|
| 1 | +"""Test the sympad modules 1D, 2D and 3D padding.""" |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import pytest |
| 5 | +import torch |
| 6 | +from sympad import _pad_symmetric_1d, pad_symmetric |
| 7 | + |
| 8 | + |
| 9 | +@pytest.mark.parametrize("size", [[5], [6], [9], [3]]) |
| 10 | +@pytest.mark.parametrize( |
| 11 | + "pad_list", |
| 12 | + [(1, 4), (2, 2), (3, 3), (4, 1), (5, 0), (0, 5), (0, 0), (1, 1), (3, 1), (1, 3)], |
| 13 | +) |
| 14 | +def test_pad_symmetric_1d(size: list[int], pad_list: tuple[int, int]) -> None: |
| 15 | + """Test high-dimensional symetric padding.""" |
| 16 | + array = np.random.randint(0, 9, size=size) |
| 17 | + my_pad = _pad_symmetric_1d(torch.from_numpy(array), pad_list, 0) |
| 18 | + np_pad = np.pad(array, pad_list, mode="symmetric") |
| 19 | + assert np.allclose(my_pad.numpy(), np_pad) |
| 20 | + |
| 21 | + |
| 22 | +@pytest.mark.parametrize("size", [[6, 5], [5, 6], [5, 5], [9, 9], [3, 3], [4, 4]]) |
| 23 | +@pytest.mark.parametrize("pad_list", [[(1, 4), (4, 1)], [(2, 2), (3, 3)]]) |
| 24 | +def test_pad_symmetric_2d(size: list[int], pad_list: list[tuple[int, int]]) -> None: |
| 25 | + """Test high-dimensional symetric padding.""" |
| 26 | + array = np.random.randint(0, 9, size=size) |
| 27 | + my_pad = pad_symmetric(torch.from_numpy(array), pad_list) |
| 28 | + np_pad = np.pad(array, pad_list, mode="symmetric") |
| 29 | + assert np.allclose(my_pad.numpy(), np_pad) |
| 30 | + |
| 31 | + |
| 32 | +@pytest.mark.parametrize("size", [[3, 6, 5], [1, 6, 7]]) |
| 33 | +@pytest.mark.parametrize( |
| 34 | + "pad_list", [[(0, 0), (1, 4), (4, 1)], [(1, 1), (2, 2), (3, 3)]] |
| 35 | +) |
| 36 | +def test_pad_symmetric_3d(size: list[int], pad_list: list[tuple[int, int]]) -> None: |
| 37 | + """Test high-dimensional symetric padding.""" |
| 38 | + array = np.random.randint(0, 9, size=size) |
| 39 | + my_pad = pad_symmetric(torch.from_numpy(array), pad_list) |
| 40 | + np_pad = np.pad(array, pad_list, mode="symmetric") |
| 41 | + assert np.allclose(my_pad.numpy(), np_pad) |
| 42 | + |
| 43 | + |
| 44 | +def test_pad_symmetric_small() -> None: |
| 45 | + """Test high-dimensional symetric padding.""" |
| 46 | + array = np.random.randint(0, 9, size=(2, 2)) |
| 47 | + my_pad = pad_symmetric(torch.from_numpy(array), ((1, 1), (1, 1))) |
| 48 | + np_pad = np.pad(array, ((1, 1), (1, 1)), mode="symmetric") |
| 49 | + assert np.allclose(my_pad.numpy(), np_pad) |
| 50 | + |
| 51 | + |
| 52 | +@pytest.mark.parametrize( |
| 53 | + "pad_list", |
| 54 | + [ |
| 55 | + ((6, 6), (6, 6)), |
| 56 | + ((5, 6), (6, 5)), |
| 57 | + ((6, 5), (5, 6)), |
| 58 | + ((5, 5), (5, 5)), |
| 59 | + ((7, 7), (7, 7)), |
| 60 | + ], |
| 61 | +) |
| 62 | +@pytest.mark.parametrize("size", [(3, 3), (4, 4), (2, 2), (1, 1), (2, 1), (2, 1)]) |
| 63 | +def test_pad_symmetric_wrap(pad_list, size: tuple[int, int]) -> None: |
| 64 | + """Test high-dimensional symetric padding.""" |
| 65 | + array = np.random.randint(0, 9, size=size) |
| 66 | + my_pad = pad_symmetric(torch.from_numpy(array), pad_list) |
| 67 | + np_pad = np.pad(array, pad_list, mode="symmetric") |
| 68 | + assert np.allclose(my_pad.numpy(), np_pad) |
0 commit comments