-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbody_models.py
127 lines (99 loc) · 4.01 KB
/
body_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import smplx
import os
from landmarks import SMPL_INDEX_LANDMARKS
def infer_body_model(N_verts):
if N_verts == 6890:
return "smpl"
else:
raise NotImplementedError(f"Cannot infer the body model. \
Body model with {N_verts} verts not implemented.")
class SMPLBodyModel():
"""
Extended SMPL body model class used for optimization
in order to deform the vertices with pose, shape,
scale and translation parameters.
"""
def __init__(self, cfg: dict):
self.all_landmark_indices = SMPL_INDEX_LANDMARKS
self.gender = cfg["body_model_gender"].upper() if "body_model_gender" in cfg else "NEUTRAL"
body_model_path = os.path.join(cfg["body_models_path"],
f"SMPL_{self.gender}.pkl")
self.num_betas = cfg.get("body_model_num_betas", 10)
self.body_model = smplx.create(body_model_path,
model_type="SMPL",
gender=self.gender,
num_betas=self.num_betas,
use_face_contour=False,
ext='pkl')
self.current_pose = None
self.current_global_orient = None
self.current_shape = None
self.current_trans = None
self.current_scale = None
self.body_model_name = "smpl"
@property
def N_verts(self):
return 6890
@property
def verts_t_pose(self):
return self.body_model.v_template
@property
def verts(self):
return self.body_model(body_pose=self.current_pose,
betas=self.current_shape,
global_orient=self.current_global_orient).vertices[0]
@property
def joints(self):
return self.body_model(body_pose=self.current_pose,
betas=self.current_shape,
global_orient=self.current_global_orient).joints[0]
@property
def faces(self):
return self.body_model.faces
def landmark_indices(self,landmarks_order):
return [self.all_landmark_indices[k] for k in landmarks_order]
def cuda(self):
self.body_model.cuda()
def __call__(self, pose, betas, **kwargs):
self.current_pose = pose[:,3:]
self.current_global_orient = pose[:,:3]
self.current_shape = betas
body_pose = pose[:,3:]
global_orient = pose[:,:3]
return self.body_model(body_pose=body_pose,
betas=betas,
global_orient=global_orient)
def deform_verts(self,
pose: torch.tensor,
betas: torch.tensor,
trans: torch.tensor,
scale: torch.tensor):
self.current_pose = pose[:,3:]
self.current_global_orient = pose[:,:3]
self.current_shape = betas
self.current_trans = trans
self.current_scale = scale
body_pose = pose[:,3:]
global_orient = pose[:,:3]
deformed_verts = self.body_model(body_pose=body_pose,
betas=betas,
global_orient=global_orient).vertices[0]
# return (deformed_verts + trans) * scale
return (deformed_verts * scale) + trans
class BodyModel():
"""
Class used to optimize parameters of the
SMPL / SMPLX body models.
"""
def __new__(cls, cfg):
possible_model_types = ["smpl"] #["smpl", "smplx"]
model_type = cfg["body_model"].lower()
if model_type == "smpl":
return SMPLBodyModel(cfg)
# elif model_type == "smplx":
# return SMPLXBodyModel()
else:
msg = f"Model type {model_type} not defined. \
Possible model types are: {possible_model_types}"
raise NotImplementedError(msg)