-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClothes classifier.py
55 lines (33 loc) · 1.41 KB
/
Clothes classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np
import tensorflow as tf
from tensorflow.keras.datasets import fashion_mnist
#tensorflow version
print(tf.__version__)
(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()
# Normalização:
X_train = X_train/255.0
X_test = X_test/255.0
# Redes neurais utilizam formato de vetor
#O -1 indica todos os elementos
X_train = X_train.reshape(-1, 28*28)
X_test = X_test.reshape(-1, 28*28)
# Cada um dos 784 pixels será mandado como entrada para a rede neural.
# # Construindo a rede neural:
model = tf.keras.models.Sequential()
print(model)
# Adicionando a primeira camada densa (fully-connected)
model.add(tf.keras.layers.Dense(units=128, activation='relu', input_shape=(784, )))
#Adicionando camada de dropout para zerar 20% dos neurônios da camada.
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(units=64, activation='relu', input_shape=(128, )))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(units=10, activation='softmax'))
model.compile(optimizer='Adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
#Visualizando estrutura da rede neural
print(model.summary())
#Treinando o modelo
model.fit(X_train, y_train, epochs=10)
#Avaliando desempenho do modelo
test_loss, test_accuracy = model.evaluate(X_test, y_test)
print('Test accuracy: {}'.format(test_accuracy))
print('Test loss: {}'.format(test_loss))