-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalculate_fvd_vq.py
390 lines (321 loc) · 14.5 KB
/
calculate_fvd_vq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import os
os.environ["TORCH_NCCL_BLOCKING_WAIT"] = "1"
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "1"
os.environ["NCCL_TIMEOUT"] = "2000"
import sys
import math
import uuid
import time
import torch
import h5py
import random
import hydra
import wandb
import shutil
import numpy as np
from tqdm import tqdm
from einops import rearrange
from omegaconf import OmegaConf
from accelerate import Accelerator
from torchvision.io import write_video
from utils.train_utils import get_model, requires_grad
from utils_common import print_rank_0
from utils_vq import vq_get_dynamic, vq_get_vae
from fvd_external import calculate_fvd_github
def get_random_consecutive_frames_from_h5(h5_path, index, num_frames, device, start_index_override=None):
"""
Loads a random (or fixed) consecutive segment of length `num_frames` from
the H5 file for the specified video index. If `start_index_override` is given,
use that instead of a random offset.
"""
with h5py.File(h5_path, "r") as hf:
start_ = int(hf['start_index_list'][index, 0])
end_ = int(hf['start_index_list'][index, 1])
total_length = end_ - start_
if total_length < num_frames:
raise ValueError(f"Video {index} has only {total_length} frames.")
if start_index_override is not None:
offset = start_index_override
offset = min(max(offset, 0), total_length - num_frames)
else:
offset = random.randint(0, total_length - num_frames)
chosen_start = start_ + offset
chosen_end = chosen_start + num_frames
video_tokens = hf['video'][chosen_start:chosen_end]
return torch.from_numpy(video_tokens).unsqueeze(0).to(device)
def load_sd_vq_f8_tokenizer(args, device):
from ldm.util import instantiate_from_config
sys.path.insert(0, os.path.abspath("./ldm"))
config = OmegaConf.load(args.tokenizer.config_path)
pl_sd = torch.load(args.tokenizer.ckpt_path, map_location="cpu")
sd = pl_sd["state_dict"]
_tokenizer = instantiate_from_config(config.model)
_tokenizer.load_state_dict(sd, strict=False)
_tokenizer.eval()
_tokenizer.requires_grad_(False)
_tokenizer = _tokenizer.to(device)
@torch.no_grad()
def tokenizer_decode_fn(indices, mini_bs=25):
if hasattr(args.tokenizer, "mask_token_id"):
mask_id = getattr(args.tokenizer, "mask_token_id", None)
if mask_id is not None:
reindex_id = getattr(args.tokenizer, "mask_token_reindex", mask_id)
indices[indices == mask_id] = reindex_id
shape_ = indices.shape
if len(shape_) == 4:
b, t, h, w = shape_
indices = rearrange(indices, "b t h w -> (b t) (h w)")
elif len(shape_) == 3:
b, h, w = shape_
indices = rearrange(indices, "b h w -> b (h w)")
else:
raise ValueError("Unsupported indices shape for decode")
imgs = []
start_idx = 0
while start_idx < len(indices):
chunk = indices[start_idx : start_idx + mini_bs].long()
chunk_img = _tokenizer.decode_tokens(chunk)
imgs.append(chunk_img)
start_idx += mini_bs
img = torch.cat(imgs, dim=0)
if len(shape_) == 4:
img = rearrange(img, "(b t) c h w -> b t c h w", b=b, t=t)
img = img.clamp(-1, 1)
img = ((img + 1) * 0.5 * 255.0).to(torch.uint8)
return img
return tokenizer_decode_fn
def decode_faceforensics_h5_to_mp4_parallel(
h5_path: str,
output_dir: str,
tokenizer_decode_fn,
device,
frames: int,
max_videos: int,
rank: int,
world_size: int,
):
"""
Each rank decodes a subset of videos.
"""
os.makedirs(output_dir, exist_ok=True)
with h5py.File(h5_path, "r") as hf:
start_indices = hf["start_index_list"][()]
total_videos = min(len(start_indices), max_videos)
per_rank = math.ceil(total_videos / world_size)
start_idx = rank * per_rank
end_idx = min(start_idx + per_rank, total_videos)
for i in tqdm(range(start_idx, end_idx), desc=f"Decoding on rank {rank}"):
try:
video_tokens = get_random_consecutive_frames_from_h5(h5_path, i, frames, device)
decoded_frames = tokenizer_decode_fn(video_tokens).squeeze(0).clamp(0, 255).byte()
if decoded_frames.shape[0] < frames:
print(f"Rank {rank}: Video {i} has insufficient frames. Skipping.")
continue
decoded_frames = rearrange(decoded_frames, "t c h w -> t h w c").cpu().numpy()
unique_id = f"video_{i}_rank{rank}_{uuid.uuid4().hex[:4]}"
mp4_path = os.path.join(output_dir, f"{unique_id}.mp4")
write_video(mp4_path, decoded_frames, fps=8)
except Exception as e:
print(f"Rank {rank}: Error processing video {i}: {e}")
continue
@hydra.main(config_path="config", config_name="default", version_base=None)
def main(args):
print_rank_0(f"NCCL_ASYNC_ERROR_HANDLING={os.environ.get('NCCL_ASYNC_ERROR_HANDLING')}")
print_rank_0(f"NCCL_BLOCKING_WAIT={os.environ.get('NCCL_BLOCKING_WAIT')}")
print_rank_0(f"NCCL_TIMEOUT={os.environ.get('NCCL_TIMEOUT')}")
slurm_job_id = os.environ.get("SLURM_JOB_ID")
if slurm_job_id is None:
slurm_job_id = "local"
print_rank_0(f"slurm_job_id: {slurm_job_id}")
accelerator = Accelerator()
device = accelerator.device
rank = accelerator.process_index
world_size = accelerator.num_processes
wandb_run_name = (
f"fvd_eval_{args.data.name}_"
f"{os.path.basename(args.ckpt)}_"
f"{args.dynamic.sampler}_"
f"{args.dynamic.sampling_horizon}_frames"
f"{args.dynamic.n_context_frames}_"
f"{slurm_job_id}"
)
if rank == 0 and getattr(args, "use_wandb", False):
wandb.init(
project=args.wandb.project,
entity=args.wandb.entity,
config=OmegaConf.to_container(args, resolve=True),
name=wandb_run_name,
dir="./wandb",
)
model = get_model(args)
state_dict = torch.load(args.ckpt, map_location=lambda storage, loc: storage)
_model_dict = state_dict["model"]
print(f"_model_dict keys: {_model_dict.keys()}")
_model_dict = {k.replace("module.", ""): v for k, v in _model_dict.items()}
model.load_state_dict(_model_dict)
model.to(device)
requires_grad(model, False)
model.eval()
print_rank_0(f"Loaded checkpoint from {args.ckpt}")
if args.tokenizer.name not in ["sd_vq_f8", "sd_vq_f8_size512"]:
raise ValueError(f"Unsupported tokenizer name: {args.tokenizer.name}")
tokenizer_decode_fn = load_sd_vq_f8_tokenizer(args, device)
real_videos_dir = f"real_videos_{args.data.name}_{args.gt_video_frames}"
real_videos_dir = os.path.join(args.sample_dir, real_videos_dir)
accelerator.wait_for_everyone()
existing_videos = []
if os.path.isdir(real_videos_dir):
existing_videos = [f for f in os.listdir(real_videos_dir) if f.endswith(".mp4")]
if len(existing_videos) < args.num_fid_samples:
if os.path.exists(real_videos_dir) and rank == 0:
shutil.rmtree(real_videos_dir)
accelerator.wait_for_everyone()
os.makedirs(real_videos_dir, exist_ok=True)
accelerator.wait_for_everyone()
decode_faceforensics_h5_to_mp4_parallel(
h5_path=args.data.h5_path,
output_dir=real_videos_dir,
tokenizer_decode_fn=tokenizer_decode_fn,
device=device,
frames=args.gt_video_frames,
max_videos=args.num_fid_samples,
rank=rank,
world_size=world_size,
)
accelerator.wait_for_everyone()
os.makedirs(real_videos_dir, exist_ok=True)
accelerator.wait_for_everyone()
real_video_files = sorted([
f for f in os.listdir(real_videos_dir)
if f.endswith(".mp4")
])[:args.num_fid_samples]
per_gpu = math.ceil(len(real_video_files) / world_size)
my_real_videos = real_video_files[rank * per_gpu : (rank + 1) * per_gpu]
training_losses_fn, sample_fn = vq_get_dynamic(args, device, is_train=False)
def model_fn(*inputs, **kwargs):
return model.forward_without_cfg(*inputs, **kwargs)
if hasattr(args, "use_existing_sample_dir"):
gen_videos_dir = os.path.join(args.sample_dir, args.use_existing_sample_dir)
if not os.path.isdir(gen_videos_dir):
raise ValueError(f"Prepared gen_videos_dir does not exist: {gen_videos_dir}")
print_rank_0(f"Skipping generation. Using existing sample videos at {gen_videos_dir}.")
else:
gen_videos_dir = (
f"gen_videos_{args.data.name}_"
f"{os.path.basename(args.ckpt)}_"
f"{slurm_job_id}_"
f"{args.dynamic.sampler}_{args.dynamic.sampling_timesteps}_"
f"{args.dynamic.sampling_horizon}_frames_"
f"context_{args.dynamic.n_context_frames}_"
f"stride_{args.dynamic.sampling_window_stride}_"
)
gen_videos_dir = os.path.join(args.sample_dir, gen_videos_dir)
if rank == 0:
if os.path.exists(gen_videos_dir):
shutil.rmtree(gen_videos_dir)
accelerator.wait_for_everyone()
# Ensure the gen_videos_dir is created on all ranks
os.makedirs(gen_videos_dir, exist_ok=True)
accelerator.wait_for_everyone()
# times = []
# loop_iter = range(len(my_real_videos))
# pbar = tqdm(loop_iter, desc="Generating Fake Videos") if rank == 0 else loop_iter
my_indices = list(range(len(my_real_videos)))
loop_iter = range(0, len(my_indices), args.data.sample_fid_bs)
pbar = tqdm(loop_iter, desc="Generating Fake Videos", disable=(rank != 0))
times = []
for chunk_start in pbar:
start_time = time.time()
# Slice the next chunk of indices
chunk_end = min(chunk_start + args.data.sample_fid_bs, len(my_indices))
batch_indices = my_indices[chunk_start:chunk_end]
B = len(batch_indices) # actual batch size (could be smaller at the end)
if B == 0:
continue
if args.dynamic.n_context_frames > 0:
batch_context_list = []
for i_local in batch_indices:
video_idx = i_local + rank * per_gpu
context_override = None
full_context = get_random_consecutive_frames_from_h5(
args.data.h5_path,
video_idx,
args.data.video_frames,
device,
start_index_override=context_override
)
context = full_context[:, :args.dynamic.n_context_frames]
batch_context_list.append(context)
context_indices = torch.cat(batch_context_list, dim=0)
else:
context_indices = None
sample_size = (
B,
args.data.video_frames,
args.tokenizer.latent_size,
args.tokenizer.latent_size,
)
with torch.no_grad():
chains = sample_fn(
sample_size=sample_size,
model=model_fn,
context_indices=context_indices,
)
codes = chains[-1]
decoded = tokenizer_decode_fn(codes)
for i_in_batch, real_idx in enumerate(batch_indices):
out_video = decoded[i_in_batch]
out_video = rearrange(out_video, "t c h w -> t h w c").cpu().numpy()
unique_id = f"rank{rank}_vid{real_idx}_{uuid.uuid4().hex[:4]}"
mp4_path = os.path.join(gen_videos_dir, f"{unique_id}.mp4")
write_video(mp4_path, out_video, fps=8)
end_time = time.time()
times.append(end_time - start_time)
partial_time = torch.tensor(sum(times), device=device)
partial_count = torch.tensor(len(times), device=device)
total_time = accelerator.reduce(partial_time, reduction="sum")
total_count = accelerator.reduce(partial_count, reduction="sum")
if rank == 0 and total_count.item() > 0:
avg_time = (total_time / total_count).item()
print_rank_0(f"Average sampling time (seconds): {avg_time:.4f}")
if getattr(args, "use_wandb", False):
wandb.log({"avg_sampling_time": avg_time})
accelerator.wait_for_everyone()
if rank == 0:
print_rank_0("Calculating FVD...")
gen_video_files = sorted([f for f in os.listdir(gen_videos_dir) if f.endswith(".mp4")])
real_video_files = sorted([f for f in os.listdir(real_videos_dir) if f.endswith(".mp4")])
final_count = min(len(gen_video_files), len(real_video_files))
gen_video_files = gen_video_files[:final_count]
real_video_files = real_video_files[:final_count]
temp_real_dir = os.path.join(args.sample_dir, f"temp_real_videos_{slurm_job_id}")
temp_gen_dir = os.path.join(args.sample_dir, f"temp_gen_videos_{slurm_job_id}")
if os.path.exists(temp_real_dir):
shutil.rmtree(temp_real_dir)
if os.path.exists(temp_gen_dir):
shutil.rmtree(temp_gen_dir)
os.makedirs(temp_real_dir, exist_ok=True)
os.makedirs(temp_gen_dir, exist_ok=True)
for video in real_video_files:
shutil.copy(os.path.join(real_videos_dir, video), temp_real_dir)
for video in gen_video_files:
shutil.copy(os.path.join(gen_videos_dir, video), temp_gen_dir)
print_rank_0(f"Final # real videos: {len(real_video_files)}")
print_rank_0(f"Final # generated videos: {len(gen_video_files)}")
results = calculate_fvd_github(
gen_dir=temp_gen_dir,
gt_dir=temp_real_dir,
resolution=args.data.image_size,
frames=args.data.video_frames,
sampling=args.sampling,
)
print_rank_0("FVD Results:", results)
if getattr(args, "use_wandb", False):
wandb.log({"FVD": results.get("fvd", None)})
if getattr(args, "remove_videos_after", False):
for d in [temp_real_dir, temp_gen_dir, gen_videos_dir]:
shutil.rmtree(d, ignore_errors=True)
print_rank_0("Removed video directories.")
print_rank_0("Sampling and FVD calculation completed.")
if __name__ == "__main__":
main()