-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdaily_us_equities.py
266 lines (220 loc) · 7.56 KB
/
daily_us_equities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import time
from io import BytesIO
from zipfile import ZipFile
import numpy as np
import pandas as pd
import requests
from click import progressbar
from logbook import Logger
from six import iteritems
from six.moves.urllib.parse import urlencode
log = Logger(__name__)
DATA_START_DATE = "2000-01-01"
ONE_MEGABYTE = 1024 * 1024
DATALINK_DATA_URL = "https://data.nasdaq.com/api/v3/datatables/QUOTEMEDIA/PRICES"
MAX_DOWNLOAD_TRIES = 5
def format_metadata_url(api_key):
"""Build the query URL for Quandl WIKI Prices metadata."""
columns = ",".join(
[
"ticker",
"date",
"open",
"high",
"low",
"close",
"volume",
"dividend",
"split",
]
)
query_params = [
("date.gte", DATA_START_DATE),
("api_key", api_key),
("qopts.export", "true"),
("qopts.columns", columns),
]
return f"{DATALINK_DATA_URL}?{urlencode(query_params)}"
def fetch_download_link(table_url, max_download_tries=MAX_DOWNLOAD_TRIES):
log.info(f"Attempting to fetch download link with ...")
status = None
cnt = 0
while status != "fresh" and cnt < max_download_tries:
log.info(f"Fetching download link...")
try:
resp = requests.get(table_url)
resp.raise_for_status()
except:
log.info("Failed to get download link from Quandl")
payload = resp.json()
status = payload["datatable_bulk_download"]["file"]["status"]
if status == "fresh":
link = payload["datatable_bulk_download"]["file"]["link"]
log.info(f"Status is {status}. Returning download link: {link}")
return link
log.info(f"Status is {status}. Retrying in 10 seconds...")
time.sleep(10)
def load_data_table(file, index_col=None):
"""Load data table from zip file provided by Quandl."""
with ZipFile(file) as zip_file:
file_names = zip_file.namelist()
assert len(file_names) == 1, "Expected a single file from Quandl."
eod_prices = file_names.pop()
with zip_file.open(eod_prices) as table_file:
log.info("Parsing raw data.")
data_table = pd.read_csv(
table_file,
header=0,
names=[
"ticker",
"date",
"open",
"high",
"low",
"close",
"volume",
"dividend",
"split",
],
parse_dates=["date"],
index_col=index_col,
usecols=[
"ticker",
"date",
"open",
"high",
"low",
"close",
"volume",
"dividend",
"split",
],
).rename(
columns={
"ticker": "symbol",
"dividend": "ex_dividend",
"split": "split_ratio",
}
)
return data_table
def fetch_data_table(api_key):
"""Fetch WIKI Prices data table from Quandl"""
log.info(f"Fetching data table...")
table_url = format_metadata_url(api_key)
download_link = fetch_download_link(table_url)
raw_file = download_with_progress(download_link, chunk_size=ONE_MEGABYTE)
return load_data_table(file=raw_file)
def gen_asset_metadata(data, show_progress):
if show_progress:
log.info("Generating asset metadata.")
data = data.groupby(by="symbol").agg({"date": ["min", "max"]})
data.reset_index(inplace=True)
data["start_date"] = data.date.min(axis=1)
data["end_date"] = data.date.max(axis=1)
del data["date"]
data.columns = data.columns.get_level_values(0)
data["exchange"] = "QUOTEMEDIA"
data["auto_close_date"] = data["end_date"].values + pd.Timedelta(days=1)
return data
def parse_splits(data, show_progress):
if show_progress:
log.info("Parsing split data.")
data["split_ratio"] = 1.0 / data.split_ratio
data.rename(
columns={"split_ratio": "ratio", "date": "effective_date"},
inplace=True,
copy=False,
)
return data
def parse_dividends(data, show_progress):
if show_progress:
log.info("Parsing dividend data.")
data["record_date"] = data["declared_date"] = data["pay_date"] = pd.NaT
data.rename(
columns={"ex_dividend": "amount", "date": "ex_date"}, inplace=True, copy=False
)
return data
def parse_pricing_and_vol(data, sessions, symbol_map):
for asset_id, symbol in iteritems(symbol_map):
asset_data = (
data.xs(symbol, level=1).reindex(sessions.tz_localize(None)).fillna(0.0)
)
yield asset_id, asset_data
def daily_us_equities_bundle(
environ,
asset_db_writer,
minute_bar_writer,
daily_bar_writer,
adjustment_writer,
calendar,
start_session,
end_session,
cache,
show_progress,
output_dir,
):
"""
daily_us_equities_bundle builds a daily dataset using Quotemedia
end of day equities data. For more information on the Quotemedia
data see here: https://data.nasdaq.com/databases/EOD
"""
api_key = environ.get("DATALINK_API_KEY")
if api_key is None:
raise ValueError(
"Please set your DATALINK_API_KEY environment variable and retry."
)
raw_data = fetch_data_table(api_key)
start_session, end_session = raw_data.date.min(), raw_data.date.max()
asset_metadata = gen_asset_metadata(raw_data[["symbol", "date"]], show_progress)
exchanges = pd.DataFrame(
data=[["QUOTEMEDIA", "QUOTEMEDIA", "US"]],
columns=["exchange", "canonical_name", "country_code"],
)
asset_db_writer.write(equities=asset_metadata, exchanges=exchanges)
symbol_map = asset_metadata.symbol
sessions = calendar.sessions_in_range(start_session, end_session)
raw_data.set_index(["date", "symbol"], inplace=True)
daily_bar_writer.write(
parse_pricing_and_vol(raw_data, sessions, symbol_map),
show_progress=show_progress,
)
raw_data.reset_index(inplace=True)
raw_data["symbol"] = raw_data["symbol"].astype("category")
raw_data["sid"] = raw_data.symbol.cat.codes
adjustment_writer.write(
splits=parse_splits(
raw_data[["sid", "date", "split_ratio"]].loc[raw_data.split_ratio != 1],
show_progress=show_progress,
),
dividends=parse_dividends(
raw_data[["sid", "date", "ex_dividend"]].loc[raw_data.ex_dividend != 0],
show_progress=show_progress,
),
)
def download_with_progress(url, chunk_size, **progress_kwargs):
"""
Download streaming data from a URL, printing progress information to the
terminal.
Parameters
----------
url : str
A URL that can be understood by ``requests.get``.
chunk_size : int
Number of bytes to read at a time from requests.
**progress_kwargs
Forwarded to click.progressbar.
Returns
-------
data : BytesIO
A BytesIO containing the downloaded data.
"""
resp = requests.get(url, stream=True)
resp.raise_for_status()
total_size = int(resp.headers["content-length"])
data = BytesIO()
with progressbar(length=total_size, **progress_kwargs) as pbar:
for chunk in resp.iter_content(chunk_size=chunk_size):
data.write(chunk)
pbar.update(len(chunk))
data.seek(0)
return data