-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_data.py
381 lines (284 loc) · 16.5 KB
/
get_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import time
import os
from dataclasses import dataclass
import numpy as np
import torch
import gc
import h5py
import json
from transformers import AutoTokenizer
from sentence_transformers import SentenceTransformer
import scipy.cluster.hierarchy as sch
from scipy.spatial.distance import pdist
import matplotlib.pyplot as plt
sae_dim = 40960
latents_path = "../../automated_interpretability/latent_data"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
@dataclass
class TuringLLMConfig:
block_size: int = 1024
vocab_size: int = 50304
n_layer: int = 12
n_head: int = 16
n_embd: int = 1024
hidden_size: int = 4096
norm_eps: float = 1e-5
def getDatasetPathsData():
with open('./input_data/synthetic_dataset/dataset_paths.txt', 'r') as f:
dataset_paths = "<|SPLIT|>".join(f.read().splitlines())
dataset_path_names = {}
def getDatasetPathNames(curr_path, dataset_path_names):
path_contents = os.listdir(curr_path)
path_contents = sorted(path_contents, key=lambda name: (".txt" in name, name))
for name in path_contents:
if name.split(".")[-1] == "txt":
if "items.txt" in path_contents:
with open(f'{curr_path}/items.txt', 'r', encoding='utf-8') as f:
items = [item.strip() for item in f.read().splitlines() if len(item.strip()) != 0]
curr_path_excluding_front = "/".join(curr_path.split("/")[6:])
for i in range(len(items)):
dataset_path_names[str(curr_path_excluding_front + "/items/" + str(i))] = str(items[i])
elif "public_figures.txt" in path_contents:
with open(f'{curr_path}/public_figures.txt', 'r', encoding='utf-8') as f:
public_figures = [item.strip() for item in f.read().splitlines() if len(item.strip()) != 0]
curr_path_excluding_front = "/".join(curr_path.split("/")[6:])
for i in range(len(public_figures)):
dataset_path_names[str(curr_path_excluding_front + "/public_figures/" + str(i))] = str(public_figures[i])
elif "short_stories.txt" in path_contents:
with open(f'{curr_path}/short_stories.txt', 'r', encoding='utf-8') as f:
short_stories = [item.strip() for item in f.read().splitlines() if len(item.strip()) != 0]
curr_path_excluding_front = "/".join(curr_path.split("/")[6:])
for i in range(len(short_stories)):
dataset_path_names[str(curr_path_excluding_front + "/items/" + str(i))] = str(short_stories[i])
dataset_path_names[str(curr_path_excluding_front + "/short_stories/" + str(i))] = str(short_stories[i])
elif "." not in name:
dataset_path_names = getDatasetPathNames(curr_path + "/" + name, dataset_path_names)
return dataset_path_names
dataset_path_names = getDatasetPathNames("./input_data/synthetic_dataset", dataset_path_names)
dataset_paths_data = [False for _ in range(len(dataset_paths.split("<|SPLIT|>")))]
for i, dataset_path in enumerate(dataset_paths.split("<|SPLIT|>")):
dataset_path = dataset_path[5:].split("/")[2:]
new_dataset_path = dataset_path[0]
for j, folder in enumerate(dataset_path[1:]):
if str("/".join(dataset_path[:j+1]) + "/" + folder) in dataset_path_names:
new_dataset_path += "/" + dataset_path_names[str("/".join(dataset_path[:j+1]) + "/" + folder)]
else:
new_dataset_path += "/" + folder
dataset_path_list = [dataset_path[0]]
for folder in new_dataset_path.split("/")[1:]:
if folder == "items" or folder.endswith(".txt") or folder.isnumeric():
continue
if folder[-1].isdigit():
folder = folder[:-1]
if folder not in dataset_path_list:
dataset_path_list.append(folder)
dataset_paths_data[i] = dataset_path_list
return dataset_paths_data
def collectDataForSpecificToken(layer_top_tokens_sorted, layer_top_values_sorted, folder_to_save, tokenizer):
start_time = time.time()
layer_top_tokens = None
top_k_token = 6
for latent_index in range(layer_top_tokens_sorted.shape[0]):
layer_tokens_flat = layer_top_tokens_sorted[latent_index].clone().flatten()
layer_values_flat = layer_top_values_sorted[latent_index].clone().flatten()
layer_tokens_flat[layer_values_flat == 0] = -1
unique_latent_tokens = torch.unique(layer_tokens_flat)
unique_latent_tokens = unique_latent_tokens[unique_latent_tokens != -1]
unique_latent_tokens_count = unique_latent_tokens.shape[0]
if unique_latent_tokens_count < top_k_token:
if layer_top_tokens is None:
layer_top_tokens = torch.full((1, top_k_token), -1, device=device)
else:
layer_top_tokens = torch.cat((layer_top_tokens, torch.full((1, top_k_token), -1, device=device)), dim=0)
continue
mask = layer_tokens_flat != -1
layer_tokens_flat_clean = layer_tokens_flat[mask]
layer_values_flat_clean = layer_values_flat[mask]
summed_values = torch.bincount(layer_tokens_flat_clean, weights=layer_values_flat_clean)
unique_latent_values = summed_values[unique_latent_tokens]
_, topk_indices = torch.topk(unique_latent_values, top_k_token)
top_tokens = unique_latent_tokens[topk_indices].unsqueeze(0)
if layer_top_tokens is None:
layer_top_tokens = top_tokens
else:
layer_top_tokens = torch.cat((layer_top_tokens, top_tokens), dim=0)
if (latent_index+1) % 4096 == 0:
print(f" Processed Latent {latent_index+1} Duration: {time.time() - start_time:.2f}s", end="\r")
print("")
# Display Preview of Results
print(" Preview of Results:")
for i in range(8):
print(" ", [tokenizer.decode([token]) for token in layer_top_tokens[i] if token != -1])
# Save
print(" Saving layer_top_tokens.h5")
with h5py.File(f"{folder_to_save}/layer_top_tokens.h5", "w") as h5_file:
h5_file.create_dataset("data", data=layer_top_tokens.cpu())
def collectDataForConnectingTokens(layer_top_tokens_sorted, layer_top_values_sorted, folder_to_save, tokenizer):
start_time = time.time()
layer_top_token_relationships = None
top_k_token_relationships = 3
for latent_index in range(layer_top_tokens_sorted.shape[0]):
layer_tokens = layer_top_tokens_sorted[latent_index].clone()
layer_values = layer_top_values_sorted[latent_index].clone()
layer_tokens[layer_values == 0] = -1
unique_latent_tokens = torch.unique(layer_tokens.flatten())
unique_latent_tokens = unique_latent_tokens[unique_latent_tokens != -1]
unique_latent_tokens_count = unique_latent_tokens.shape[0]
if unique_latent_tokens_count < top_k_token_relationships:
if layer_top_token_relationships is None:
layer_top_token_relationships = torch.full((1, top_k_token_relationships, 2), -1, device=device)
else:
layer_top_token_relationships = torch.cat((layer_top_token_relationships, torch.full((1, top_k_token_relationships, 2), -1, device=device)), dim=0)
continue
frequency_matrix = torch.zeros((unique_latent_tokens_count, unique_latent_tokens_count), dtype=torch.int8, device=device)
for i, sequence in enumerate(layer_tokens):
if i < 24:
token_mask = torch.isin(unique_latent_tokens, sequence)
frequency_matrix += token_mask.unsqueeze(0) & token_mask.unsqueeze(1)
frequency_matrix.fill_diagonal_(0)
frequency_matrix = torch.triu(frequency_matrix, diagonal=1)
frequency_matrix_flat = frequency_matrix.flatten()
_, indices = torch.topk(frequency_matrix_flat, k=top_k_token_relationships)
rows = indices // frequency_matrix.size(1)
cols = indices % frequency_matrix.size(1)
top_k_indices = torch.stack((rows, cols), dim=1)
top_token_relationships = unique_latent_tokens[top_k_indices].unsqueeze(0)
if layer_top_token_relationships is None:
layer_top_token_relationships = top_token_relationships
else:
layer_top_token_relationships = torch.cat((layer_top_token_relationships, top_token_relationships), dim=0)
if (latent_index+1) % 4096 == 0:
print(f" Processed Latent {latent_index+1} Duration: {time.time() - start_time:.2f}s", end="\r")
print("")
# Display Preview of Results
print(" Preview of Results:")
for i in range(8):
print(" ", [[tokenizer.decode([token]) for token in tokens if token != -1] for tokens in layer_top_token_relationships[i]])
# Save
print(" Saving top_token_relationships.h5")
with h5py.File(f"{folder_to_save}/top_token_relationships.h5", "w") as h5_file:
h5_file.create_dataset("data", data=layer_top_token_relationships.cpu())
def collectDataForDetectingDatasetTopic(layer_top_dataset_paths, folder_to_save, tokenizer, dataset_paths_data):
start_time = time.time()
text_encoder_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
text_encoder_model = text_encoder_model.to(device)
top_dataset_topics = [["None"] for _ in range(layer_top_dataset_paths.shape[0])]
for latent_index in range(layer_top_dataset_paths.shape[0]):
topics_frequencies = {}
for key in [item for index in layer_top_dataset_paths[latent_index] for item in dataset_paths_data[index]]:
if key not in topics_frequencies:
topics_frequencies[key] = 1
else:
topics_frequencies[key] += 1
topics_sorted = sorted(topics_frequencies, key=lambda x: topics_frequencies[x], reverse=True)
# print("topics_sorted", topics_sorted)
# print("")
sequence_embeddings = text_encoder_model.encode(topics_sorted, device=device)
embeddings_array = np.array(sequence_embeddings)
linkage_matrix = sch.linkage(embeddings_array, method='ward')
# plt.figure(figsize=(10, 7))
# dendrogram = sch.dendrogram(linkage_matrix, labels=topics_sorted)
cluster_labels = sch.fcluster(linkage_matrix, t=2, criterion='maxclust')
cohesion_scores = {}
for cluster_id in np.unique(cluster_labels):
cluster_points = embeddings_array[np.where(cluster_labels == cluster_id)[0]]
if len(cluster_points) > 1:
pairwise_distances = pdist(cluster_points)
cohesion_scores[cluster_id] = np.mean(pairwise_distances)
else:
cohesion_scores[cluster_id] = 0
most_cohesive_cluster_id = min(cohesion_scores, key=cohesion_scores.get)
most_cohesive_cluster_indices = np.where(cluster_labels == most_cohesive_cluster_id)[0]
most_cohesive_cluster = [topics_sorted[i] for i in most_cohesive_cluster_indices][:16]
top_dataset_topics[latent_index] = [str(topic) for topic in most_cohesive_cluster]
# print("Top Dataset Topics:", most_cohesive_cluster)
# plt.title('Hierarchical Clustering Dendrogram')
# plt.xlabel('Embeddings')
# plt.xticks(rotation=45, ha='right')
# plt.ylabel('Distance')
# plt.show()
if (latent_index+1) % 4096 == 0:
print(f" Processed Latent {latent_index+1} Duration: {time.time() - start_time:.2f}s", end="\r")
print(" Preview of Results:")
for i in range(8):
print(" ", top_dataset_topics[i][:7])
with open(f"{folder_to_save}/top_dataset_topics.jsonl", 'w') as f:
for topics in top_dataset_topics:
f.write(json.dumps(topics) + '\n')
def run():
# Setting Up
print("")
current_path = os.path.dirname(__file__)
os.makedirs("./latent_data", exist_ok=True)
torch.cuda.empty_cache()
gc.collect()
# Check Files Exist
latent_top_sequences_dir_list = os.listdir("./input_data/latent_top_sequences")
for name in ['latents_sae_tokens_from_sequence.h5', 'latents_sae_values_from_sequence.h5']:
if name not in latent_top_sequences_dir_list:
print(f"File Not Found: {name}")
# Tokenizer
tokenizer_model_id = "microsoft/Phi-3-mini-4k-instruct"
try:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_model_id, use_fast=True, local_files_only=True, _fast_init=True)
except:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_model_id, use_fast=True, _fast_init=True)
print("")
# Get Dataset Paths Data
print("Getting Dataset Paths Data...")
dataset_paths_data = getDatasetPathsData()
# Run
for layer_index in range(TuringLLMConfig.n_layer):
start_time = time.time()
folder_to_save = f"./latent_data/{layer_index}"
os.makedirs(folder_to_save, exist_ok=True)
print("")
print(f"Processing Layer {str(layer_index+1).zfill(len(str(TuringLLMConfig.n_layer)))} / {TuringLLMConfig.n_layer}")
# Get Data
print("")
print(" Getting Top Sequences Data...")
with h5py.File("./input_data/latent_top_sequences/latents_sae_tokens_from_sequence.h5", 'r') as h5f:
layer_top_tokens = np.asarray(h5f['tensor'][layer_index, :, :, :])
layer_top_dataset_paths = torch.tensor(layer_top_tokens[..., 0])
layer_top_tokens = torch.tensor(layer_top_tokens[..., 1:]).to(device)
with h5py.File("./input_data/latent_top_sequences/latents_sae_values_from_sequence.h5", 'r') as h5f:
layer_top_values = np.asarray(h5f['tensor'][layer_index, :, :, :])
layer_top_values = torch.tensor(layer_top_values[..., 1:]).to(device)
layer_top_tokens_dedup = layer_top_tokens.clone().to(device)
layer_top_values_dedup = layer_top_values.clone().to(device)
for i in range(1, layer_top_tokens_dedup.shape[-1]):
mask = layer_top_tokens_dedup == layer_top_tokens_dedup[..., i].unsqueeze(-1)
mask = mask & ~(torch.arange(layer_top_tokens_dedup.shape[-1], device=device).unsqueeze(0) >= i)
# Add Duplicate Values
layer_top_values_dedup += mask * layer_top_values_dedup[..., i].unsqueeze(-1).expand(-1, -1, layer_top_values_dedup.shape[-1])
# Remove Duplicates
row_mask = torch.any(mask, dim=-1, keepdim=True).expand(-1, -1, layer_top_tokens_dedup.size(-1)).to(device)
layer_top_tokens_dedup[row_mask & (torch.arange(layer_top_tokens_dedup.size(-1), device=device) == i)] = -1
layer_top_values_dedup[row_mask & (torch.arange(layer_top_values_dedup.size(-1), device=device) == i)] = 0
layer_top_values_sorted, indices = torch.sort(layer_top_values_dedup, dim=-1, descending=True)
layer_top_tokens_sorted = torch.gather(layer_top_tokens_dedup, dim=-1, index=indices)
# # Display Sorted Tokens
# for i in range(12):
# print(tokenizer.batch_decode([token for token in layer_top_tokens_sorted[1][i] if token != -1]))
# print(layer_top_values_sorted[1][i])
# print("")
# print("")
# For SpecificToken()
print("")
print(" For SpecificToken()")
collectDataForSpecificToken(layer_top_tokens_sorted, layer_top_values_sorted, folder_to_save, tokenizer)
# For ConnectingTokens()
print("")
print(" For ConnectingTokens()")
collectDataForConnectingTokens(layer_top_tokens_sorted, layer_top_values_sorted, folder_to_save, tokenizer)
# For DetectingDatasetTopic()
print("")
print(" For DetectingDatasetTopic()")
collectDataForDetectingDatasetTopic(layer_top_dataset_paths, folder_to_save, tokenizer, dataset_paths_data)
# Post Run
duration = time.time() - start_time
print("")
print(f"Duration: {duration:.2f}s")
print("")
print("")
run()