forked from quaquel/EMAworkbench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_mesa.py
250 lines (202 loc) · 7.29 KB
/
example_mesa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
"""
This example is a proof of principle for how MESA models can be
controlled using the ema_workbench.
"""
# Import EMA Workbench modules
from ema_workbench import (
ReplicatorModel,
RealParameter,
BooleanParameter,
IntegerParameter,
Constant,
ArrayOutcome,
perform_experiments,
save_results,
ema_logging,
)
# Necessary packages for the model
import math
from enum import Enum
import mesa
import networkx as nx
# MESA demo model "Virus on a Network", from https://github.com/projectmesa/mesa-examples/blob/d16736778fdb500a3e5e05e082b27db78673b562/examples/virus_on_network/virus_on_network/model.py
class State(Enum):
SUSCEPTIBLE = 0
INFECTED = 1
RESISTANT = 2
def number_state(model, state):
return sum(1 for a in model.grid.get_all_cell_contents() if a.state is state)
def number_infected(model):
return number_state(model, State.INFECTED)
def number_susceptible(model):
return number_state(model, State.SUSCEPTIBLE)
def number_resistant(model):
return number_state(model, State.RESISTANT)
class VirusOnNetwork(mesa.Model):
"""A virus model with some number of agents"""
def __init__(
self,
num_nodes=10,
avg_node_degree=3,
initial_outbreak_size=1,
virus_spread_chance=0.4,
virus_check_frequency=0.4,
recovery_chance=0.3,
gain_resistance_chance=0.5,
):
self.num_nodes = num_nodes
prob = avg_node_degree / self.num_nodes
self.G = nx.erdos_renyi_graph(n=self.num_nodes, p=prob)
self.grid = mesa.space.NetworkGrid(self.G)
self.schedule = mesa.time.RandomActivation(self)
self.initial_outbreak_size = (
initial_outbreak_size if initial_outbreak_size <= num_nodes else num_nodes
)
self.virus_spread_chance = virus_spread_chance
self.virus_check_frequency = virus_check_frequency
self.recovery_chance = recovery_chance
self.gain_resistance_chance = gain_resistance_chance
self.datacollector = mesa.DataCollector(
{
"Infected": number_infected,
"Susceptible": number_susceptible,
"Resistant": number_resistant,
}
)
# Create agents
for i, node in enumerate(self.G.nodes()):
a = VirusAgent(
i,
self,
State.SUSCEPTIBLE,
self.virus_spread_chance,
self.virus_check_frequency,
self.recovery_chance,
self.gain_resistance_chance,
)
self.schedule.add(a)
# Add the agent to the node
self.grid.place_agent(a, node)
# Infect some nodes
infected_nodes = self.random.sample(list(self.G), self.initial_outbreak_size)
for a in self.grid.get_cell_list_contents(infected_nodes):
a.state = State.INFECTED
self.running = True
self.datacollector.collect(self)
def resistant_susceptible_ratio(self):
try:
return number_state(self, State.RESISTANT) / number_state(self, State.SUSCEPTIBLE)
except ZeroDivisionError:
return math.inf
def step(self):
self.schedule.step()
# collect data
self.datacollector.collect(self)
def run_model(self, n):
for i in range(n):
self.step()
class VirusAgent(mesa.Agent):
def __init__(
self,
unique_id,
model,
initial_state,
virus_spread_chance,
virus_check_frequency,
recovery_chance,
gain_resistance_chance,
):
super().__init__(unique_id, model)
self.state = initial_state
self.virus_spread_chance = virus_spread_chance
self.virus_check_frequency = virus_check_frequency
self.recovery_chance = recovery_chance
self.gain_resistance_chance = gain_resistance_chance
def try_to_infect_neighbors(self):
neighbors_nodes = self.model.grid.get_neighborhood(self.pos, include_center=False)
susceptible_neighbors = [
agent
for agent in self.model.grid.get_cell_list_contents(neighbors_nodes)
if agent.state is State.SUSCEPTIBLE
]
for a in susceptible_neighbors:
if self.random.random() < self.virus_spread_chance:
a.state = State.INFECTED
def try_gain_resistance(self):
if self.random.random() < self.gain_resistance_chance:
self.state = State.RESISTANT
def try_remove_infection(self):
# Try to remove
if self.random.random() < self.recovery_chance:
# Success
self.state = State.SUSCEPTIBLE
self.try_gain_resistance()
else:
# Failed
self.state = State.INFECTED
def try_check_situation(self):
if (self.random.random() < self.virus_check_frequency) and (self.state is State.INFECTED):
self.try_remove_infection()
def step(self):
if self.state is State.INFECTED:
self.try_to_infect_neighbors()
self.try_check_situation()
# Setting up the model as a function
def model_virus_on_network(
num_nodes=1,
avg_node_degree=1,
initial_outbreak_size=1,
virus_spread_chance=1,
virus_check_frequency=1,
recovery_chance=1,
gain_resistance_chance=1,
steps=10,
):
# Initialising the model
virus_on_network = VirusOnNetwork(
num_nodes=num_nodes,
avg_node_degree=avg_node_degree,
initial_outbreak_size=initial_outbreak_size,
virus_spread_chance=virus_spread_chance,
virus_check_frequency=virus_check_frequency,
recovery_chance=recovery_chance,
gain_resistance_chance=gain_resistance_chance,
)
# Run the model steps times
virus_on_network.run_model(steps)
# Get model outcomes
outcomes = virus_on_network.datacollector.get_model_vars_dataframe()
# Return model outcomes
return {
"Infected": outcomes["Infected"].tolist(),
"Susceptible": outcomes["Susceptible"].tolist(),
"Resistant": outcomes["Resistant"].tolist(),
}
if __name__ == "__main__":
# Initialize logger to keep track of experiments run
ema_logging.log_to_stderr(ema_logging.INFO)
# Instantiate and pass the model
model = ReplicatorModel("VirusOnNetwork", function=model_virus_on_network)
# Define model parameters and their ranges to be sampled
model.uncertainties = [
IntegerParameter("num_nodes", 10, 100),
IntegerParameter("avg_node_degree", 2, 8),
RealParameter("virus_spread_chance", 0.1, 1),
RealParameter("virus_check_frequency", 0.1, 1),
RealParameter("recovery_chance", 0.1, 1),
RealParameter("gain_resistance_chance", 0.1, 1),
]
# Define model parameters that will remain constant
model.constants = [Constant("initial_outbreak_size", 1), Constant("steps", 30)]
# Define model outcomes
model.outcomes = [
ArrayOutcome("Infected"),
ArrayOutcome("Susceptible"),
ArrayOutcome("Resistant"),
]
# Define the number of replications
model.replications = 5
# Run experiments with the aforementioned parameters and outputs
results = perform_experiments(models=model, scenarios=20)
# Get the results
experiments, outcomes = results