-
Notifications
You must be signed in to change notification settings - Fork 0
/
AtlantaTest.py
170 lines (136 loc) · 6.06 KB
/
AtlantaTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gc
import torch
import torch.nn as nn
import torch.utils.data as data
from torch.autograd import Variable as V
import cv2
import os
import numpy as np
import matplotlib.pyplot as plt
import pickle
from time import time
from networks.unet import Unet
from networks.dunet import Dunet
from networks.dinknet import LinkNet34, DinkNet34, DinkNet50, DinkNet101, DinkNet34_less_pool
from PIL import Image, ImageOps
BATCHSIZE_PER_CARD = 1
class TTAFrame():
def __init__(self, net):
self.net = net().cuda()
self.net = torch.nn.DataParallel(self.net, device_ids=range(torch.cuda.device_count()))
def test_one_img_from_path(self, path, evalmode=True):
if evalmode:
self.net.eval()
batchsize = torch.cuda.device_count() * BATCHSIZE_PER_CARD
if batchsize >= 8:
return self.test_one_img_from_path_1(path)
elif batchsize >= 4:
return self.test_one_img_from_path_2(path)
elif batchsize >= 1:
return self.test_one_img_from_path_4(path)
def test_one_img_from_path_8(self, path):
img = cv2.imread(path) # .transpose(2,0,1)[None]
img90 = np.array(np.rot90(img))
img1 = np.concatenate([img[None], img90[None]])
img2 = np.array(img1)[:, ::-1]
img3 = np.array(img1)[:, :, ::-1]
img4 = np.array(img2)[:, :, ::-1]
img1 = img1.transpose(0, 3, 1, 2)
img2 = img2.transpose(0, 3, 1, 2)
img3 = img3.transpose(0, 3, 1, 2)
img4 = img4.transpose(0, 3, 1, 2)
img1 = V(torch.Tensor(np.array(img1, np.float32) / 255.0 * 3.2 - 1.6).cuda())
img2 = V(torch.Tensor(np.array(img2, np.float32) / 255.0 * 3.2 - 1.6).cuda())
img3 = V(torch.Tensor(np.array(img3, np.float32) / 255.0 * 3.2 - 1.6).cuda())
img4 = V(torch.Tensor(np.array(img4, np.float32) / 255.0 * 3.2 - 1.6).cuda())
maska = self.net.forward(img1).squeeze().cpu().data.numpy()
maskb = self.net.forward(img2).squeeze().cpu().data.numpy()
maskc = self.net.forward(img3).squeeze().cpu().data.numpy()
maskd = self.net.forward(img4).squeeze().cpu().data.numpy()
mask1 = maska + maskb[:, ::-1] + maskc[:, :, ::-1] + maskd[:, ::-1, ::-1]
mask2 = mask1[0] + np.rot90(mask1[1])[::-1, ::-1]
return mask2
def test_one_img_from_path_4(self, path):
img = cv2.imread(path) # .transpose(2,0,1)[None]
print(img.shape)
img90 = np.array(np.rot90(img))
img1 = np.concatenate([img[None], img90[None]])
img2 = np.array(img1)[:, ::-1]
img3 = np.array(img1)[:, :, ::-1]
img4 = np.array(img2)[:, :, ::-1]
img1 = img1.transpose(0, 3, 1, 2)
img2 = img2.transpose(0, 3, 1, 2)
img3 = img3.transpose(0, 3, 1, 2)
img4 = img4.transpose(0, 3, 1, 2)
img1 = V(torch.Tensor(np.array(img1, np.float32) / 255.0 * 3.2 - 1.6).cuda())
img2 = V(torch.Tensor(np.array(img2, np.float32) / 255.0 * 3.2 - 1.6).cuda())
img3 = V(torch.Tensor(np.array(img3, np.float32) / 255.0 * 3.2 - 1.6).cuda())
img4 = V(torch.Tensor(np.array(img4, np.float32) / 255.0 * 3.2 - 1.6).cuda())
maska = self.net.forward(img1).squeeze().cpu().data.numpy()
maskb = self.net.forward(img2).squeeze().cpu().data.numpy()
maskc = self.net.forward(img3).squeeze().cpu().data.numpy()
maskd = self.net.forward(img4).squeeze().cpu().data.numpy()
mask1 = maska + maskb[:, ::-1] + maskc[:, :, ::-1] + maskd[:, ::-1, ::-1]
mask2 = mask1[0] + np.rot90(mask1[1])[::-1, ::-1]
return mask2
def test_one_img_from_path_2(self, path):
img = cv2.imread(path) # .transpose(2,0,1)[None]
img90 = np.array(np.rot90(img))
img1 = np.concatenate([img[None], img90[None]])
img2 = np.array(img1)[:, ::-1]
img3 = np.concatenate([img1, img2])
img4 = np.array(img3)[:, :, ::-1]
img5 = img3.transpose(0, 3, 1, 2)
img5 = np.array(img5, np.float32) / 255.0 * 3.2 - 1.6
img5 = V(torch.Tensor(img5).cuda())
img6 = img4.transpose(0, 3, 1, 2)
img6 = np.array(img6, np.float32) / 255.0 * 3.2 - 1.6
img6 = V(torch.Tensor(img6).cuda())
maska = self.net.forward(img5).squeeze().cpu().data.numpy() # .squeeze(1)
maskb = self.net.forward(img6).squeeze().cpu().data.numpy()
mask1 = maska + maskb[:, :, ::-1]
mask2 = mask1[:2] + mask1[2:, ::-1]
mask3 = mask2[0] + np.rot90(mask2[1])[::-1, ::-1]
return mask3
def test_one_img_from_path_1(self, path):
img = cv2.imread(path) # .transpose(2,0,1)[None]
img90 = np.array(np.rot90(img))
img1 = np.concatenate([img[None], img90[None]])
img2 = np.array(img1)[:, ::-1]
img3 = np.concatenate([img1, img2])
img4 = np.array(img3)[:, :, ::-1]
img5 = np.concatenate([img3, img4]).transpose(0, 3, 1, 2)
img5 = np.array(img5, np.float32) / 255.0 * 3.2 - 1.6
img5 = V(torch.Tensor(img5).cuda())
mask = self.net.forward(img5).squeeze().cpu().data.numpy() # .squeeze(1)
mask1 = mask[:4] + mask[4:, :, ::-1]
mask2 = mask1[:2] + mask1[2:, ::-1]
mask3 = mask2[0] + np.rot90(mask2[1])[::-1, ::-1]
return mask3
def load(self, path):
self.net.load_state_dict(torch.load(path))
# source = 'dataset/test/'
torch.cuda.empty_cache()
gc.collect()
source = 'dataset/Atlanta/'
val = os.listdir(source)
print(val)
val.remove("Atlanta.jpg")
solver = TTAFrame(DinkNet34)
solver.load('weights/log01_dink34.th')
tic = time()
target = 'submits/Atlanta/'
if os.path.exists(target):
os.removedirs(target)
os.mkdir(target)
with torch.no_grad():
for i, name in enumerate(val):
if i % 10 == 0:
print(i / 10, ' ', '%.2f' % (time() - tic))
mask = solver.test_one_img_from_path(source + name)
mask[mask > 4.0] = 255
mask[mask <= 4.0] = 0
mask = np.concatenate([mask[:, :, None], mask[:, :, None], mask[:, :, None]], axis=2)
cv2.imwrite(target + name + '_mask.png', mask.astype(np.uint8))
torch.cuda.empty_cache()
gc.collect()