-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMyVAE.py
200 lines (149 loc) · 6.18 KB
/
MyVAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import copy
import torch
from torch import nn
from torch.nn import functional as F
isVariational = True # Set to True for VAE; False for AE
class MyVAE(nn.Module):
def __init__(self,
in_channels: int,
latent_dim: int,
hidden_dims=None):
super().__init__()
self.latent_dim = latent_dim
# Encoder
modules = []
if hidden_dims is None:
hidden_dims = [32, 64, 128, 256, 512]
self.hidden_dims = copy.copy(hidden_dims)
##############################
# replace ??? with proper local variables
in_dim = in_channels
for h_dim in self.hidden_dims:
# one convolution layer
modules.append(
nn.Sequential(
nn.Conv2d(in_channels=in_dim, # in_channels=???
out_channels=h_dim, # out_channels=???
kernel_size=3,
stride=2,
padding=1),
nn.BatchNorm2d(h_dim),
nn.LeakyReLU())
)
in_dim = h_dim
self.encoder = nn.Sequential(*modules)
##############################
##############################
# the central hidden layer of the model.
# autoencoder version of the representation layer. This is used by default
# self.z_simple = nn.Linear(self.hidden_dims[-1] * 4, ???)
self.z_simple = nn.Linear(self.hidden_dims[-1] * 4, latent_dim)
# VAE Reparametrization Layer
# self.z_mu = nn.Linear(hidden_dims[-1] * 4, ???)
# self.z_var = nn.Linear(hidden_dims[-1] * 4, ???)
self.z_mu = nn.Linear(hidden_dims[-1] * 4, latent_dim)
self.z_var = nn.Linear(hidden_dims[-1] * 4, latent_dim)
##############################
# Decoder
modules = []
self.decoder_input = nn.Linear(latent_dim, hidden_dims[-1] * 4)
hidden_dims.reverse()
for i in range(len(hidden_dims) - 1):
modules.append(
nn.Sequential(
nn.ConvTranspose2d(hidden_dims[i],
hidden_dims[i + 1],
kernel_size=3,
stride=2,
padding=1,
output_padding=1),
nn.BatchNorm2d(hidden_dims[i + 1]),
nn.LeakyReLU())
)
self.decoder = nn.Sequential(*modules)
self.final_layer = nn.Sequential(
nn.ConvTranspose2d(hidden_dims[-1],
hidden_dims[-1],
kernel_size=3,
stride=2,
padding=1,
output_padding=1),
nn.BatchNorm2d(hidden_dims[-1]),
nn.LeakyReLU(),
nn.Conv2d(hidden_dims[-1],
out_channels=3,
kernel_size=3,
padding=1),
nn.Tanh())
def encode(self, x):
"""Encodes the input into parameters of a normal distribution."""
z = self.encoder(x)
z = torch.flatten(z, start_dim=1)
##############################
# update this along with reparameterize() and forward() to turn this into vae
# Compute mean and variance of the latent distribution
# Use mu and var layers we defined in the init
if(isVariational == True):
mu = self.z_mu(z) # ???
log_var = self.z_var(z) # ???
z = [mu, log_var]
elif(isVariational == False):
z = self.z_simple(z)
##############################
return z
def decode(self, z):
"""Latent space to image space"""
y = self.decoder_input(z)
y = y.view(-1, self.hidden_dims[-1], 2, 2) #
y = self.decoder(y)
y = self.final_layer(y)
return y
def reparameterize(self, mu, logvar):
"""Reparameterization trick: sample from N(mu, var) using N(0,1)"""
std = torch.exp(0.5 * logvar)
##############################
# update this along with forward() and encode() to turn this into vae
# hint: torch.randn_like samples from normal distribution,
# and returns a tensor of the same size as its input
if(isVariational == True):
eps = torch.randn_like(std) # ???
elif(isVariational == False):
eps = torch.zeros_like(std) # ???
##############################
return eps * std + mu
def forward(self, x):
##############################
# update this along with reparametrize() and encode() to turn this into vae
if(isVariational == False):
z = self.encode(x)
mu = torch.zeros_like(z)
log_var = torch.zeros_like(z)
elif(isVariational == True):
mu, log_var = self.encode(x)
z = self.reparameterize(mu, log_var)
##############################
return [self.decode(z), x, mu, log_var]
def loss(self, x, y, z_mu, z_log_var, kl_w):
"""VAE loss
:param kl_w: Account for the minibatch samples from the dataset"""
recons_loss = F.mse_loss(y, x)
kl_loss = torch.mean(-0.5 * torch.sum(1 + z_log_var - z_mu ** 2 - z_log_var.exp(), dim=1), dim=0)
loss = recons_loss + kl_w * kl_loss
return loss
def sample(self, z=None, device='cpu'):
"""Sample image from the latent space."""
if not z:
z = torch.randn(1, self.latent_dim).to(device)
else:
assert z.shape[1] == self.latent_dim, "z must be of shape [1, {}]".format(self.latent_dim)
y = torch.clamp(self.decode(z), 0.0, 1.0)
return y
def generate(self, x):
"""return the reconstructed image from x"""
return self.forward(x)[0]
if __name__ == "__main__":
vae = MyVAE(3, 10)
x = torch.randn(5, 3, 64, 64)
y, _, mu, logvar = vae(x)
loss = vae.loss(y, x, mu, logvar, 1)
print(loss)