|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +"""DL Project 4. CIFAR-10 Object Recognition using ResNet50.ipynb |
| 3 | +
|
| 4 | +Automatically generated by Colaboratory. |
| 5 | +
|
| 6 | +Original file is located at |
| 7 | + https://colab.research.google.com/drive/1T46DXyngES0gbtxZrJ41mCzYS7ss3KUn |
| 8 | +""" |
| 9 | + |
| 10 | +!pip install kaggle |
| 11 | + |
| 12 | +# configuring the path of Kaggle.json file |
| 13 | +!mkdir -p ~/.kaggle |
| 14 | +!cp kaggle.json ~/.kaggle/ |
| 15 | +!chmod 600 ~/.kaggle/kaggle.json |
| 16 | + |
| 17 | +# daatset api |
| 18 | +!kaggle competitions download -c cifar-10 |
| 19 | + |
| 20 | +!ls |
| 21 | + |
| 22 | +# extracting the compessed Dataset |
| 23 | +from zipfile import ZipFile |
| 24 | +dataset = '/content/cifar-10.zip' |
| 25 | + |
| 26 | +with ZipFile(dataset,'r') as zip: |
| 27 | + zip.extractall() |
| 28 | + print('The dataset is extracted') |
| 29 | + |
| 30 | +!ls |
| 31 | + |
| 32 | +!pip install py7zr |
| 33 | + |
| 34 | +import py7zr |
| 35 | + |
| 36 | +archive = py7zr.SevenZipFile('/content/train.7z', mode='r') |
| 37 | +archive.extractall() #archive.extractall(path='/content/Training Data') |
| 38 | +archive.close() |
| 39 | + |
| 40 | +!ls |
| 41 | + |
| 42 | +"""Importing the Dependencies""" |
| 43 | + |
| 44 | +import os |
| 45 | +import numpy as np |
| 46 | +import pandas as pd |
| 47 | +from PIL import Image |
| 48 | +import matplotlib.pyplot as plt |
| 49 | +import matplotlib.image as mpimg |
| 50 | +from sklearn.model_selection import train_test_split |
| 51 | + |
| 52 | +filenames = os.listdir('/content/train') |
| 53 | + |
| 54 | +type(filenames) |
| 55 | + |
| 56 | +len(filenames) |
| 57 | + |
| 58 | +print(filenames[0:5]) |
| 59 | +print(filenames[-5:]) |
| 60 | + |
| 61 | +"""**Labels Processing**""" |
| 62 | + |
| 63 | +labels_df = pd.read_csv('/content/trainLabels.csv') |
| 64 | + |
| 65 | +labels_df.shape |
| 66 | + |
| 67 | +labels_df.head() |
| 68 | + |
| 69 | +labels_df[labels_df['id'] == 7796] |
| 70 | + |
| 71 | +labels_df.head(10) |
| 72 | + |
| 73 | +labels_df.tail(10) |
| 74 | + |
| 75 | +labels_df['label'].value_counts() |
| 76 | + |
| 77 | +labels_df['label'] |
| 78 | + |
| 79 | +labels_dictionary = {'airplane':0, 'automobile':1, 'bird':2, 'cat':3, 'deer':4, 'dog':5, 'frog':6, 'horse':7, 'ship':8, 'truck':9} |
| 80 | + |
| 81 | +labels = [labels_dictionary[i] for i in labels_df['label']] |
| 82 | + |
| 83 | +print(labels[0:5]) |
| 84 | +print(labels[-5:]) |
| 85 | + |
| 86 | +# displaying sample image |
| 87 | +import cv2 |
| 88 | +from google.colab.patches import cv2_imshow |
| 89 | + |
| 90 | +img = cv2.imread('/content/train/7796.png') |
| 91 | +cv2_imshow(img) |
| 92 | + |
| 93 | +# displaying sample image |
| 94 | +import cv2 |
| 95 | +from google.colab.patches import cv2_imshow |
| 96 | + |
| 97 | +img = cv2.imread('/content/train/45888.png') |
| 98 | +cv2_imshow(img) |
| 99 | + |
| 100 | +labels_df[labels_df['id'] == 45888] |
| 101 | + |
| 102 | +labels_df.head() |
| 103 | + |
| 104 | +id_list = list(labels_df['id']) |
| 105 | + |
| 106 | +print(id_list[0:5]) |
| 107 | +print(id_list[-5:]) |
| 108 | + |
| 109 | +"""**Image Processing**""" |
| 110 | + |
| 111 | +# convert images to numpy arrays |
| 112 | + |
| 113 | +train_data_folder = '/content/train/' |
| 114 | + |
| 115 | +data = [] |
| 116 | + |
| 117 | +for id in id_list: |
| 118 | + |
| 119 | + image = Image.open(train_data_folder + str(id) + '.png') |
| 120 | + image = np.array(image) |
| 121 | + data.append(image) |
| 122 | + |
| 123 | +type(data) |
| 124 | + |
| 125 | +len(data) |
| 126 | + |
| 127 | +type(data[0]) |
| 128 | + |
| 129 | +data[0].shape |
| 130 | + |
| 131 | +data[0] |
| 132 | + |
| 133 | +# convert image list and label list to numpy arrays |
| 134 | + |
| 135 | +X = np.array(data) |
| 136 | +Y = np.array(labels) |
| 137 | + |
| 138 | +type(X) |
| 139 | + |
| 140 | +print(X.shape) |
| 141 | +print(Y.shape) |
| 142 | + |
| 143 | +"""**Train Test Split**""" |
| 144 | + |
| 145 | +X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=2) |
| 146 | + |
| 147 | +print(X.shape, X_train.shape, X_test.shape) |
| 148 | + |
| 149 | +# scaling the data |
| 150 | + |
| 151 | +X_train_scaled = X_train/255 |
| 152 | + |
| 153 | +X_test_scaled = X_test/255 |
| 154 | + |
| 155 | +X_train_scaled |
| 156 | + |
| 157 | +X_train[0] |
| 158 | + |
| 159 | +"""**Building the Neural Network**""" |
| 160 | + |
| 161 | +import tensorflow as tf |
| 162 | +from tensorflow import keras |
| 163 | + |
| 164 | +num_of_classes = 10 |
| 165 | + |
| 166 | +# setting up the layers of Neural Network |
| 167 | + |
| 168 | +model = keras.Sequential([ |
| 169 | + |
| 170 | + keras.layers.Flatten(input_shape=(32,32,3)), |
| 171 | + keras.layers.Dense(64, activation='relu'), |
| 172 | + keras.layers.Dense(num_of_classes, activation='softmax') |
| 173 | +]) |
| 174 | + |
| 175 | +# compile the neural network |
| 176 | +model.compile(optimizer='adam', |
| 177 | + loss='sparse_categorical_crossentropy', |
| 178 | + metrics=['acc']) |
| 179 | + |
| 180 | +# training the neural network |
| 181 | +model.fit(X_train_scaled, Y_train, validation_split=0.1, epochs=10) |
| 182 | + |
| 183 | +"""**ResNet50**""" |
| 184 | + |
| 185 | +from tensorflow.keras import Sequential, models, layers |
| 186 | +from tensorflow.keras.layers import Dense, Dropout, Flatten |
| 187 | +from tensorflow.keras.layers import BatchNormalization |
| 188 | +from tensorflow.keras.models import load_model |
| 189 | +from tensorflow.keras.models import Model |
| 190 | +from tensorflow.keras.applications.resnet50 import ResNet50 |
| 191 | +from tensorflow.keras import optimizers |
| 192 | + |
| 193 | +convolutional_base = ResNet50(weights='imagenet', include_top=False, input_shape=(256,256,3)) |
| 194 | +convolutional_base.summary() |
| 195 | + |
| 196 | +num_of_classes = 10 |
| 197 | + |
| 198 | +model = models.Sequential() |
| 199 | +model.add(layers.UpSampling2D((2,2))) |
| 200 | +model.add(layers.UpSampling2D((2,2))) |
| 201 | +model.add(layers.UpSampling2D((2,2))) |
| 202 | +model.add(convolutional_base) |
| 203 | +model.add(layers.Flatten()) |
| 204 | +model.add(layers.BatchNormalization()) |
| 205 | +model.add(layers.Dense(128, activation='relu')) |
| 206 | +model.add(layers.Dropout(0.5)) |
| 207 | +model.add(layers.BatchNormalization()) |
| 208 | +model.add(layers.Dense(64, activation='relu')) |
| 209 | +model.add(layers.Dropout(0.5)) |
| 210 | +model.add(layers.BatchNormalization()) |
| 211 | +model.add(layers.Dense(num_of_classes, activation='softmax')) |
| 212 | + |
| 213 | +model.compile(optimizer=optimizers.RMSprop(lr=2e-5), loss='sparse_categorical_crossentropy', metrics=['acc']) |
| 214 | + |
| 215 | +history = model.fit(X_train_scaled, Y_train, validation_split=0.1, epochs=10) |
| 216 | + |
| 217 | +loss, accuracy = model.evaluate(X_test_scaled, Y_test) |
| 218 | +print('Test Accuracy =', accuracy) |
| 219 | + |
| 220 | +h = history |
| 221 | + |
| 222 | +# plot the loss value |
| 223 | +plt.plot(h.history['loss'], label='train loss') |
| 224 | +plt.plot(h.history['val_loss'], label='validation loss') |
| 225 | +plt.legend() |
| 226 | +plt.show() |
| 227 | + |
| 228 | +# plot the accuracy value |
| 229 | +plt.plot(h.history['acc'], label='train accuracy') |
| 230 | +plt.plot(h.history['val_acc'], label='validation accuracy') |
| 231 | +plt.legend() |
| 232 | +plt.show() |
| 233 | + |
0 commit comments