forked from ggml-org/ggml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov3-tiny.cpp
525 lines (479 loc) · 18.1 KB
/
yolov3-tiny.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
#include "ggml/ggml.h"
#include "yolo-image.h"
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <string>
#include <vector>
#include <algorithm>
#include <fstream>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
struct conv2d_layer {
struct ggml_tensor * weights;
struct ggml_tensor * biases;
struct ggml_tensor * scales;
struct ggml_tensor * rolling_mean;
struct ggml_tensor * rolling_variance;
int padding = 1;
bool batch_normalize = true;
bool activate = true; // true for leaky relu, false for linear
};
struct yolo_model {
int width = 416;
int height = 416;
std::vector<conv2d_layer> conv2d_layers;
struct ggml_context * ctx;
};
struct yolo_layer {
int classes = 80;
std::vector<int> mask;
std::vector<float> anchors;
struct ggml_tensor * predictions;
yolo_layer(int classes, const std::vector<int> & mask, const std::vector<float> & anchors, struct ggml_tensor * predictions)
: classes(classes), mask(mask), anchors(anchors), predictions(predictions)
{ }
int entry_index(int location, int entry) const {
int w = predictions->ne[0];
int h = predictions->ne[1];
int n = location / (w*h);
int loc = location % (w*h);
return n*w*h*(4+classes+1) + entry*w*h + loc;
}
};
struct box {
float x, y, w, h;
};
struct detection {
box bbox;
std::vector<float> prob;
float objectness;
};
static bool load_model(const std::string & fname, yolo_model & model) {
struct gguf_init_params params = {
/*.no_alloc =*/ false,
/*.ctx =*/ &model.ctx,
};
gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
if (!ctx) {
fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__);
return false;
}
model.width = 416;
model.height = 416;
model.conv2d_layers.resize(13);
model.conv2d_layers[7].padding = 0;
model.conv2d_layers[9].padding = 0;
model.conv2d_layers[9].batch_normalize = false;
model.conv2d_layers[9].activate = false;
model.conv2d_layers[10].padding = 0;
model.conv2d_layers[12].padding = 0;
model.conv2d_layers[12].batch_normalize = false;
model.conv2d_layers[12].activate = false;
for (int i = 0; i < (int)model.conv2d_layers.size(); i++) {
char name[256];
snprintf(name, sizeof(name), "l%d_weights", i);
model.conv2d_layers[i].weights = ggml_get_tensor(model.ctx, name);
snprintf(name, sizeof(name), "l%d_biases", i);
model.conv2d_layers[i].biases = ggml_get_tensor(model.ctx, name);
if (model.conv2d_layers[i].batch_normalize) {
snprintf(name, sizeof(name), "l%d_scales", i);
model.conv2d_layers[i].scales = ggml_get_tensor(model.ctx, name);
snprintf(name, sizeof(name), "l%d_rolling_mean", i);
model.conv2d_layers[i].rolling_mean = ggml_get_tensor(model.ctx, name);
snprintf(name, sizeof(name), "l%d_rolling_variance", i);
model.conv2d_layers[i].rolling_variance = ggml_get_tensor(model.ctx, name);
}
}
return true;
}
static bool load_labels(const char * filename, std::vector<std::string> & labels)
{
std::ifstream file_in(filename);
if (!file_in) {
return false;
}
std::string line;
while (std::getline(file_in, line)) {
labels.push_back(line);
}
GGML_ASSERT(labels.size() == 80);
return true;
}
static bool load_alphabet(std::vector<yolo_image> & alphabet)
{
alphabet.resize(8 * 128);
for (int j = 0; j < 8; j++) {
for (int i = 32; i < 127; i++) {
char fname[256];
sprintf(fname, "data/labels/%d_%d.png", i, j);
if (!load_image(fname, alphabet[j*128 + i])) {
fprintf(stderr, "Cannot load '%s'\n", fname);
return false;
}
}
}
return true;
}
static ggml_tensor * apply_conv2d(ggml_context * ctx, ggml_tensor * input, const conv2d_layer & layer)
{
struct ggml_tensor * result = ggml_conv_2d(ctx, layer.weights, input, 1, 1, layer.padding, layer.padding, 1, 1);
if (layer.batch_normalize) {
result = ggml_sub(ctx, result, ggml_repeat(ctx, layer.rolling_mean, result));
result = ggml_div(ctx, result, ggml_sqrt(ctx, ggml_repeat(ctx, layer.rolling_variance, result)));
result = ggml_mul(ctx, result, ggml_repeat(ctx, layer.scales, result));
}
result = ggml_add(ctx, result, ggml_repeat(ctx, layer.biases, result));
if (layer.activate) {
result = ggml_leaky_relu(ctx, result, 0.1f, true);
}
return result;
}
static void activate_array(float * x, const int n)
{
// logistic activation
for (int i = 0; i < n; i++) {
x[i] = 1./(1. + exp(-x[i]));
}
}
static void apply_yolo(yolo_layer & layer)
{
int w = layer.predictions->ne[0];
int h = layer.predictions->ne[1];
int N = layer.mask.size();
float * data = ggml_get_data_f32(layer.predictions);
for (int n = 0; n < N; n++) {
int index = layer.entry_index(n*w*h, 0);
activate_array(data + index, 2*w*h);
index = layer.entry_index(n*w*h, 4);
activate_array(data + index, (1+layer.classes)*w*h);
}
}
static box get_yolo_box(const yolo_layer & layer, int n, int index, int i, int j, int lw, int lh, int w, int h, int stride)
{
float * predictions = ggml_get_data_f32(layer.predictions);
box b;
b.x = (i + predictions[index + 0*stride]) / lw;
b.y = (j + predictions[index + 1*stride]) / lh;
b.w = exp(predictions[index + 2*stride]) * layer.anchors[2*n] / w;
b.h = exp(predictions[index + 3*stride]) * layer.anchors[2*n+1] / h;
return b;
}
static void correct_yolo_box(box & b, int im_w, int im_h, int net_w, int net_h)
{
int new_w = 0;
int new_h = 0;
if (((float)net_w/im_w) < ((float)net_h/im_h)) {
new_w = net_w;
new_h = (im_h * net_w)/im_w;
} else {
new_h = net_h;
new_w = (im_w * net_h)/im_h;
}
b.x = (b.x - (net_w - new_w)/2./net_w) / ((float)new_w/net_w);
b.y = (b.y - (net_h - new_h)/2./net_h) / ((float)new_h/net_h);
b.w *= (float)net_w/new_w;
b.h *= (float)net_h/new_h;
}
static void get_yolo_detections(const yolo_layer & layer, std::vector<detection> & detections, int im_w, int im_h, int netw, int neth, float thresh)
{
int w = layer.predictions->ne[0];
int h = layer.predictions->ne[1];
int N = layer.mask.size();
float * predictions = ggml_get_data_f32(layer.predictions);
std::vector<detection> result;
for (int i = 0; i < w*h; i++) {
for (int n = 0; n < N; n++) {
int obj_index = layer.entry_index(n*w*h + i, 4);
float objectness = predictions[obj_index];
if (objectness <= thresh) {
continue;
}
detection det;
int box_index = layer.entry_index(n*w*h + i, 0);
int row = i / w;
int col = i % w;
det.bbox = get_yolo_box(layer, layer.mask[n], box_index, col, row, w, h, netw, neth, w*h);
correct_yolo_box(det.bbox, im_w, im_h, netw, neth);
det.objectness = objectness;
det.prob.resize(layer.classes);
for (int j = 0; j < layer.classes; j++) {
int class_index = layer.entry_index(n*w*h + i, 4 + 1 + j);
float prob = objectness*predictions[class_index];
det.prob[j] = (prob > thresh) ? prob : 0;
}
detections.push_back(det);
}
}
}
static float overlap(float x1, float w1, float x2, float w2)
{
float l1 = x1 - w1/2;
float l2 = x2 - w2/2;
float left = l1 > l2 ? l1 : l2;
float r1 = x1 + w1/2;
float r2 = x2 + w2/2;
float right = r1 < r2 ? r1 : r2;
return right - left;
}
static float box_intersection(const box & a, const box & b)
{
float w = overlap(a.x, a.w, b.x, b.w);
float h = overlap(a.y, a.h, b.y, b.h);
if (w < 0 || h < 0) return 0;
float area = w*h;
return area;
}
static float box_union(const box & a, const box & b)
{
float i = box_intersection(a, b);
float u = a.w*a.h + b.w*b.h - i;
return u;
}
static float box_iou(const box & a, const box & b)
{
return box_intersection(a, b)/box_union(a, b);
}
static void do_nms_sort(std::vector<detection> & dets, int classes, float thresh)
{
int k = (int)dets.size()-1;
for (int i = 0; i <= k; ++i) {
if (dets[i].objectness == 0) {
std::swap(dets[i], dets[k]);
--k;
--i;
}
}
int total = k+1;
for (int k = 0; k < classes; ++k) {
std::sort(dets.begin(), dets.begin()+total, [=](const detection & a, const detection & b) {
return a.prob[k] > b.prob[k];
});
for (int i = 0; i < total; ++i) {
if (dets[i].prob[k] == 0) {
continue;
}
box a = dets[i].bbox;
for (int j = i+1; j < total; ++j){
box b = dets[j].bbox;
if (box_iou(a, b) > thresh) {
dets[j].prob[k] = 0;
}
}
}
}
}
static float get_color(int c, int x, int max)
{
float colors[6][3] = { {1,0,1}, {0,0,1}, {0,1,1}, {0,1,0}, {1,1,0}, {1,0,0} };
float ratio = ((float)x/max)*5;
int i = floor(ratio);
int j = ceil(ratio);
ratio -= i;
float r = (1-ratio) * colors[i][c] + ratio*colors[j][c];
return r;
}
static void draw_detections(yolo_image & im, const std::vector<detection> & dets, float thresh, const std::vector<std::string> & labels, const std::vector<yolo_image> & alphabet)
{
int classes = (int)labels.size();
for (int i = 0; i < (int)dets.size(); i++) {
std::string labelstr;
int cl = -1;
for (int j = 0; j < (int)dets[i].prob.size(); j++) {
if (dets[i].prob[j] > thresh) {
if (cl < 0) {
labelstr = labels[j];
cl = j;
} else {
labelstr += ", ";
labelstr += labels[j];
}
printf("%s: %.0f%%\n", labels[j].c_str(), dets[i].prob[j]*100);
}
}
if (cl >= 0) {
int width = im.h * .006;
int offset = cl*123457 % classes;
float red = get_color(2,offset,classes);
float green = get_color(1,offset,classes);
float blue = get_color(0,offset,classes);
float rgb[3];
rgb[0] = red;
rgb[1] = green;
rgb[2] = blue;
box b = dets[i].bbox;
int left = (b.x-b.w/2.)*im.w;
int right = (b.x+b.w/2.)*im.w;
int top = (b.y-b.h/2.)*im.h;
int bot = (b.y+b.h/2.)*im.h;
if (left < 0) left = 0;
if (right > im.w-1) right = im.w-1;
if (top < 0) top = 0;
if (bot > im.h-1) bot = im.h-1;
draw_box_width(im, left, top, right, bot, width, red, green, blue);
yolo_image label = get_label(alphabet, labelstr, (im.h*.03));
draw_label(im, top + width, left, label, rgb);
}
}
}
static void print_shape(int layer, const ggml_tensor * t)
{
printf("Layer %2d output shape: %3d x %3d x %4d x %3d\n", layer, (int)t->ne[0], (int)t->ne[1], (int)t->ne[2], (int)t->ne[3]);
}
void detect(yolo_image & img, const yolo_model & model, float thresh, const std::vector<std::string> & labels, const std::vector<yolo_image> & alphabet)
{
static size_t buf_size = 20000000 * sizeof(float) * 4;
static void * buf = malloc(buf_size);
struct ggml_init_params params = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf,
/*.no_alloc =*/ false,
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
std::vector<detection> detections;
yolo_image sized = letterbox_image(img, model.width, model.height);
struct ggml_tensor * input = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, model.width, model.height, 3, 1);
std::memcpy(input->data, sized.data.data(), ggml_nbytes(input));
ggml_set_name(input, "input");
struct ggml_tensor * result = apply_conv2d(ctx0, input, model.conv2d_layers[0]);
print_shape(0, result);
result = ggml_pool_2d(ctx0, result, GGML_OP_POOL_MAX, 2, 2, 2, 2, 0, 0);
print_shape(1, result);
result = apply_conv2d(ctx0, result, model.conv2d_layers[1]);
print_shape(2, result);
result = ggml_pool_2d(ctx0, result, GGML_OP_POOL_MAX, 2, 2, 2, 2, 0, 0);
print_shape(3, result);
result = apply_conv2d(ctx0, result, model.conv2d_layers[2]);
print_shape(4, result);
result = ggml_pool_2d(ctx0, result, GGML_OP_POOL_MAX, 2, 2, 2, 2, 0, 0);
print_shape(5, result);
result = apply_conv2d(ctx0, result, model.conv2d_layers[3]);
print_shape(6, result);
result = ggml_pool_2d(ctx0, result, GGML_OP_POOL_MAX, 2, 2, 2, 2, 0, 0);
print_shape(7, result);
result = apply_conv2d(ctx0, result, model.conv2d_layers[4]);
struct ggml_tensor * layer_8 = result;
print_shape(8, result);
result = ggml_pool_2d(ctx0, result, GGML_OP_POOL_MAX, 2, 2, 2, 2, 0, 0);
print_shape(9, result);
result = apply_conv2d(ctx0, result, model.conv2d_layers[5]);
print_shape(10, result);
result = ggml_pool_2d(ctx0, result, GGML_OP_POOL_MAX, 2, 2, 1, 1, 0.5, 0.5);
print_shape(11, result);
result = apply_conv2d(ctx0, result, model.conv2d_layers[6]);
print_shape(12, result);
result = apply_conv2d(ctx0, result, model.conv2d_layers[7]);
struct ggml_tensor * layer_13 = result;
print_shape(13, result);
result = apply_conv2d(ctx0, result, model.conv2d_layers[8]);
print_shape(14, result);
result = apply_conv2d(ctx0, result, model.conv2d_layers[9]);
struct ggml_tensor * layer_15 = result;
print_shape(15, result);
result = apply_conv2d(ctx0, layer_13, model.conv2d_layers[10]);
print_shape(18, result);
result = ggml_upscale(ctx0, result, 2);
print_shape(19, result);
result = ggml_concat(ctx0, result, layer_8, 2);
print_shape(20, result);
result = apply_conv2d(ctx0, result, model.conv2d_layers[11]);
print_shape(21, result);
result = apply_conv2d(ctx0, result, model.conv2d_layers[12]);
struct ggml_tensor * layer_22 = result;
print_shape(22, result);
ggml_build_forward_expand(gf, layer_15);
ggml_build_forward_expand(gf, layer_22);
ggml_graph_compute_with_ctx(ctx0, gf, 1);
yolo_layer yolo16{ 80, {3, 4, 5}, {10, 14, 23, 27, 37,58, 81, 82, 135, 169, 344, 319}, layer_15};
apply_yolo(yolo16);
get_yolo_detections(yolo16, detections, img.w, img.h, model.width, model.height, thresh);
yolo_layer yolo23{ 80, {0, 1, 2}, {10, 14, 23, 27, 37,58, 81, 82, 135, 169, 344, 319}, layer_22};
apply_yolo(yolo23);
get_yolo_detections(yolo23, detections, img.w, img.h, model.width, model.height, thresh);
do_nms_sort(detections, yolo23.classes, .45);
draw_detections(img, detections, thresh, labels, alphabet);
ggml_free(ctx0);
}
struct yolo_params {
float thresh = 0.5;
std::string model = "yolov3-tiny.gguf";
std::string fname_inp = "input.jpg";
std::string fname_out = "predictions.jpg";
};
void yolo_print_usage(int argc, char ** argv, const yolo_params & params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -th T, --thresh T detection threshold (default: %.2f)\n", params.thresh);
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, " -i FNAME, --inp FNAME\n");
fprintf(stderr, " input file (default: %s)\n", params.fname_inp.c_str());
fprintf(stderr, " -o FNAME, --out FNAME\n");
fprintf(stderr, " output file (default: %s)\n", params.fname_out.c_str());
fprintf(stderr, "\n");
}
bool yolo_params_parse(int argc, char ** argv, yolo_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-th" || arg == "--thresh") {
params.thresh = std::stof(argv[++i]);
} else if (arg == "-m" || arg == "--model") {
params.model = argv[++i];
} else if (arg == "-i" || arg == "--inp") {
params.fname_inp = argv[++i];
} else if (arg == "-o" || arg == "--out") {
params.fname_out = argv[++i];
} else if (arg == "-h" || arg == "--help") {
yolo_print_usage(argc, argv, params);
exit(0);
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
yolo_print_usage(argc, argv, params);
exit(0);
}
}
return true;
}
int main(int argc, char *argv[])
{
ggml_time_init();
yolo_model model;
yolo_params params;
if (!yolo_params_parse(argc, argv, params)) {
return 1;
}
if (!load_model(params.model, model)) {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
return 1;
}
yolo_image img(0,0,0);
if (!load_image(params.fname_inp.c_str(), img)) {
fprintf(stderr, "%s: failed to load image from '%s'\n", __func__, params.fname_inp.c_str());
return 1;
}
std::vector<std::string> labels;
if (!load_labels("data/coco.names", labels)) {
fprintf(stderr, "%s: failed to load labels from 'data/coco.names'\n", __func__);
return 1;
}
std::vector<yolo_image> alphabet;
if (!load_alphabet(alphabet)) {
fprintf(stderr, "%s: failed to load alphabet\n", __func__);
return 1;
}
const int64_t t_start_ms = ggml_time_ms();
detect(img, model, params.thresh, labels, alphabet);
const int64_t t_detect_ms = ggml_time_ms() - t_start_ms;
if (!save_image(img, params.fname_out.c_str(), 80)) {
fprintf(stderr, "%s: failed to save image to '%s'\n", __func__, params.fname_out.c_str());
return 1;
}
printf("Detected objects saved in '%s' (time: %f sec.)\n", params.fname_out.c_str(), t_detect_ms / 1000.0f);
ggml_free(model.ctx);
return 0;
}