-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_c_ppo.py
351 lines (285 loc) · 12.4 KB
/
train_c_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import gym
import faultAlarm
from gym import wrappers
from faultAlarm.envs.faultAlarm import FaultAlarmEnv
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
import pandas as pd
import numpy as np
import random
import torch
from CausalReinforcementLearning.c_ppo import C_PPO
from CausalReinforcementLearning.causal_learner import CausalLearner
import argparse
import networkx as nx
import pickle
import os
from graphviz import Digraph
def plot_g(nodes, g_mat, name):
dag_2 = Digraph("event", format='png')
dag_2.attr('node', shape='circle')
node_name_arr = []
# 画点
for i in nodes:
node_name = str(i)
dag_2.node(node_name, node_name)
# 画dag
for i in nodes:
for j in nodes:
if g_mat[i, j] != 0:
dag_2.edge(str(i), str(j))
dag_2.render(filename=name, view=False)
parser = argparse.ArgumentParser(description="data")
# training
parser.add_argument('-c', '--cuda', type=int, default=0)
parser.add_argument('-s', '--seed', type=int, default=40)
parser.add_argument('-me', '--max_episodes', type=int, default=1000)
parser.add_argument('-mel', '--max_ep_len', type=int, default=100)
parser.add_argument('-sz', '--subset_size', type=int, default=8)
parser.add_argument('-reg', '--reg_parm', type=float, default=0.005)
parser.add_argument('-rd', '--random_g', type=int, default=0)
args = parser.parse_args()
max_episodes = args.max_episodes
max_ep_len = args.max_ep_len
cuda = args.cuda
random_seed = args.seed
subset_size = args.subset_size
reg_parm = args.reg_parm
random_g = args.random_g
begin_steps = 1024
hyperparameters = {
"C_PPO": {
"gamma": 0.99, # discount factor
"lr_actor": 0.0003, # learning rate for actor network
"lr_critic": 0.0003, # learning rate for critic network
"eps_clip": 0.2, # clip parameter for PPO
"eps_causal": 0.2,
"update_timestep": 256, # update policy every n timesteps
"K_epochs": 50, # update policy for K epochs in one PPO update
"batch_size": 64,
"hidden_units": 128,
"hidden_size": 128,
"begin_update_timestep": 512,
"is_update_by_single_step": False,
"has_continuous_action_space": False,
"clip_grad_param": 0.5, # 对梯度的clip
"is_clip_grad": True,
"reward_scale": 1.0,
"update_mode": "soft",
"tau": 0.005, # soft update target network
"target_hard_update": 100,
"normalize_advantage": True # 对标准化
}
}
algorithm = 'C_PPO'
agent_class = C_PPO
agent_config = hyperparameters[algorithm]
model_path = f'faultAlarm/EnvModel/real_model.pkl'
env = FaultAlarmEnv(model_path=model_path,return_obs=True)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n # discrete action
# set device to cpu or cuda
device = torch.device('cpu')
if torch.cuda.is_available():
device = torch.device('cuda:' + str(cuda))
torch.cuda.empty_cache()
print("Device set to : " + str(torch.cuda.get_device_name(device)))
else:
print("Device set to : cpu")
if random_seed:
print("setting random seed to ", random_seed)
torch.manual_seed(random_seed)
env.seed(random_seed)
np.random.seed(random_seed)
random.seed(random_seed)
print("algorithm : ", algorithm)
print("cuda : ", cuda)
print("state space dimension : ", state_dim)
print("action space dimension : ", action_dim)
print("max_episodes : ", max_episodes)
print("max_ep_len : ", max_ep_len)
# tensorboard
output_dir = "logs_tensorboard"
if not os.path.exists(output_dir):
os.mkdir(output_dir)
dir_name = f"./{output_dir}/env_real_{algorithm}_seed_{random_seed}_ep_{max_episodes}_rg_{str(random_g)}_reg_{str(reg_parm)}"
print("writing in ", dir_name)
writer = SummaryWriter(dir_name)
if random_g == 1:
agent_config["eps_causal"] = 0.6
else:
agent_config["eps_causal"] = 0.3
causal_begin_steps = agent_config["begin_update_timestep"]
# init agent
agent = agent_class(state_dim=state_dim,
action_dim=action_dim,
config=agent_config,
device=device)
dataset_path = f'faultAlarm/data/synthetic_data/real_model_sample_size_4000_seed_{random_seed}'
causal_learner = CausalLearner(env.node_num, env.event_num, subset_size, dataset_path, random_g,random_seed)
# causal learning
node_num, event_num = causal_learner.node_num, causal_learner.event_num
causal_info = causal_learner.learn_causal_graph()
max_hop = causal_info["max_hop"]
event_order, subset_size = causal_info["event_order"], causal_info["subset_size"]
alpha_mat, mu, edge_mat = causal_info["alpha_mat"], causal_info["mu"], causal_info["edge_mat"]
init_edge_mat = edge_mat.copy()
topology = env.topology
topology_mat = nx.to_scipy_sparse_array(topology).todense().astype('float')
topo_k = np.zeros([node_num, node_num])
for k in range(max_hop):
topo_k += topology_mat ** k
topology_mat = np.array(topology_mat)
# node order based on topology graph
neighbor = list()
node_order = []
for i in range(node_num):
neighbor.append((sum(topology_mat[i]), i))
neighbor.sort(reverse=True)
for j in range(len(neighbor)):
node_order.append(int(neighbor[j][1]))
intervention_mat = np.zeros((event_num, event_num, 3))
avg_intervention_mat = np.zeros((event_num, event_num))
# training loop
i_episode, i_update, time_step = 1, 0, 0
i_causal_update = 0
precision,recall,f1 = causal_info['precision'],causal_info['recall'],causal_info['f1']
print(f"THP result, F1 {f1}, Precision {precision}, Recall {recall}")
new_f1, new_precision, new_recall = f1, precision,recall
thp_new_alpha_mat = alpha_mat.copy()
thp_new_edge_mat = edge_mat.copy()
writer.add_scalar('CausalResult/precision', precision, i_causal_update)
writer.add_scalar('CausalResult/recall', recall, i_causal_update)
writer.add_scalar('CausalResult/f1', f1, i_causal_update)
writer.add_scalar('CausalResult/epi_precision', precision, i_episode)
writer.add_scalar('CausalResult/epi_recall', recall, i_episode)
writer.add_scalar('CausalResult/epi_f1', f1, i_episode)
while i_episode <= max_episodes:
obs, state = env.reset()
ep_rewards = 0 # Record the cumulative rewards for each episode
ep_cf_reward = 0
ep_new_reward = 0
ep_steps = 0 # Record each episode steps
ep_cum_alarms = 0 # Record the cumulative alarms for each episode
ep_avg_alarms = 0
for t in range(1, max_ep_len + 1):
current_time = env.current_time
action, action_prob = agent.select_action(state, node_order, event_order, subset_size)
# interact with the environment
obs_, state_, reward, done, info = env.step(action)
ep_cum_alarms += info["alarm_num"]
ep_rewards += reward
# saving experience
agent.buffer.add(state, action, reward, state_, done)
# Record the change in the number of alarms for child events before and after the intervention
node = int(action / event_num)
event_type = int(action % event_num)
intervention_mat[event_type, :, 2] += 1
# find neighbours base on topology mat
neighbours = set(np.array(np.nonzero(topo_k[node])).flatten())
neighbours.add(node)
possible_child_events = set()
for j in range(event_num):
for i in neighbours:
if (i, j) != (node, event_type):
possible_child_events.add((i, j))
before_do = np.zeros(event_num)
after_do = np.zeros(event_num)
for row in obs.iterrows():
n = row[1]['Node']
e = row[1]['Event']
if (n, e) in possible_child_events:
before_do[e] += 1
for row in obs_.iterrows():
n = row[1]['Node']
e = row[1]['Event']
e_start_time = row[1]['Start Time Stamp']
if (n, e) in possible_child_events:
after_do[e] += 1
# event_type -> k, k is every possible event type
for k in range(event_num):
if k == event_type:
intervention_mat[event_type, k, 1] += 1
continue
e_num = before_do[k] - after_do[k]
intervention_mat[event_type, k, 0] += e_num
intervention_mat[event_type, k, 1] += 1
# ---------------------------------- update edges ------------------------------------------------------------
if intervention_mat[event_type, 0, 1] >= 3:
is_update = False
i = event_type
avg_intervention_mat[i,:] = intervention_mat[i, :, 0] / intervention_mat[i, :, 1]
avg_intervention_vector = avg_intervention_mat[i,:].copy()
max_index = np.argmax(avg_intervention_vector)
# remove edge first
remove_index = np.where(avg_intervention_vector<0)[0]
for r in remove_index:
if edge_mat[i, r] != 0:
edge_mat[i, r] = 0
is_update = True
# then add edge
add_index = np.flip(np.argsort(avg_intervention_vector))
count_edge = len(np.nonzero(edge_mat[i, :])[0])
for j in add_index:
# remove edge
if avg_intervention_mat[i, j] < 0 and init_edge_mat[i, j] == 0 and edge_mat[i, j] != 0:
edge_mat[i, j] = 0
is_update = True
# add edge
if avg_intervention_mat[i, j] > 0 and edge_mat[i, j] == 0:
edge_mat[i, j] = 1
is_update = True
edge_matrix = np.matrix(edge_mat)
# check the new graph is a DAG or not
g = nx.from_numpy_array(edge_matrix)
is_acyclic = nx.is_directed_acyclic_graph(g)
if is_acyclic:
edge_mat[i, j] = 0
is_update = False
if is_update:
i_causal_update += 1
recall, precision, f1 = causal_learner.get_performance(edge_mat, env.edge_mat)
thp_new_edge_mat, thp_new_alpha_mat, new_f1, new_precision, new_recall = causal_learner.update_edge_mat(edge_mat.copy(),reg_parm)
f1,precision, recall = new_f1, new_precision, new_recall
thp_causal_order = causal_learner.estimate_causal_order(thp_new_edge_mat.copy())
thp_causal_order = np.flipud(thp_causal_order)
thp_event_order = thp_causal_order
causal_order = causal_learner.estimate_causal_order(edge_mat.copy())
causal_order = np.flipud(causal_order)
event_order = causal_order
if i_causal_update >15:
event_order = thp_event_order
if i_causal_update % 10 == 0:
print(f'i_causal_update {i_causal_update}, f1 {f1},precison {precision},recall {recall}')
writer.add_scalar('CausalResult/precision', precision, i_causal_update)
writer.add_scalar('CausalResult/recall', recall, i_causal_update)
writer.add_scalar('CausalResult/f1', f1, i_causal_update)
state = state_
obs = obs_
time_step += 1
ep_steps += 1
# update agent
if time_step > agent_config["begin_update_timestep"]:
if time_step % agent_config["update_timestep"] == 0:
loss, pg_loss, value_loss, entropy_loss = agent.update()
i_update += 1
if done: # break; if the episode is over
break
ep_avg_alarms = int(ep_cum_alarms / ep_steps) if ep_cum_alarms != 0 else ep_avg_alarms
causal_order = causal_learner.estimate_causal_order(edge_mat.copy())
causal_order = np.flipud(causal_order)
if (i_episode-1) % 20==0:
print("Episode: ", i_episode,
" reward: ", round(ep_rewards, 2),
" ep_steps: ", ep_steps,
" avg alarm nums: ", ep_avg_alarms,
" f1: ", round(new_f1, 4),
)
writer.add_scalar('Reward/Reward', ep_rewards, i_episode)
writer.add_scalar('Steps/Steps', ep_steps, i_episode)
writer.add_scalar('Alarms/Avg Alarms', ep_avg_alarms, i_episode)
writer.add_scalar('CausalResult/epi_precision', new_precision, i_episode)
writer.add_scalar('CausalResult/epi_recall', new_recall, i_episode)
writer.add_scalar('CausalResult/epi_f1', new_f1, i_episode)
i_episode += 1
writer.close()