|
6 | 6 | from collections import defaultdict |
7 | 7 |
|
8 | 8 | from .ggml import GGMLQuantizationType |
9 | | -from .utils import AttrDict |
| 9 | +from .utils import AttrDict, IdentDict |
10 | 10 | from .loader import GgufFile |
11 | 11 | from .compute import GgmlCompute |
12 | 12 |
|
@@ -38,11 +38,11 @@ def resolve_field(key, *dicts): |
38 | 38 | else: |
39 | 39 | return key |
40 | 40 |
|
41 | | -def eval_parameter(expr, gguf): |
| 41 | +def eval_parameter(expr, fields, tensors): |
42 | 42 | if type(expr) is str: |
43 | | - return gguf.get_field(expr) |
| 43 | + return fields[expr] |
44 | 44 | elif callable(expr): |
45 | | - return expr(gguf) |
| 45 | + return expr(fields, tensors) |
46 | 46 | return expr |
47 | 47 |
|
48 | 48 | ## |
@@ -92,42 +92,50 @@ def from_values(cls, values=None, backend=None, framework=None, **params): |
92 | 92 | return self |
93 | 93 |
|
94 | 94 | @classmethod |
95 | | - def from_gguf(cls, gguf, backend=None, framework=None, **params): |
96 | | - # get metadata from gguf |
97 | | - weights = { |
| 95 | + def from_gguf(cls, gguf, names=None, backend=None, framework=None, **params): |
| 96 | + # make name mappers |
| 97 | + names = IdentDict({} if names is None else names) |
| 98 | + rnames = IdentDict({v: k for k, v in names.items()}) |
| 99 | + |
| 100 | + # map field and tensor names |
| 101 | + fields0 = {names[k]: v for k, v in gguf.fields.items()} |
| 102 | + weights0 = {names[k]: v for k, v in gguf.tensors.items()} |
| 103 | + |
| 104 | + # get weights metadata |
| 105 | + weights0_meta = { |
98 | 106 | key: (ttype, shape) |
99 | | - for key, (ttype, shape, array) in gguf.tensors.items() |
| 107 | + for key, (ttype, shape, array) in weights0.items() |
100 | 108 | } |
101 | 109 |
|
102 | 110 | # get type hints for model |
103 | 111 | hints = get_type_hints(cls) |
104 | 112 |
|
105 | 113 | # get default parameters |
106 | 114 | params0 = { |
107 | | - k: eval_parameter(v.field, gguf) |
| 115 | + k: eval_parameter(v.field, fields0, weights0_meta) |
108 | 116 | for k, v in hints.items() if type(v) is Parameter |
109 | 117 | } |
110 | 118 |
|
111 | 119 | # get state fields |
112 | 120 | states = { |
113 | | - k: eval_parameter(v.field, gguf) |
| 121 | + k: eval_parameter(v.field, fields0, weights0_meta) |
114 | 122 | for k, v in hints.items() if type(v) is State |
115 | 123 | } |
116 | 124 |
|
117 | | - # resolve tensor shapes |
118 | | - tensors = { |
119 | | - k: (t.ttype, [resolve_field(x, params, params0, gguf.fields) for x in t.shape]) |
| 125 | + # resolve input shapes |
| 126 | + inputs_meta = { |
| 127 | + k: (t.ttype, [resolve_field(x, params, params0, fields0) for x in t.shape]) |
120 | 128 | for k, t in hints.items() if type(t) is Tensor |
121 | 129 | } |
122 | 130 |
|
123 | 131 | # create model and graph |
124 | 132 | self = cls( |
125 | | - gguf.fields | params0 | params, weights | tensors, |
| 133 | + fields0 | params0 | params, weights0_meta | inputs_meta, |
126 | 134 | states, backend=backend, framework=framework |
127 | 135 | ) |
128 | 136 |
|
129 | 137 | # assign tensors on backend |
130 | | - for name, (ttype, shape, tensor) in gguf.tensors.items(): |
| 138 | + for name, (ttype, shape, tensor) in weights0.items(): |
131 | 139 | self.set_input(name, tensor) |
132 | 140 |
|
133 | 141 | # return model |
|
0 commit comments