Skip to content

Commit 139a3d0

Browse files
committed
refactor: split content 'code' and 'papers'
1 parent a3a8300 commit 139a3d0

17 files changed

+326
-380
lines changed

SUMMARY.md

+18-16
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,9 @@
11
# Table of contents
22

33
* [What is notes](README.md)
4+
5+
## Basic
6+
47
* [Math]()
58
* [Statictics]()
69
* [Linear Algebra]()
@@ -9,22 +12,21 @@
912

1013
## Code
1114

12-
* [Computer Vision]()
13-
* [Natural Language Processing]()
14-
* [Reinforcement Learning]()
15-
* [Unsupervised & Generative]()
15+
* [Generative](code/generative.md)
16+
* [NLP](code/nlp.md)
17+
* [RL](code/rl.md)
18+
* [Vision](code/vision.md)
1619

1720
## Research Paper
1821

19-
* [Adversarial Example]()
20-
* [AI]()
21-
* [Cognitive]()
22-
* [Computer Vision]()
23-
* [Framework & System]()
24-
* [Model]()
25-
* [Natural Language Processing]()
26-
* [One-Shot/Few-Shot Learing]()
27-
* [Optimization]()
28-
* [Reinforcement Learning]()
29-
* [Transfer Learning]()
30-
* [Unsupervised & Generative]()
22+
* [Adversarial](papers/Adversarial.md)
23+
* [AI](papers/AI.md)
24+
* [Cognitive](papers/Cognitive.md)
25+
* [Computer Vision](papers/Computer_Vision.md)
26+
* [Framework & System](papers/Framework_System.md)
27+
* [Model](papers/Model.md)
28+
* [Natural Language Processing](papers/Natural_Language_Processing.md)
29+
* [One-Shot/Few-Shot Learing](papers/One-Shot_Few-Shot_Learing.md)
30+
* [Optimization](papers/Optimization.md)
31+
* [Reinforcement Learning](papers/Reinforcement_Learning.md)
32+
* [Unsupervised & Generative](papers/Unsupervised_Generative.md)

code/generative.md

+7
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,7 @@
1+
### PyTorch
2+
3+
- [gan-pytorch](https://github.com/DongjunLee/gan-pytorch) : Generative Adversarial Networks
4+
5+
### TensorFlow
6+
7+
- [vae-tensorflow](https://github.com/DongjunLee/vae-tensorflow) : Auto-Encoding Variational Bayes

code/nlp.md

+10
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,10 @@
1+
### TensorFlow
2+
3+
The codes are implemented by TensorFlow and initiate project with [hb-base](https://github.com/DongjunLee/hb-base).
4+
5+
- [transformer-tensorflow](https://github.com/DongjunLee/transformer-tensorflow) : Attention Is All You Need
6+
- [relation-network-tensorflow](https://github.com/DongjunLee/relation-network-tensorflow) : A simple neural network module for relational reasoning for bAbi task
7+
- [conversation-tensorflow](https://github.com/DongjunLee/conversation-tensorflow) : Conversation Models (Seq2Seq with Attentional Model)
8+
- [dmn-tensorflow](https://github.com/DongjunLee/dmn-tensorflow) : Ask Me Anything: Dynamic Memory Networks for Natural Language Processing
9+
- [text-cnn-tensorflow](https://github.com/DongjunLee/text-cnn-tensorflow) : Convolutional Neural Networks for Sentence Classification(TextCNN)
10+
- [char-rnn-tensorflow](https://github.com/DongjunLee/char-rnn-tensorflow) : Multi-layer Recurrent Neural Networks for character-level language models

code/rl.md

+3
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,3 @@
1+
### TensorFlow
2+
3+
- [dqn-tensorflow](https://github.com/DongjunLee/dqn-tensorflow) : Playing Atari with Deep Reinforcement Learning (2013) & Human-Level Control through Deep Reinforcement Learning (2015)

code/vision.md

Whitespace-only changes.

papers/AI.md

+5
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,5 @@
1+
### Papers
2+
3+
- Machine Theory of Mind (2018. 2)
4+
- **`ToMnet`**, **`Meta-Learning`**, **`General Model`**, **`Agent`**
5+
- [arXiv](https://arxiv.org/abs/1802.07740)

papers/Adversarial.md

+17
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,17 @@
1+
### Papers
2+
3+
- Explaining and Harnessing Adversarial Examples (2014. 12)
4+
- **`FGSM (Fast Gradient Sign Method)`**, **`Adversarial Training`**
5+
- [arXiv](https://arxiv.org/abs/1412.6572)
6+
- The Limitations of Deep Learning in Adversarial Settings (2015. 11)
7+
- **`JSMA (Jacobian-based Saliency Map Approach)`**, **`Adversarial Training`**
8+
- [arXiv](https://arxiv.org/abs/1511.07528)
9+
- Understanding Adversarial Training: Increasing Local Stability of Neural Nets through Robust Optimization (2015. 11)
10+
- **`Adversarial Training (generated adversarial examples)`**, **`Proactive Defense`**
11+
- [arXiv](https://arxiv.org/abs/1511.05432)
12+
- Practical Black-Box Attacks against Machine Learning (2016. 2)
13+
- **`Black-Box (No Access to Gradient)`**, **`Generate Synthetic`**
14+
- [arXiv](https://arxiv.org/abs/1602.02697)
15+
- Adversarial Patch (2017. 12)
16+
- **`Patch`**, **`White Box`**, **`Black Box`**
17+
- [arXiv](https://arxiv.org/abs/1712.09665), [the_morning_paper](https://blog.acolyer.org/2018/03/29/adversarial-patch/)

papers/Cognitive.md

+5
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,5 @@
1+
### Papers
2+
3+
- Building Machines That Learn and Think Like People (2016. 4)
4+
- **`Human-Like`**, **`Learn`**, **`Think`**
5+
- [arXiv](https://arxiv.org/abs/1604.00289), [note](notes/ml_learn_and_think_like_human.md), [the morning paper](https://blog.acolyer.org/2016/11/25/building-machines-that-learn-and-think-like-people/)

papers/Computer_Vision.md

+20
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,20 @@
1+
### Papers
2+
3+
- **Network In Network** (2013. 12)
4+
- **`Conv 1x1`**, **`Bottleneck`**
5+
- [arXiv](https://arxiv.org/abs/1312.4400), [note](notes/network_in_network.md)
6+
- Fractional Max-Pooling (2014. 12)
7+
- **`Max-Pooling`**, **`Data Augmentation`**, **`Regularization`**
8+
- [arXiv](https://arxiv.org/abs/1412.6071), [note](notes/fractional_max-pooling.md)
9+
- **Deep Residual Learning for Image Recognition** (2015. 12)
10+
- **`Residual`**, **`ImageNet 2015`**
11+
- [arXiv](https://arxiv.org/abs/1512.03385), [note](notes/residual_network.md)
12+
- Spherical CNNs (2018. 1)
13+
- **`Spherical Correlation`**, **`3D Model`**, **`Fast Fourier Transform (FFT)`**
14+
- [arXiv](https://arxiv.org/abs/1801.10130), [open_review](https://openreview.net/forum?id=Hkbd5xZRb)
15+
- Taskonomy: Disentangling Task Transfer Learning (2018. 4)
16+
- **`Taskonomy `**, **`Transfer Learning`**, **`Computational modeling of task relations`**
17+
- [arXiv](https://arxiv.org/abs/1804.08328)
18+
- AutoAugment: Learning Augmentation Policies from Data (2018. 5)
19+
- **`Search Algorithm (RL)`**, **`Sub-Policy`**
20+
- [arXiv](https://arxiv.org/abs/1805.09501)

papers/Framework_System.md

+8
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,8 @@
1+
### Papers
2+
3+
- Snorkel: Rapid Training Data Creation with Weak Supervision (2017. 11)
4+
- **`Labelling Functions`**, **`Data Programming`**
5+
- [arXiv](https://arxiv.org/abs/1711.10160), [the_morning_blog](https://blog.acolyer.org/2018/08/22/snorkel-rapid-training-data-creation-with-weak-supervision/)
6+
- Training classifiers with natural language explanations (2018. 5)
7+
- **`Babble Labble`**, **`Data Programming`**
8+
- [arXiv](https://arxiv.org/abs/1805.03818), [the_morning_blog](https://blog.acolyer.org/2018/08/24/training-classifiers-with-natural-language-explanations/)

papers/Model.md

+104
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,104 @@
1+
### Papers
2+
3+
- **Dropout** (2012, 2014)
4+
- **`Regulaizer`**, **`Ensemble`**
5+
- [arXiv (2012)](https://arxiv.org/abs/1207.0580), [arXiv (2014)](https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf), [note](notes/dropout.md)
6+
- Regularization of Neural Networks using DropConnect (2013)
7+
- **`Regulaizer`**, **`Ensemble`**
8+
- [paper](https://cs.nyu.edu/~wanli/dropc/dropc.pdf), [note](notes/dropconnect.md), [wanli_summary](https://cs.nyu.edu/~wanli/dropc/)
9+
- Recurrent Neural Network Regularization (2014. 9)
10+
- **`RNN`**, **`Dropout to Non-Recurrent Connections`**
11+
- [arXiv](https://arxiv.org/abs/1409.2329)
12+
- **Batch Normalization** (2015. 2)
13+
- **`Regulaizer`**, **`Accelerate Training`**, **`CNN`**
14+
- [arXiv](https://arxiv.org/abs/1502.03167), [note](notes/batch_normalization.md)
15+
- Training Very Deep Networks (2015. 7)
16+
- **`Highway`**, **`LSTM-like`**
17+
- [arXiv](https://arxiv.org/abs/1507.06228), [note](notes/highway_networks.md)
18+
- A Theoretically Grounded Application of Dropout in Recurrent Neural Networks (2015. 12)
19+
- **`Variational RNN`**, **`Dropout - RNN`**, **`Bayesian interpretation`**
20+
- [arXiv](https://arxiv.org/abs/1512.05287)
21+
- Deep Networks with Stochastic Depth (2016. 3)
22+
- **`Dropout`**, **`Ensenble`**, **`Beyond 1000 layers`**
23+
- [arXiv](https://arxiv.org/abs/1603.09382), [note](notes/stochastic_depth.md)
24+
- Adaptive Computation Time for Recurrent Neural Networks (2016. 3)
25+
- **`ACT`**, **`Dynamically`**, **`Logic Task`**
26+
- [arXiv](https://arxiv.org/abs/1603.08983)
27+
- Layer Normalization (2016. 7)
28+
- **`Regulaizer`**, **`Accelerate Training`**, **`RNN`**
29+
- [arXiv](https://arxiv.org/abs/1607.06450), [note](notes/layer_normalization.md)
30+
- Recurrent Highway Networks (2016. 7)
31+
- **`RHN`**, **`Highway`**, **`Depth`**, **`RNN`**
32+
- [arXiv](https://arxiv.org/abs/1607.03474), [note](notes/recurrent_highway.md)
33+
- Using Fast Weights to Attend to the Recent Past (2016. 10)
34+
- **`Cognitive`**, **`Attention`**, **`Memory`**
35+
- [arXiv](https://arxiv.org/abs/1610.06258), [note](notes/fast_weights_attn.md)
36+
- Professor Forcing: A New Algorithm for Training Recurrent Networks (2016. 10)
37+
- **`Professor Forcing`**, **`RNN`**, **`Inference Problem`**, **`Training with GAN`**
38+
- [arXiv](https://arxiv.org/abs/1610.09038), [note](notes/professor_forcing.md)
39+
- Equality of Opportunity in Supervised Learning (2016. 10)
40+
- **`Equalized Odds`**, **`Demographic Parity`**, **`Bias`**
41+
- [arXiv](https://arxiv.org/abs/1610.02413), [the_morning_paper](https://blog.acolyer.org/2018/05/07/equality-of-opportunity-in-supervised-learning/)
42+
- Categorical Reparameterization with Gumbel-Softmax (2016. 11)
43+
- **`Gumbel-Softmax distribution `**, **`Reparameterization`**, **`Smooth relaxation`**
44+
- [arXiv](https://arxiv.org/abs/1611.01144), [open_review](https://openreview.net/forum?id=rkE3y85ee)
45+
- Understanding deep learning requires rethinking generalization (2016. 11)
46+
- **`Generalization Error`**, **`Role of Regularization`**
47+
- [arXiv](https://arxiv.org/abs/1611.03530)
48+
- Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer (2017. 1)
49+
- **`MoE Layer`**, **`Sparsely-Gated`**, **`Capacity`**, **`Google Brain`**
50+
- [arXiv](https://arxiv.org/abs/1701.06538), [note](notes/very_large_nn_moe_layer.md)
51+
- **A simple neural network module for relational reasoning** (2017. 6)
52+
- **`Relational Reasoning`**, **`DeepMind`**
53+
- [arXiv](https://arxiv.org/abs/1706.01427), [note](notes/relational_network.md), [code](https://github.com/DongjunLee/relation-network-tensorflow)
54+
- On Calibration of Modern Neural Networks (2017. 6)
55+
- **`Confidence calibration`**, **`Maximum Calibration Error (MCE)`**
56+
- [arXiv](https://arxiv.org/abs/1706.04599)
57+
- When is a Convolutional Filter Easy To Learn? (2017. 9)
58+
- **`Conv + ReLU`**, **`Non-Gaussian Case`**, **`Polynomial Time`**
59+
- [arXiv](https://arxiv.org/abs/1709.06129), [open_review](https://openreview.net/forum?id=SkA-IE06W)
60+
- mixup: Beyond Empirical Risk Minimization (2017. 10)
61+
- **`Data Augmentation`**, **`Vicinal Risk Minimization`**, **`Generalization`**
62+
- [arXiv](https://arxiv.org/abs/1710.09412), [open_review](https://openreview.net/forum?id=r1Ddp1-Rb)
63+
- Measuring the tendency of CNNs to Learn Surface Statistical Regularities (2017. 11)
64+
- **`not learn High Level Semantics`**, **`learn Surface Statistical Regularities`**
65+
- [arXiv](https://arxiv.org/abs/1711.11561), [the_morning_paper](https://blog.acolyer.org/2018/05/29/measuring-the-tendency-of-cnns-to-learn-surface-statistical-regularities/)
66+
- MentorNet: Regularizing Very Deep Neural Networks on Corrupted Labels (2017. 12)
67+
- **`MentorNet - StudentNet`**, **`Curriculum Learning`**, **`Output is Weight`**
68+
- [arXiv](https://arxiv.org/abs/1712.05055)
69+
- Deep Learning Scaling is Predictable, Empirically (2017. 12)
70+
- **`Power-Law Exponents`**, **`Grow Training Sets`**
71+
- [arXiv](https://arxiv.org/abs/1712.00409), [the_morning_paper](https://blog.acolyer.org/2018/03/28/deep-learning-scaling-is-predictable-empirically/)
72+
- Sensitivity and Generalization in Neural Networks: an Empirical Study (2018. 2)
73+
- **`Robustness`**, **`Data Perturbations`**, **`Survey`**
74+
- [arXiv](https://arxiv.org/abs/1802.08760), [open_review](https://openreview.net/forum?id=HJC2SzZCW)
75+
- Can recurrent neural networks warp time? (2018. 2)
76+
- **`RNN`**, **`Learnable Gate`**, **`Chrono Initialization`**
77+
- [open_review](https://openreview.net/forum?id=SJcKhk-Ab)
78+
- Spectral Normalization for Generative Adversarial Networks (2018. 2)
79+
- **`GAN`**, **`Training Discriminator`**, **`Constrain Lipschitz`**, **`Power Method`**
80+
- [open_review](https://openreview.net/forum?id=B1QRgziT-&noteId=BkxnM1TrM)
81+
- On the importance of single directions for generalization (2018. 3)
82+
- **`Importance`**, **`Confusiing Neurons`**, **`Selective Neuron`**, **`DeepMind`**
83+
- [arXiv](https://arxiv.org/abs/1803.06959), [deepmind_blog](https://deepmind.com/blog/understanding-deep-learning-through-neuron-deletion/)
84+
- Group Normalization (2018. 3)
85+
- **`Group Normalization (GN)`**, **`Batch (BN)`**, **`Layer (LN)`**, **`Instance (IN)`**, **`Independent Batch Size`**
86+
- [arXiv](https://arxiv.org/abs/1803.08494)
87+
- Fast Decoding in Sequence Models using Discrete Latent Variables (2018. 3)
88+
- **`Autoregressive`**, **`Latent Transformer`**, **`Discretization`**
89+
- [arXiv](https://arxiv.org/abs/1803.03382)
90+
- Delayed Impact of Fair Machine Learning (2018. 3)
91+
- **`Outcome Curve`**, **`Max Profit, Demographic Parity, Equal Opportunity`**
92+
- [arXiv](https://arxiv.org/abs/1803.04383), [the_morning_paper](https://blog.acolyer.org/2018/08/13/delayed-impact-of-fair-machine-learning/), [bair_blog](https://bair.berkeley.edu/blog/2018/05/17/delayed-impact/)
93+
- How Does Batch Normalization Help Optimization? (No, It Is Not About Internal Covariate Shift) (2018. 5)
94+
- **`Smoothing Effect`**, **`BatchNorm’s Reparametrization`**
95+
- [arXiv](https://arxiv.org/abs/1805.11604)
96+
- When Recurrent Models Don't Need To Be Recurrent (2018. 5)
97+
- **`Approximate`**, **`Feed-Forward`**
98+
- [arXiv](https://arxiv.org/abs/1805.10369), [bair_blog](http://bair.berkeley.edu/blog/2018/08/06/recurrent/)
99+
- Relational inductive biases, deep learning, and graph networks (2018, 6)
100+
- **`Survey`**, **`Relation`**, **`Graph`**
101+
- [arXiv](https://arxiv.org/abs/1806.01261)
102+
- Universal Transformers (2018. 7)
103+
- **`Transformer`**, **`Weight Sharing`**, **`Adaptive Computation Time (ACT)`**
104+
- [arXiv](https://arxiv.org/abs/1807.03819), [google_ai_blog](https://ai.googleblog.com/2018/08/moving-beyond-translation-with.html)

0 commit comments

Comments
 (0)