-
Notifications
You must be signed in to change notification settings - Fork 15
/
pgrhash.c
187 lines (158 loc) · 4.79 KB
/
pgrhash.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*-------------------------------------------------------------------------
*
* pgrhash.c
*
* Simple hash table implementation for text data stored in a PGresult.
* The user can specify which columns are to serve as keys. The code
* is loosely based on the backend's dynahash.c, but is dramatically
* simpler since we need only a small subset of the functionality offered
* by that module.
*
*-------------------------------------------------------------------------
*/
#include "postgres_fe.h"
#include "pg_catcheck.h"
#if PG_VERSION_NUM >= 150000
#include "port/pg_bitutils.h"
#endif
typedef struct pgrhash_entry
{
struct pgrhash_entry *next; /* link to next entry in same bucket */
uint32 hashvalue; /* hash function result for this entry */
int rownum; /* row number of data in PGresult */
} pgrhash_entry;
struct pgrhash
{
PGresult *res; /* pointer to PGresult data */
int nkeycols; /* number of key columns */
int keycols[MAX_KEY_COLS]; /* array of key column indices */
unsigned nbuckets; /* number of buckets */
pgrhash_entry **bucket; /* pointer to hash entries */
};
static uint32 string_hash_sdbm(const char *key);
static bool pgrhash_compare(pgrhash *ht, int rownum, char **keyvals);
/*
* Create a new hash table for given result set, keyed by the indicate
* column indexes, but do not populate it. pgrhash_insert() should
* be called separately for each row of the result set to actually
* insert the rows.
*/
pgrhash *
pgrhash_create(PGresult *result, int nkeycols, int *keycols)
{
unsigned bucket_shift;
pgrhash *ht;
int ntuples;
Assert(nkeycols >= 1 && nkeycols <= MAX_KEY_COLS);
ntuples = PQntuples(result);
#if PG_VERSION_NUM >= 150000
if (ntuples == 0)
bucket_shift = 0;
else
bucket_shift = pg_leftmost_one_pos32(ntuples) + 1;
#else
bucket_shift = fls(ntuples);
#endif
if (bucket_shift >= sizeof(unsigned) * BITS_PER_BYTE)
pgcc_log(PGCC_FATAL, "too many tuples");
ht = (pgrhash *) pg_malloc(sizeof(pgrhash));
ht->res = result;
ht->nbuckets = ((unsigned) 1) << bucket_shift;
ht->bucket = (pgrhash_entry **)
pg_malloc0(ht->nbuckets * sizeof(pgrhash_entry *));
ht->nkeycols = nkeycols;
memcpy(ht->keycols, keycols, sizeof(int) * nkeycols);
return ht;
}
/*
* Search a result-set hash table for a row matching a given set of key values.
*
* The return value is the matching row number, or -1 if none.
*/
int
pgrhash_get(pgrhash *ht, char **keyvals)
{
int i;
uint32 hashvalue = 0;
pgrhash_entry *bucket;
for (i = 0; i < ht->nkeycols; i++)
hashvalue ^= string_hash_sdbm(keyvals[i]);
for (bucket = ht->bucket[hashvalue & (ht->nbuckets - 1)];
bucket != NULL; bucket = bucket->next)
if (pgrhash_compare(ht, bucket->rownum, keyvals))
return bucket->rownum;
return -1;
}
/*
* Insert a row into a result-set hash table, provided no such row is already
* present.
*
* The return value is -1 on success, or the row number of an existing row
* with the same key.
*
* The only reason we expose this as a separate function, rather than making
* it part of pgrhash_create, is that it allows callers to insert rows one
* at a time and detect unexpected duplicate key violations.
*/
int
pgrhash_insert(pgrhash *ht, int rownum)
{
unsigned bucket_number;
int i;
unsigned hashvalue = 0;
char *keyvals[MAX_KEY_COLS];
pgrhash_entry *bucket;
pgrhash_entry *entry;
for (i = 0; i < ht->nkeycols; i++)
{
keyvals[i] = PQgetvalue(ht->res, rownum, ht->keycols[i]);
hashvalue ^= string_hash_sdbm(keyvals[i]);
}
/* Check for a conflicting entry already present in the table. */
bucket_number = hashvalue & (ht->nbuckets - 1);
for (bucket = ht->bucket[bucket_number];
bucket != NULL; bucket = bucket->next)
if (pgrhash_compare(ht, bucket->rownum, keyvals))
return bucket->rownum;
/* Insert the new entry. */
entry = pg_malloc(sizeof(pgrhash_entry));
entry->next = ht->bucket[bucket_number];
entry->rownum = rownum;
ht->bucket[bucket_number] = entry;
return -1;
}
/*
* Simple string hash function from http://www.cse.yorku.ca/~oz/hash.html
*
* The backend uses a more sophisticated function for hashing strings,
* but we don't really need that complexity here. Most of the values
* that we're hashing are short integers formatted as text, so there
* shouldn't be much room for pathological input.
*/
static uint32
string_hash_sdbm(const char *key)
{
uint32 hash = 0;
int c;
while ((c = *key++))
hash = c + (hash << 6) + (hash << 16) - hash;
return hash;
}
/*
* Test whether the given row number is match for the supplied keys.
*/
static bool
pgrhash_compare(pgrhash *ht, int rownum, char **keyvals)
{
int i;
char *keycol;
char *keyval;
for (i = 0; i < ht->nkeycols; i++)
{
keycol = PQgetvalue(ht->res, rownum, ht->keycols[i]);
keyval = keyvals[i];
if (strcmp(keycol, keyval) != 0)
return false;
}
return true;
}