-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrasch_main.py
46 lines (40 loc) · 1.48 KB
/
rasch_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from tqdm import tqdm
from rasch import Rasch
import pickle
def main():
with open('./assist_train_for_individual_model_1111.txt','rt', encoding='utf8') as f:
raw_data = f.readlines()
container = []
triplet_data = []
student_list = []
whole_question_list = []
for idx, line in tqdm(enumerate(raw_data), desc="preprocess data"):
if idx %3 == 0:
student = line.strip()
container.append(student)
student_list.append(student)
elif idx %3 == 1:
question_list = line.strip().split(',')
container.append(question_list)
whole_question_list.extend(question_list)
elif idx %3 == 2 :
response_list = line.strip().split(',')
container.append(response_list)
if len(container) >= 3 :
for ques, resp in zip(container[1], container[2]):
triplet_data.append((container[0], ques, resp))
container.clear()
student_list = list(set(student_list))
whole_question_list = list(set(whole_question_list))
model = Rasch(
student_list = student_list,
question_list=whole_question_list,
score_triplet_list= triplet_data)
model.fit()
params = model.get_params()
# print(params)
print(f"num student {len(student_list)} / num questions {len(whole_question_list)}")
with open('irt_result.pkl','wb') as f:
pickle.dump(params, f)
if __name__ == "__main__":
main()