectDraw.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; + indirectDraw.descriptorCount = 1; + indirectDraw.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT; + indirectDraw.pImmutableSamplers = nullptr; + + std::vector bindings = { allBlades, culledBlades, indirectDraw }; + + // Create the descriptor set layout + VkDescriptorSetLayoutCreateInfo layoutInfo = {}; + layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; + layoutInfo.bindingCount = static_cast(bindings.size()); + layoutInfo.pBindings = bindings.data(); + + if (vkCreateDescriptorSetLayout(logicalDevice, &layoutInfo, nullptr, &bladesSetLayout) != VK_SUCCESS) { + throw std::runtime_error("Failed to create descriptor set layout"); + } +} + +void Renderer::CreateDescriptorPool() { + // Describe which descriptor types that the descriptor sets will contain + std::vector poolSizes = { + // Camera + { VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER , 1}, + + // Models + Blades + { VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER , static_cast(scene->GetModels().size() + scene->GetBlades().size()) }, + + // Models + Blades + { VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER , static_cast(scene->GetModels().size() + scene->GetBlades().size()) }, + + // Time (compute) + { VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER , 1 }, + + // Blades + { VK_DESCRIPTOR_TYPE_STORAGE_BUFFER , 3 }, + + // TODO: Add any additional types and counts of descriptors you will need to allocate + }; + + VkDescriptorPoolCreateInfo poolInfo = {}; + poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; + poolInfo.poolSizeCount = static_cast(poolSizes.size()); + poolInfo.pPoolSizes = poolSizes.data(); + poolInfo.maxSets = 5; + + if (vkCreateDescriptorPool(logicalDevice, &poolInfo, nullptr, &descriptorPool) != VK_SUCCESS) { + throw std::runtime_error("Failed to create descriptor pool"); + } +} + +void Renderer::CreateCameraDescriptorSet() { + // Describe the desciptor set + VkDescriptorSetLayout layouts[] = { cameraDescriptorSetLayout }; + VkDescriptorSetAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; + allocInfo.descriptorPool = descriptorPool; + allocInfo.descriptorSetCount = 1; + allocInfo.pSetLayouts = layouts; + + // Allocate descriptor sets + if (vkAllocateDescriptorSets(logicalDevice, &allocInfo, &cameraDescriptorSet) != VK_SUCCESS) { + throw std::runtime_error("Failed to allocate descriptor set"); + } + + // Configure the descriptors to refer to buffers + VkDescriptorBufferInfo cameraBufferInfo = {}; + cameraBufferInfo.buffer = camera->GetBuffer(); + cameraBufferInfo.offset = 0; + cameraBufferInfo.range = sizeof(CameraBufferObject); + + std::array descriptorWrites = {}; + descriptorWrites[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + descriptorWrites[0].dstSet = cameraDescriptorSet; + descriptorWrites[0].dstBinding = 0; + descriptorWrites[0].dstArrayElement = 0; + descriptorWrites[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; + descriptorWrites[0].descriptorCount = 1; + descriptorWrites[0].pBufferInfo = &cameraBufferInfo; + descriptorWrites[0].pImageInfo = nullptr; + descriptorWrites[0].pTexelBufferView = nullptr; + + // Update descriptor sets + vkUpdateDescriptorSets(logicalDevice, static_cast(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr); +} + +void Renderer::CreateModelDescriptorSets() { + modelDescriptorSets.resize(scene->GetModels().size()); + + // Describe the desciptor set + VkDescriptorSetLayout layouts[] = { modelDescriptorSetLayout }; + VkDescriptorSetAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; + allocInfo.descriptorPool = descriptorPool; + allocInfo.descriptorSetCount = static_cast(modelDescriptorSets.size()); + allocInfo.pSetLayouts = layouts; + + // Allocate descriptor sets + if (vkAllocateDescriptorSets(logicalDevice, &allocInfo, modelDescriptorSets.data()) != VK_SUCCESS) { + throw std::runtime_error("Failed to allocate descriptor set"); + } + + std::vector descriptorWrites(2 * modelDescriptorSets.size()); + + for (uint32_t i = 0; i < scene->GetModels().size(); ++i) { + VkDescriptorBufferInfo modelBufferInfo = {}; + modelBufferInfo.buffer = scene->GetModels()[i]->GetModelBuffer(); + modelBufferInfo.offset = 0; + modelBufferInfo.range = sizeof(ModelBufferObject); + + // Bind image and sampler resources to the descriptor + VkDescriptorImageInfo imageInfo = {}; + imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; + imageInfo.imageView = scene->GetModels()[i]->GetTextureView(); + imageInfo.sampler = scene->GetModels()[i]->GetTextureSampler(); + + descriptorWrites[2 * i + 0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + descriptorWrites[2 * i + 0].dstSet = modelDescriptorSets[i]; + descriptorWrites[2 * i + 0].dstBinding = 0; + descriptorWrites[2 * i + 0].dstArrayElement = 0; + descriptorWrites[2 * i + 0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; + descriptorWrites[2 * i + 0].descriptorCount = 1; + descriptorWrites[2 * i + 0].pBufferInfo = &modelBufferInfo; + descriptorWrites[2 * i + 0].pImageInfo = nullptr; + descriptorWrites[2 * i + 0].pTexelBufferView = nullptr; + + descriptorWrites[2 * i + 1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + descriptorWrites[2 * i + 1].dstSet = modelDescriptorSets[i]; + descriptorWrites[2 * i + 1].dstBinding = 1; + descriptorWrites[2 * i + 1].dstArrayElement = 0; + descriptorWrites[2 * i + 1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; + descriptorWrites[2 * i + 1].descriptorCount = 1; + descriptorWrites[2 * i + 1].pImageInfo = &imageInfo; + } + + // Update descriptor sets + vkUpdateDescriptorSets(logicalDevice, static_cast(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr); +} + +void Renderer::CreateGrassDescriptorSets() { + // TODO: Create Descriptor sets for the grass. + // This should involve creating descriptor sets which point to the model matrix of each group of grass blades +} + +void Renderer::CreateTimeDescriptorSet() { + // Describe the desciptor set + VkDescriptorSetLayout layouts[] = { timeDescriptorSetLayout }; + VkDescriptorSetAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; + allocInfo.descriptorPool = descriptorPool; + allocInfo.descriptorSetCount = 1; + allocInfo.pSetLayouts = layouts; + + // Allocate descriptor sets + if (vkAllocateDescriptorSets(logicalDevice, &allocInfo, &timeDescriptorSet) != VK_SUCCESS) { + throw std::runtime_error("Failed to allocate descriptor set"); + } + + // Configure the descriptors to refer to buffers + VkDescriptorBufferInfo timeBufferInfo = {}; + timeBufferInfo.buffer = scene->GetTimeBuffer(); + timeBufferInfo.offset = 0; + timeBufferInfo.range = sizeof(Time); + + std::array descriptorWrites = {}; + descriptorWrites[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + descriptorWrites[0].dstSet = timeDescriptorSet; + descriptorWrites[0].dstBinding = 0; + descriptorWrites[0].dstArrayElement = 0; + descriptorWrites[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; + descriptorWrites[0].descriptorCount = 1; + descriptorWrites[0].pBufferInfo = &timeBufferInfo; + descriptorWrites[0].pImageInfo = nullptr; + descriptorWrites[0].pTexelBufferView = nullptr; + + // Update descriptor sets + vkUpdateDescriptorSets(logicalDevice, static_cast(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr); +} + +void Renderer::CreateComputeDescriptorSets() { + // TODO: Create Descriptor sets for the compute pipeline + // The descriptors should point to Storage buffers which will hold the grass blades, the culled grass blades, and the output number of grass blades + // Describe the desciptor set + + auto& bladeGroups = scene->GetBlades(); + + for (auto& bladeGroup : bladeGroups) { + + VkDescriptorSetLayout layouts[] = { bladesSetLayout }; + VkDescriptorSetAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; + allocInfo.descriptorPool = descriptorPool; + allocInfo.descriptorSetCount = 1; + allocInfo.pSetLayouts = layouts; + + // Allocate descriptor sets + if (vkAllocateDescriptorSets(logicalDevice, &allocInfo, &bladeGroup->bladesDescriptorSet) != VK_SUCCESS) { + throw std::runtime_error("Failed to allocate blades descriptor set"); + } + + // Configure the descriptors to refer to buffers + VkDescriptorBufferInfo bladesBufferInfo = {}; + bladesBufferInfo.buffer = bladeGroup->GetBladesBuffer(); + bladesBufferInfo.offset = 0; + bladesBufferInfo.range = sizeof(Blade) * NUM_BLADES; + + VkDescriptorBufferInfo culledBladesBufferInfo = {}; + culledBladesBufferInfo.buffer = bladeGroup->GetCulledBladesBuffer(); + culledBladesBufferInfo.offset = 0; + culledBladesBufferInfo.range = sizeof(Blade) * NUM_BLADES; + + std::array descriptorWrites = {}; + descriptorWrites[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + descriptorWrites[0].dstSet = bladeGroup->bladesDescriptorSet; + descriptorWrites[0].dstBinding = 0; + descriptorWrites[0].dstArrayElement = 0; + descriptorWrites[0].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; + descriptorWrites[0].descriptorCount = 1; + descriptorWrites[0].pBufferInfo = &bladesBufferInfo; + descriptorWrites[0].pImageInfo = nullptr; + descriptorWrites[0].pTexelBufferView = nullptr; + + descriptorWrites[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + descriptorWrites[1].dstSet = bladeGroup->bladesDescriptorSet; + descriptorWrites[1].dstBinding = 1; + descriptorWrites[1].dstArrayElement = 0; + descriptorWrites[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; + descriptorWrites[1].descriptorCount = 1; + descriptorWrites[1].pBufferInfo = &culledBladesBufferInfo; + descriptorWrites[1].pImageInfo = nullptr; + descriptorWrites[1].pTexelBufferView = nullptr; + + // Update descriptor sets + vkUpdateDescriptorSets(logicalDevice, static_cast(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr); + } +} + +void Renderer::CreateGraphicsPipeline() { + VkShaderModule vertShaderModule = ShaderModule::Create("shaders/graphics.vert.spv", logicalDevice); + VkShaderModule fragShaderModule = ShaderModule::Create("shaders/graphics.frag.spv", logicalDevice); + + // Assign each shader module to the appropriate stage in the pipeline + VkPipelineShaderStageCreateInfo vertShaderStageInfo = {}; + vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT; + vertShaderStageInfo.module = vertShaderModule; + vertShaderStageInfo.pName = "main"; + + VkPipelineShaderStageCreateInfo fragShaderStageInfo = {}; + fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT; + fragShaderStageInfo.module = fragShaderModule; + fragShaderStageInfo.pName = "main"; + + VkPipelineShaderStageCreateInfo shaderStages[] = { vertShaderStageInfo, fragShaderStageInfo }; + + // --- Set up fixed-function stages --- + + // Vertex input + VkPipelineVertexInputStateCreateInfo vertexInputInfo = {}; + vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; + + auto bindingDescription = Vertex::getBindingDescription(); + auto attributeDescriptions = Vertex::getAttributeDescriptions(); + + vertexInputInfo.vertexBindingDescriptionCount = 1; + vertexInputInfo.pVertexBindingDescriptions = &bindingDescription; + vertexInputInfo.vertexAttributeDescriptionCount = static_cast(attributeDescriptions.size()); + vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data(); + + // Input assembly + VkPipelineInputAssemblyStateCreateInfo inputAssembly = {}; + inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; + inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; + inputAssembly.primitiveRestartEnable = VK_FALSE; + + // Viewports and Scissors (rectangles that define in which regions pixels are stored) + VkViewport viewport = {}; + viewport.x = 0.0f; + viewport.y = 0.0f; + viewport.width = static_cast(swapChain->GetVkExtent().width); + viewport.height = static_cast(swapChain->GetVkExtent().height); + viewport.minDepth = 0.0f; + viewport.maxDepth = 1.0f; + + VkRect2D scissor = {}; + scissor.offset = { 0, 0 }; + scissor.extent = swapChain->GetVkExtent(); + + VkPipelineViewportStateCreateInfo viewportState = {}; + viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; + viewportState.viewportCount = 1; + viewportState.pViewports = &viewport; + viewportState.scissorCount = 1; + viewportState.pScissors = &scissor; + + // Rasterizer + VkPipelineRasterizationStateCreateInfo rasterizer = {}; + rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; + rasterizer.depthClampEnable = VK_FALSE; + rasterizer.rasterizerDiscardEnable = VK_FALSE; + rasterizer.polygonMode = VK_POLYGON_MODE_FILL; + rasterizer.lineWidth = 1.0f; + rasterizer.cullMode = VK_CULL_MODE_BACK_BIT; + rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; + rasterizer.depthBiasEnable = VK_FALSE; + rasterizer.depthBiasConstantFactor = 0.0f; + rasterizer.depthBiasClamp = 0.0f; + rasterizer.depthBiasSlopeFactor = 0.0f; + + // Multisampling (turned off here) + VkPipelineMultisampleStateCreateInfo multisampling = {}; + multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; + multisampling.sampleShadingEnable = VK_FALSE; + multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; + multisampling.minSampleShading = 1.0f; + multisampling.pSampleMask = nullptr; + multisampling.alphaToCoverageEnable = VK_FALSE; + multisampling.alphaToOneEnable = VK_FALSE; + + // Depth testing + VkPipelineDepthStencilStateCreateInfo depthStencil = {}; + depthStencil.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; + depthStencil.depthTestEnable = VK_TRUE; + depthStencil.depthWriteEnable = VK_TRUE; + depthStencil.depthCompareOp = VK_COMPARE_OP_LESS; + depthStencil.depthBoundsTestEnable = VK_FALSE; + depthStencil.minDepthBounds = 0.0f; + depthStencil.maxDepthBounds = 1.0f; + depthStencil.stencilTestEnable = VK_FALSE; + + // Color blending (turned off here, but showing options for learning) + // --> Configuration per attached framebuffer + VkPipelineColorBlendAttachmentState colorBlendAttachment = {}; + colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; + colorBlendAttachment.blendEnable = VK_FALSE; + colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; + colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; + colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; + colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; + colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; + colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; + + // --> Global color blending settings + VkPipelineColorBlendStateCreateInfo colorBlending = {}; + colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; + colorBlending.logicOpEnable = VK_FALSE; + colorBlending.logicOp = VK_LOGIC_OP_COPY; + colorBlending.attachmentCount = 1; + colorBlending.pAttachments = &colorBlendAttachment; + colorBlending.blendConstants[0] = 0.0f; + colorBlending.blendConstants[1] = 0.0f; + colorBlending.blendConstants[2] = 0.0f; + colorBlending.blendConstants[3] = 0.0f; + + std::vector descriptorSetLayouts = { cameraDescriptorSetLayout, modelDescriptorSetLayout }; + + // Pipeline layout: used to specify uniform values + VkPipelineLayoutCreateInfo pipelineLayoutInfo = {}; + pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; + pipelineLayoutInfo.setLayoutCount = static_cast(descriptorSetLayouts.size()); + pipelineLayoutInfo.pSetLayouts = descriptorSetLayouts.data(); + pipelineLayoutInfo.pushConstantRangeCount = 0; + pipelineLayoutInfo.pPushConstantRanges = 0; + + if (vkCreatePipelineLayout(logicalDevice, &pipelineLayoutInfo, nullptr, &graphicsPipelineLayout) != VK_SUCCESS) { + throw std::runtime_error("Failed to create pipeline layout"); + } + + // --- Create graphics pipeline --- + VkGraphicsPipelineCreateInfo pipelineInfo = {}; + pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; + pipelineInfo.stageCount = 2; + pipelineInfo.pStages = shaderStages; + pipelineInfo.pVertexInputState = &vertexInputInfo; + pipelineInfo.pInputAssemblyState = &inputAssembly; + pipelineInfo.pViewportState = &viewportState; + pipelineInfo.pRasterizationState = &rasterizer; + pipelineInfo.pMultisampleState = &multisampling; + pipelineInfo.pDepthStencilState = &depthStencil; + pipelineInfo.pColorBlendState = &colorBlending; + pipelineInfo.pDynamicState = nullptr; + pipelineInfo.layout = graphicsPipelineLayout; + pipelineInfo.renderPass = renderPass; + pipelineInfo.subpass = 0; + pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; + pipelineInfo.basePipelineIndex = -1; + + if (vkCreateGraphicsPipelines(logicalDevice, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) { + throw std::runtime_error("Failed to create graphics pipeline"); + } + + vkDestroyShaderModule(logicalDevice, vertShaderModule, nullptr); + vkDestroyShaderModule(logicalDevice, fragShaderModule, nullptr); +} + +void Renderer::CreateGrassPipeline() { + // --- Set up programmable shaders --- + VkShaderModule vertShaderModule = ShaderModule::Create("shaders/grass.vert.spv", logicalDevice); + VkShaderModule tescShaderModule = ShaderModule::Create("shaders/grass.tesc.spv", logicalDevice); + VkShaderModule teseShaderModule = ShaderModule::Create("shaders/grass.tese.spv", logicalDevice); + VkShaderModule fragShaderModule = ShaderModule::Create("shaders/grass.frag.spv", logicalDevice); + + // Assign each shader module to the appropriate stage in the pipeline + VkPipelineShaderStageCreateInfo vertShaderStageInfo = {}; + vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT; + vertShaderStageInfo.module = vertShaderModule; + vertShaderStageInfo.pName = "main"; + + VkPipelineShaderStageCreateInfo tescShaderStageInfo = {}; + tescShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + tescShaderStageInfo.stage = VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT; + tescShaderStageInfo.module = tescShaderModule; + tescShaderStageInfo.pName = "main"; + + VkPipelineShaderStageCreateInfo teseShaderStageInfo = {}; + teseShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + teseShaderStageInfo.stage = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT; + teseShaderStageInfo.module = teseShaderModule; + teseShaderStageInfo.pName = "main"; + + VkPipelineShaderStageCreateInfo fragShaderStageInfo = {}; + fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT; + fragShaderStageInfo.module = fragShaderModule; + fragShaderStageInfo.pName = "main"; + + VkPipelineShaderStageCreateInfo shaderStages[] = { vertShaderStageInfo, tescShaderStageInfo, teseShaderStageInfo, fragShaderStageInfo }; + + // --- Set up fixed-function stages --- + + // Vertex input + VkPipelineVertexInputStateCreateInfo vertexInputInfo = {}; + vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; + + auto bindingDescription = Blade::getBindingDescription(); + auto attributeDescriptions = Blade::getAttributeDescriptions(); + + vertexInputInfo.vertexBindingDescriptionCount = 1; + vertexInputInfo.pVertexBindingDescriptions = &bindingDescription; + vertexInputInfo.vertexAttributeDescriptionCount = static_cast(attributeDescriptions.size()); + vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data(); + + // Input Assembly + VkPipelineInputAssemblyStateCreateInfo inputAssembly = {}; + inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; + inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_PATCH_LIST; + inputAssembly.primitiveRestartEnable = VK_FALSE; + + // Viewports and Scissors (rectangles that define in which regions pixels are stored) + VkViewport viewport = {}; + viewport.x = 0.0f; + viewport.y = 0.0f; + viewport.width = static_cast(swapChain->GetVkExtent().width); + viewport.height = static_cast(swapChain->GetVkExtent().height); + viewport.minDepth = 0.0f; + viewport.maxDepth = 1.0f; + + VkRect2D scissor = {}; + scissor.offset = { 0, 0 }; + scissor.extent = swapChain->GetVkExtent(); + + VkPipelineViewportStateCreateInfo viewportState = {}; + viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; + viewportState.viewportCount = 1; + viewportState.pViewports = &viewport; + viewportState.scissorCount = 1; + viewportState.pScissors = &scissor; + + // Rasterizer + VkPipelineRasterizationStateCreateInfo rasterizer = {}; + rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; + rasterizer.depthClampEnable = VK_FALSE; + rasterizer.rasterizerDiscardEnable = VK_FALSE; + rasterizer.polygonMode = VK_POLYGON_MODE_FILL; + rasterizer.lineWidth = 1.0f; + rasterizer.cullMode = VK_CULL_MODE_NONE; + rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; + rasterizer.depthBiasEnable = VK_FALSE; + rasterizer.depthBiasConstantFactor = 0.0f; + rasterizer.depthBiasClamp = 0.0f; + rasterizer.depthBiasSlopeFactor = 0.0f; + + // Multisampling (turned off here) + VkPipelineMultisampleStateCreateInfo multisampling = {}; + multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; + multisampling.sampleShadingEnable = VK_FALSE; + multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; + multisampling.minSampleShading = 1.0f; + multisampling.pSampleMask = nullptr; + multisampling.alphaToCoverageEnable = VK_FALSE; + multisampling.alphaToOneEnable = VK_FALSE; + + // Depth testing + VkPipelineDepthStencilStateCreateInfo depthStencil = {}; + depthStencil.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; + depthStencil.depthTestEnable = VK_TRUE; + depthStencil.depthWriteEnable = VK_TRUE; + depthStencil.depthCompareOp = VK_COMPARE_OP_LESS; + depthStencil.depthBoundsTestEnable = VK_FALSE; + depthStencil.minDepthBounds = 0.0f; + depthStencil.maxDepthBounds = 1.0f; + depthStencil.stencilTestEnable = VK_FALSE; + + // Color blending (turned off here, but showing options for learning) + // --> Configuration per attached framebuffer + VkPipelineColorBlendAttachmentState colorBlendAttachment = {}; + colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; + colorBlendAttachment.blendEnable = VK_FALSE; + colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; + colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; + colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; + colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; + colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; + colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; + + // --> Global color blending settings + VkPipelineColorBlendStateCreateInfo colorBlending = {}; + colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; + colorBlending.logicOpEnable = VK_FALSE; + colorBlending.logicOp = VK_LOGIC_OP_COPY; + colorBlending.attachmentCount = 1; + colorBlending.pAttachments = &colorBlendAttachment; + colorBlending.blendConstants[0] = 0.0f; + colorBlending.blendConstants[1] = 0.0f; + colorBlending.blendConstants[2] = 0.0f; + colorBlending.blendConstants[3] = 0.0f; + + std::vector descriptorSetLayouts = { cameraDescriptorSetLayout, modelDescriptorSetLayout }; + + // Pipeline layout: used to specify uniform values + VkPipelineLayoutCreateInfo pipelineLayoutInfo = {}; + pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; + pipelineLayoutInfo.setLayoutCount = static_cast(descriptorSetLayouts.size()); + pipelineLayoutInfo.pSetLayouts = descriptorSetLayouts.data(); + pipelineLayoutInfo.pushConstantRangeCount = 0; + pipelineLayoutInfo.pPushConstantRanges = 0; + + if (vkCreatePipelineLayout(logicalDevice, &pipelineLayoutInfo, nullptr, &grassPipelineLayout) != VK_SUCCESS) { + throw std::runtime_error("Failed to create pipeline layout"); + } + + // Tessellation state + VkPipelineTessellationStateCreateInfo tessellationInfo = {}; + tessellationInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO; + tessellationInfo.pNext = NULL; + tessellationInfo.flags = 0; + tessellationInfo.patchControlPoints = 1; + + // --- Create graphics pipeline --- + VkGraphicsPipelineCreateInfo pipelineInfo = {}; + pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; + pipelineInfo.stageCount = 4; + pipelineInfo.pStages = shaderStages; + pipelineInfo.pVertexInputState = &vertexInputInfo; + pipelineInfo.pInputAssemblyState = &inputAssembly; + pipelineInfo.pViewportState = &viewportState; + pipelineInfo.pRasterizationState = &rasterizer; + pipelineInfo.pMultisampleState = &multisampling; + pipelineInfo.pDepthStencilState = &depthStencil; + pipelineInfo.pColorBlendState = &colorBlending; + pipelineInfo.pTessellationState = &tessellationInfo; + pipelineInfo.pDynamicState = nullptr; + pipelineInfo.layout = grassPipelineLayout; + pipelineInfo.renderPass = renderPass; + pipelineInfo.subpass = 0; + pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; + pipelineInfo.basePipelineIndex = -1; + + if (vkCreateGraphicsPipelines(logicalDevice, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &grassPipeline) != VK_SUCCESS) { + throw std::runtime_error("Failed to create graphics pipeline"); + } + + // No need for the shader modules anymore + vkDestroyShaderModule(logicalDevice, vertShaderModule, nullptr); + vkDestroyShaderModule(logicalDevice, tescShaderModule, nullptr); + vkDestroyShaderModule(logicalDevice, teseShaderModule, nullptr); + vkDestroyShaderModule(logicalDevice, fragShaderModule, nullptr); +} + +void Renderer::CreateComputePipeline() { + // Set up programmable shaders + VkShaderModule computeShaderModule = ShaderModule::Create("shaders/compute.comp.spv", logicalDevice); + + VkPipelineShaderStageCreateInfo computeShaderStageInfo = {}; + computeShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + computeShaderStageInfo.stage = VK_SHADER_STAGE_COMPUTE_BIT; + computeShaderStageInfo.module = computeShaderModule; + computeShaderStageInfo.pName = "main"; + + // TODO: Add the compute dsecriptor set layout you create to this list + std::vector descriptorSetLayouts = { cameraDescriptorSetLayout, timeDescriptorSetLayout, bladesSetLayout }; + + // Create pipeline layout + VkPipelineLayoutCreateInfo pipelineLayoutInfo = {}; + pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; + pipelineLayoutInfo.setLayoutCount = static_cast(descriptorSetLayouts.size()); + pipelineLayoutInfo.pSetLayouts = descriptorSetLayouts.data(); + pipelineLayoutInfo.pushConstantRangeCount = 0; + pipelineLayoutInfo.pPushConstantRanges = 0; + + if (vkCreatePipelineLayout(logicalDevice, &pipelineLayoutInfo, nullptr, &computePipelineLayout) != VK_SUCCESS) { + throw std::runtime_error("Failed to create pipeline layout"); + } + + // Create compute pipeline + VkComputePipelineCreateInfo pipelineInfo = {}; + pipelineInfo.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO; + pipelineInfo.stage = computeShaderStageInfo; + pipelineInfo.layout = computePipelineLayout; + pipelineInfo.pNext = nullptr; + pipelineInfo.flags = 0; + pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; + pipelineInfo.basePipelineIndex = -1; + + if (vkCreateComputePipelines(logicalDevice, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &computePipeline) != VK_SUCCESS) { + throw std::runtime_error("Failed to create compute pipeline"); + } + + // No need for shader modules anymore + vkDestroyShaderModule(logicalDevice, computeShaderModule, nullptr); +} + +void Renderer::CreateFrameResources() { + imageViews.resize(swapChain->GetCount()); + + for (uint32_t i = 0; i < swapChain->GetCount(); i++) { + // --- Create an image view for each swap chain image --- + VkImageViewCreateInfo createInfo = {}; + createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; + createInfo.image = swapChain->GetVkImage(i); + + // Specify how the image data should be interpreted + createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; + createInfo.format = swapChain->GetVkImageFormat(); + + // Specify color channel mappings (can be used for swizzling) + createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY; + createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY; + createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY; + createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY; + + // Describe the image's purpose and which part of the image should be accessed + createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + createInfo.subresourceRange.baseMipLevel = 0; + createInfo.subresourceRange.levelCount = 1; + createInfo.subresourceRange.baseArrayLayer = 0; + createInfo.subresourceRange.layerCount = 1; + + // Create the image view + if (vkCreateImageView(logicalDevice, &createInfo, nullptr, &imageViews[i]) != VK_SUCCESS) { + throw std::runtime_error("Failed to create image views"); + } + } + + VkFormat depthFormat = device->GetInstance()->GetSupportedFormat({ VK_FORMAT_D32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_D24_UNORM_S8_UINT }, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT); + // CREATE DEPTH IMAGE + Image::Create(device, + swapChain->GetVkExtent().width, + swapChain->GetVkExtent().height, + depthFormat, + VK_IMAGE_TILING_OPTIMAL, + VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, + VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, + depthImage, + depthImageMemory + ); + + depthImageView = Image::CreateView(device, depthImage, depthFormat, VK_IMAGE_ASPECT_DEPTH_BIT); + + // Transition the image for use as depth-stencil + Image::TransitionLayout(device, graphicsCommandPool, depthImage, depthFormat, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); + + + // CREATE FRAMEBUFFERS + framebuffers.resize(swapChain->GetCount()); + for (size_t i = 0; i < swapChain->GetCount(); i++) { + std::vector attachments = { + imageViews[i], + depthImageView + }; + + VkFramebufferCreateInfo framebufferInfo = {}; + framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; + framebufferInfo.renderPass = renderPass; + framebufferInfo.attachmentCount = static_cast(attachments.size()); + framebufferInfo.pAttachments = attachments.data(); + framebufferInfo.width = swapChain->GetVkExtent().width; + framebufferInfo.height = swapChain->GetVkExtent().height; + framebufferInfo.layers = 1; + + if (vkCreateFramebuffer(logicalDevice, &framebufferInfo, nullptr, &framebuffers[i]) != VK_SUCCESS) { + throw std::runtime_error("Failed to create framebuffer"); + } + + } +} + +void Renderer::DestroyFrameResources() { + for (size_t i = 0; i < imageViews.size(); i++) { + vkDestroyImageView(logicalDevice, imageViews[i], nullptr); + } + + vkDestroyImageView(logicalDevice, depthImageView, nullptr); + vkFreeMemory(logicalDevice, depthImageMemory, nullptr); + vkDestroyImage(logicalDevice, depthImage, nullptr); + + for (size_t i = 0; i < framebuffers.size(); i++) { + vkDestroyFramebuffer(logicalDevice, framebuffers[i], nullptr); + } +} + +void Renderer::RecreateFrameResources() { + vkDestroyPipeline(logicalDevice, graphicsPipeline, nullptr); + vkDestroyPipeline(logicalDevice, grassPipeline, nullptr); + vkDestroyPipelineLayout(logicalDevice, graphicsPipelineLayout, nullptr); + vkDestroyPipelineLayout(logicalDevice, grassPipelineLayout, nullptr); + vkFreeCommandBuffers(logicalDevice, graphicsCommandPool, static_cast(commandBuffers.size()), commandBuffers.data()); + + DestroyFrameResources(); + CreateFrameResources(); + CreateGraphicsPipeline(); + CreateGrassPipeline(); + RecordCommandBuffers(); +} + +void Renderer::RecordComputeCommandBuffer() { + // Specify the command pool and number of buffers to allocate + VkCommandBufferAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; + allocInfo.commandPool = computeCommandPool; + allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; + allocInfo.commandBufferCount = 1; + + if (vkAllocateCommandBuffers(logicalDevice, &allocInfo, &computeCommandBuffer) != VK_SUCCESS) { + throw std::runtime_error("Failed to allocate command buffers"); + } + + VkCommandBufferBeginInfo beginInfo = {}; + beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; + beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT; + beginInfo.pInheritanceInfo = nullptr; + + // ~ Start recording ~ + if (vkBeginCommandBuffer(computeCommandBuffer, &beginInfo) != VK_SUCCESS) { + throw std::runtime_error("Failed to begin recording compute command buffer"); + } + + // Bind to the compute pipeline + vkCmdBindPipeline(computeCommandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipeline); + + // Bind camera descriptor set + vkCmdBindDescriptorSets(computeCommandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipelineLayout, 0, 1, &cameraDescriptorSet, 0, nullptr); + + // Bind descriptor set for time uniforms + vkCmdBindDescriptorSets(computeCommandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipelineLayout, 1, 1, &timeDescriptorSet, 0, nullptr); + + // TODO: For each group of blades bind its descriptor set and dispatch + + auto& bladeGroups = scene->GetBlades(); + + for (auto& bladeGroup : bladeGroups) { + vkCmdBindDescriptorSets(computeCommandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipelineLayout, 2, 1, &bladeGroup->bladesDescriptorSet, 0, nullptr); + + vkCmdDispatch(computeCommandBuffer, ); + } + + // ~ End recording ~ + if (vkEndCommandBuffer(computeCommandBuffer) != VK_SUCCESS) { + throw std::runtime_error("Failed to record compute command buffer"); + } +} + +void Renderer::RecordCommandBuffers() { + commandBuffers.resize(swapChain->GetCount()); + + // Specify the command pool and number of buffers to allocate + VkCommandBufferAllocateInfo allocInfo = {}; + allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; + allocInfo.commandPool = graphicsCommandPool; + allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; + allocInfo.commandBufferCount = static_cast(commandBuffers.size()); + + if (vkAllocateCommandBuffers(logicalDevice, &allocInfo, commandBuffers.data()) != VK_SUCCESS) { + throw std::runtime_error("Failed to allocate command buffers"); + } + + // Start command buffer recording + for (size_t i = 0; i < commandBuffers.size(); i++) { + VkCommandBufferBeginInfo beginInfo = {}; + beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; + beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT; + beginInfo.pInheritanceInfo = nullptr; + + // ~ Start recording ~ + if (vkBeginCommandBuffer(commandBuffers[i], &beginInfo) != VK_SUCCESS) { + throw std::runtime_error("Failed to begin recording command buffer"); + } + + // Begin the render pass + VkRenderPassBeginInfo renderPassInfo = {}; + renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; + renderPassInfo.renderPass = renderPass; + renderPassInfo.framebuffer = framebuffers[i]; + renderPassInfo.renderArea.offset = { 0, 0 }; + renderPassInfo.renderArea.extent = swapChain->GetVkExtent(); + + std::array clearValues = {}; + clearValues[0].color = { 0.0f, 0.0f, 0.0f, 1.0f }; + clearValues[1].depthStencil = { 1.0f, 0 }; + renderPassInfo.clearValueCount = static_cast(clearValues.size()); + renderPassInfo.pClearValues = clearValues.data(); + + std::vector barriers(scene->GetBlades().size()); + for (uint32_t j = 0; j < barriers.size(); ++j) { + barriers[j].sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER; + barriers[j].srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT; + barriers[j].dstAccessMask = VK_ACCESS_INDIRECT_COMMAND_READ_BIT; + barriers[j].srcQueueFamilyIndex = device->GetQueueIndex(QueueFlags::Compute); + barriers[j].dstQueueFamilyIndex = device->GetQueueIndex(QueueFlags::Graphics); + barriers[j].buffer = scene->GetBlades()[j]->GetNumBladesBuffer(); + barriers[j].offset = 0; + barriers[j].size = sizeof(BladeDrawIndirect); + } + + vkCmdPipelineBarrier(commandBuffers[i], VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT, 0, 0, nullptr, barriers.size(), barriers.data(), 0, nullptr); + + // Bind the camera descriptor set. This is set 0 in all pipelines so it will be inherited + vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipelineLayout, 0, 1, &cameraDescriptorSet, 0, nullptr); + + vkCmdBeginRenderPass(commandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE); + + // Bind the graphics pipeline + vkCmdBindPipeline(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline); + + for (uint32_t j = 0; j < scene->GetModels().size(); ++j) { + // Bind the vertex and index buffers + VkBuffer vertexBuffers[] = { scene->GetModels()[j]->getVertexBuffer() }; + VkDeviceSize offsets[] = { 0 }; + vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets); + + vkCmdBindIndexBuffer(commandBuffers[i], scene->GetModels()[j]->getIndexBuffer(), 0, VK_INDEX_TYPE_UINT32); + + // Bind the descriptor set for each model + vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipelineLayout, 1, 1, &modelDescriptorSets[j], 0, nullptr); + + // Draw + std::vector indices = scene->GetModels()[j]->getIndices(); + vkCmdDrawIndexed(commandBuffers[i], static_cast(indices.size()), 1, 0, 0, 0); + } + + // Bind the grass pipeline + vkCmdBindPipeline(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, grassPipeline); + + for (uint32_t j = 0; j < scene->GetBlades().size(); ++j) { + VkBuffer vertexBuffers[] = { scene->GetBlades()[j]->GetCulledBladesBuffer() }; + VkDeviceSize offsets[] = { 0 }; + // TODO: Uncomment this when the buffers are populated + // vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets); + + // TODO: Bind the descriptor set for each grass blades model + + // Draw + // TODO: Uncomment this when the buffers are populated + // vkCmdDrawIndirect(commandBuffers[i], scene->GetBlades()[j]->GetNumBladesBuffer(), 0, 1, sizeof(BladeDrawIndirect)); + } + + // End render pass + vkCmdEndRenderPass(commandBuffers[i]); + + // ~ End recording ~ + if (vkEndCommandBuffer(commandBuffers[i]) != VK_SUCCESS) { + throw std::runtime_error("Failed to record command buffer"); + } + } +} + +void Renderer::Frame() { + + VkSubmitInfo computeSubmitInfo = {}; + computeSubmitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; + + computeSubmitInfo.commandBufferCount = 1; + computeSubmitInfo.pCommandBuffers = &computeCommandBuffer; + + if (vkQueueSubmit(device->GetQueue(QueueFlags::Compute), 1, &computeSubmitInfo, VK_NULL_HANDLE) != VK_SUCCESS) { + throw std::runtime_error("Failed to submit draw command buffer"); + } + + if (!swapChain->Acquire()) { + RecreateFrameResources(); + return; + } + + // Submit the command buffer + VkSubmitInfo submitInfo = {}; + submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; + + VkSemaphore waitSemaphores[] = { swapChain->GetImageAvailableVkSemaphore() }; + VkPipelineStageFlags waitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT }; + submitInfo.waitSemaphoreCount = 1; + submitInfo.pWaitSemaphores = waitSemaphores; + submitInfo.pWaitDstStageMask = waitStages; + + submitInfo.commandBufferCount = 1; + submitInfo.pCommandBuffers = &commandBuffers[swapChain->GetIndex()]; + + VkSemaphore signalSemaphores[] = { swapChain->GetRenderFinishedVkSemaphore() }; + submitInfo.signalSemaphoreCount = 1; + submitInfo.pSignalSemaphores = signalSemaphores; + + if (vkQueueSubmit(device->GetQueue(QueueFlags::Graphics), 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) { + throw std::runtime_error("Failed to submit draw command buffer"); + } + + if (!swapChain->Present()) { + RecreateFrameResources(); + } +} + +Renderer::~Renderer() { + vkDeviceWaitIdle(logicalDevice); + + // TODO: destroy any resources you created + + vkFreeCommandBuffers(logicalDevice, graphicsCommandPool, static_cast(commandBuffers.size()), commandBuffers.data()); + vkFreeCommandBuffers(logicalDevice, computeCommandPool, 1, &computeCommandBuffer); + + vkDestroyPipeline(logicalDevice, graphicsPipeline, nullptr); + vkDestroyPipeline(logicalDevice, grassPipeline, nullptr); + vkDestroyPipeline(logicalDevice, computePipeline, nullptr); + + vkDestroyPipelineLayout(logicalDevice, graphicsPipelineLayout, nullptr); + vkDestroyPipelineLayout(logicalDevice, grassPipelineLayout, nullptr); + vkDestroyPipelineLayout(logicalDevice, computePipelineLayout, nullptr); + + vkDestroyDescriptorSetLayout(logicalDevice, cameraDescriptorSetLayout, nullptr); + vkDestroyDescriptorSetLayout(logicalDevice, modelDescriptorSetLayout, nullptr); + vkDestroyDescriptorSetLayout(logicalDevice, timeDescriptorSetLayout, nullptr); + + vkDestroyDescriptorPool(logicalDevice, descriptorPool, nullptr); + + vkDestroyRenderPass(logicalDevice, renderPass, nullptr); + DestroyFrameResources(); + vkDestroyCommandPool(logicalDevice, computeCommandPool, nullptr); + vkDestroyCommandPool(logicalDevice, graphicsCommandPool, nullptr); +} diff --git a/src/Renderer.h b/src/Renderer.h index 95e025f..a3a813f 100644 --- a/src/Renderer.h +++ b/src/Renderer.h @@ -56,6 +56,7 @@ class Renderer { VkDescriptorSetLayout cameraDescriptorSetLayout; VkDescriptorSetLayout modelDescriptorSetLayout; VkDescriptorSetLayout timeDescriptorSetLayout; + VkDescriptorSetLayout bladesSetLayout; VkDescriptorPool descriptorPool; diff --git a/src/main.cpp b/src/main.cpp index 8bf822b..3222e0a 100644 --- a/src/main.cpp +++ b/src/main.cpp @@ -67,7 +67,7 @@ namespace { int main() { static constexpr char* applicationName = "Vulkan Grass Rendering"; - InitializeWindow(640, 480, applicationName); + InitializeWindow(1280, 720, applicationName); unsigned int glfwExtensionCount = 0; const char** glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount); @@ -116,7 +116,7 @@ int main() { grassImageMemory ); - float planeDim = 15.f; + float planeDim = 30.f; float halfWidth = planeDim * 0.5f; Model* plane = new Model(device, transferCommandPool, { @@ -143,7 +143,24 @@ int main() { glfwSetMouseButtonCallback(GetGLFWWindow(), mouseDownCallback); glfwSetCursorPosCallback(GetGLFWWindow(), mouseMoveCallback); + double previousStatsTime = glfwGetTime(); + int frameCount{0}; + while (!ShouldQuit()) { + + const double currentTime = glfwGetTime(); + + const double statsTimeDelta = currentTime - previousStatsTime; + frameCount++; + + if (statsTimeDelta >= 1.0) { + std::string windowTitle = std::string("FPS: " + std::to_string(frameCount) + " - Frame Time: " + std::to_string(1000.0 / frameCount) + "ms"); + glfwSetWindowTitle(GetGLFWWindow(), windowTitle.c_str()); + + frameCount = 0; + previousStatsTime = currentTime; + } + glfwPollEvents(); scene->UpdateTime(); renderer->Frame(); diff --git a/src/shaders/compute.comp b/src/shaders/compute.comp index 0fd0224..37b545b 100644 --- a/src/shaders/compute.comp +++ b/src/shaders/compute.comp @@ -15,12 +15,38 @@ layout(set = 1, binding = 0) uniform Time { }; struct Blade { + // Position and direction vec4 v0; + // Bezier point and height vec4 v1; + // Physical model guide and width vec4 v2; + // Up vector and stiffness coefficient vec4 up; }; +layout(set = 2, binding = 0) buffer AllBlades { + Blade blades[]; +} allBlades; + +layout(set = 2, binding = 1) buffer CulledBlades { + Blade blades[]; +} culledBlades; + +layout(set = 2, binding = 2) buffer NumBlades { + uint vertexCount; // Write the number of blades remaining here + uint instanceCount; // = 1 + uint firstVertex; // = 0 + uint firstInstance; // = 0 +} numBlades; + +const uint MAX_NUM_BLADES = 1 << 16; +const vec3 WORLD_GRAVITY = vec3(0.0, -9.8, 0.0); +const float BEZIER_DEGREE = 2.0; +const float VIEW_CULLING_TOLERANCE = 2.0; +const float DISTANCE_CULLING_VALUE = 50.0; +const float DISTANCE_CULLING_N = 20.0; + // TODO: Add bindings to: // 1. Store the input blades // 2. Write out the culled blades @@ -40,17 +66,98 @@ bool inBounds(float value, float bounds) { return (value >= -bounds) && (value <= bounds); } +vec3 windFunction(vec3 v0) +{ + return vec3(1, 0, 0) * cos(totalTime); +} + void main() { // Reset the number of blades to 0 if (gl_GlobalInvocationID.x == 0) { - // numBlades.vertexCount = 0; + numBlades.vertexCount = 0; } barrier(); // Wait till all threads reach this point - // TODO: Apply forces on every blade and update the vertices in the buffer + uint globalThreadIdx = gl_GlobalInvocationID.x; + + if (globalThreadIdx > MAX_NUM_BLADES) { + return; + } + + Blade blade = allBlades.blades[globalThreadIdx]; + + // get packed data + float h = blade.v1.w; + float w = blade.v2.w; + float stiffness = blade.up.w; + float directionalAngle = blade.v0.w; + + // get the 4 vectors + vec3 v0 = blade.v0.xyz; + vec3 v1 = blade.v1.xyz; + vec3 v2 = blade.v2.xyz; + vec3 up = blade.up.xyz; + + vec3 faceDirection = normalize(cross(up, vec3(sin(directionalAngle), 0.0, cos(directionalAngle)))); + + // Calculate Gravity accounted for grass's face + vec3 gF = 0.25 * 9.8 * faceDirection; + vec3 gravityForce = WORLD_GRAVITY + gF; + + // Calculate Recovery force + vec3 v2Original = v0 + h * up; + vec3 recoveryForce = (v2Original - v2) * stiffness; + + // Calculate Wind force + vec3 windValueAtV0 = windFunction(v0); + float fd = 1.0 - abs(dot(normalize(windValueAtV0), normalize(v2 - v0))); + float fr = dot((v2 - v0), up) / h; + float theta = fd * fr; + vec3 windForce = windValueAtV0 * theta; + + // Accumulate all forces + v2 += (recoveryForce + gravityForce + windForce) * deltaTime; + + // State Validation + v2 = v2 - up * min(dot(up, v2 - v0), 0.0); + float lproj = length(v2 - v0 - up * dot(v2 - v0, up)); + v1 = v0 + h * up * max(1.0 - (lproj / h), 0.05 * max(lproj / h, 1.0)); + + float L0 = distance(v0, v2); + float L1 = distance(v0, v1) + distance(v1, v2); + float L = ((2.0 * L0) + (BEZIER_DEGREE - 1.0) * L1) / (BEZIER_DEGREE + 1.0); + + float r = h / L; + vec3 v1corr = v0 + r * (v1 - v0); + vec3 v2corr = v1corr + r * (v2 - v1); + + // Orientation Culling + vec4 faceViewSpace = camera.view * vec4(faceDirection, 0.0f); + if (dot(normalize(faceViewSpace.xyz), vec3(0, 0, 1)) < 0.1) { + return; + } + + // Frustum Culling + vec4 v0Clip = camera.proj * camera.view * vec4(v0, 1.0); + + float wCoord = v0Clip.w + VIEW_CULLING_TOLERANCE; + + if (!inBounds(v0Clip.x, wCoord) || !inBounds(v0Clip.y, wCoord) || !inBounds(v0Clip.z, wCoord)) { + return; + } + + // Distance Culling + vec4 cameraPos = camera.view * vec4(0.0f, 0.0f, 0.0f, 1.0f); + float dProj = length(v0 - cameraPos.xyz - up * dot(v0 - cameraPos.xyz, up)); + + if (mod(globalThreadIdx, DISTANCE_CULLING_N) > floor(DISTANCE_CULLING_N * (1.0f - (dProj / DISTANCE_CULLING_VALUE)))) { + return; + } + + + // Update Storage Buffer + allBlades.blades[globalThreadIdx].v1.xyz = v1corr.xyz; + allBlades.blades[globalThreadIdx].v2.xyz = v2corr.xyz; - // TODO: Cull blades that are too far away or not in the camera frustum and write them - // to the culled blades buffer - // Note: to do this, you will need to use an atomic operation to read and update numBlades.vertexCount - // You want to write the visible blades to the buffer without write conflicts between threads + culledBlades.blades[atomicAdd(numBlades.vertexCount, 1)] = allBlades.blades[globalThreadIdx]; } diff --git a/src/shaders/grass.frag b/src/shaders/grass.frag index c7df157..acac1eb 100644 --- a/src/shaders/grass.frag +++ b/src/shaders/grass.frag @@ -7,11 +7,13 @@ layout(set = 0, binding = 0) uniform CameraBufferObject { } camera; // TODO: Declare fragment shader inputs +layout(location = 0) in vec4 pos; +layout(location = 1) in vec4 nor; +layout(location = 2) in vec2 uv; layout(location = 0) out vec4 outColor; void main() { // TODO: Compute fragment color - - outColor = vec4(1.0); -} + outColor = mix(vec4(68.0 / 255.0, 87.0 / 255.0, 41.0 / 255.0, 1.0), vec4(110.0 / 255.0, 140.0 / 255.0, 46.0 / 255.0, 1.0), uv.y); +} \ No newline at end of file diff --git a/src/shaders/grass.tesc b/src/shaders/grass.tesc index f9ffd07..0c9a8d5 100644 --- a/src/shaders/grass.tesc +++ b/src/shaders/grass.tesc @@ -10,17 +10,31 @@ layout(set = 0, binding = 0) uniform CameraBufferObject { // TODO: Declare tessellation control shader inputs and outputs +layout(location = 0) in vec4 v0[]; +layout(location = 1) in vec4 v1[]; +layout(location = 2) in vec4 v2[]; +layout(location = 3) in vec4 up[]; + +layout(location = 0) out vec4 v0_out[]; +layout(location = 1) out vec4 v1_out[]; +layout(location = 2) out vec4 v2_out[]; +layout(location = 3) out vec4 up_out[]; + void main() { - // Don't move the origin location of the patch + // Don't move the origin location of the patch gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position; - // TODO: Write any shader outputs + // TODO: Write any shader outputs + v0_out[gl_InvocationID] = v0[gl_InvocationID]; + v1_out[gl_InvocationID] = v1[gl_InvocationID]; + v2_out[gl_InvocationID] = v2[gl_InvocationID]; + up_out[gl_InvocationID] = up[gl_InvocationID]; - // TODO: Set level of tesselation - // gl_TessLevelInner[0] = ??? - // gl_TessLevelInner[1] = ??? - // gl_TessLevelOuter[0] = ??? - // gl_TessLevelOuter[1] = ??? - // gl_TessLevelOuter[2] = ??? - // gl_TessLevelOuter[3] = ??? + // TODO: Set level of tesselation + gl_TessLevelInner[0] = 2.0; + gl_TessLevelInner[1] = 5.0; + gl_TessLevelOuter[0] = 5.0; + gl_TessLevelOuter[1] = 2.0; + gl_TessLevelOuter[2] = 5.0; + gl_TessLevelOuter[3] = 2.0; } diff --git a/src/shaders/grass.tese b/src/shaders/grass.tese index 751fff6..f38b60e 100644 --- a/src/shaders/grass.tese +++ b/src/shaders/grass.tese @@ -10,9 +10,35 @@ layout(set = 0, binding = 0) uniform CameraBufferObject { // TODO: Declare tessellation evaluation shader inputs and outputs +layout(location = 0) in vec4 v0[]; +layout(location = 1) in vec4 v1[]; +layout(location = 2) in vec4 v2[]; +layout(location = 3) in vec4 up[]; + +layout(location = 0) out vec4 pos; +layout(location = 1) out vec4 nor; +layout(location = 2) out vec2 uv; + void main() { - float u = gl_TessCoord.x; - float v = gl_TessCoord.y; + float u = gl_TessCoord.x; + float v = gl_TessCoord.y; + uv = vec2(u, v); // TODO: Use u and v to parameterize along the grass blade and output positions for each vertex of the grass blade -} + vec3 a = v0[0].xyz + v * (v1[0].xyz - v0[0].xyz); + vec3 b = v1[0].xyz + v * (v2[0].xyz - v1[0].xyz); + vec3 c = a + v * (b - a); + + vec3 t1 = vec3(sin(v0[0].w), 0.0, cos(v0[0].w)); // bitangent + float w = v2[0].w; + + vec3 c0 = c - w * t1; + vec3 c1 = c + w * t1; + + vec3 t0 = normalize(b - a); + nor.xyz = normalize(cross(t0, t1)); + + float t = u + 0.5 * v - u * v; // triangle + pos.xyz = (1.0 - t) * c0 + t * c1; + gl_Position = camera.proj * camera.view * vec4(pos.xyz, 1.0); +} \ No newline at end of file diff --git a/src/shaders/grass.vert b/src/shaders/grass.vert index db9dfe9..8567729 100644 --- a/src/shaders/grass.vert +++ b/src/shaders/grass.vert @@ -7,6 +7,15 @@ layout(set = 1, binding = 0) uniform ModelBufferObject { }; // TODO: Declare vertex shader inputs and outputs +layout(location = 0) in vec4 v0; +layout(location = 1) in vec4 v1; +layout(location = 2) in vec4 v2; +layout(location = 3) in vec4 up; + +layout(location = 0) out vec4 v0_out; +layout(location = 1) out vec4 v1_out; +layout(location = 2) out vec4 v2_out; +layout(location = 3) out vec4 up_out; out gl_PerVertex { vec4 gl_Position; @@ -14,4 +23,9 @@ out gl_PerVertex { void main() { // TODO: Write gl_Position and any other shader outputs + v0_out = v0; + v1_out = v1; + v2_out = v2; + up_out = up; + gl_Position = vec4(v0.xyz, 1.0); }