|
| 1 | +# coding: utf-8 |
| 2 | + |
| 3 | +import torch |
| 4 | +import torch.nn as nn |
| 5 | +import torch.nn.functional as F |
| 6 | + |
| 7 | + |
| 8 | +class Discriminator(nn.Module): |
| 9 | + """Basic discriminator. |
| 10 | + """ |
| 11 | + |
| 12 | + def __init__( |
| 13 | + self, |
| 14 | + total_locations=8606, |
| 15 | + embedding_net=None, |
| 16 | + embedding_dim=64, |
| 17 | + dropout=0.6): |
| 18 | + super(Discriminator, self).__init__() |
| 19 | + num_filters = [100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160] |
| 20 | + filter_sizes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20] |
| 21 | + if embedding_net: |
| 22 | + self.embedding = embedding_net |
| 23 | + else: |
| 24 | + self.embedding = nn.Embedding( |
| 25 | + num_embeddings=total_locations, |
| 26 | + embedding_dim=embedding_dim) |
| 27 | + self.convs = nn.ModuleList([nn.Conv2d(1, n, (f, embedding_dim)) for ( |
| 28 | + n, f) in zip(num_filters, filter_sizes)]) |
| 29 | + self.highway = nn.Linear(sum(num_filters), sum(num_filters)) |
| 30 | + self.dropout = nn.Dropout(p=dropout) |
| 31 | + self.linear = nn.Linear(sum(num_filters), 2) |
| 32 | + self.init_parameters() |
| 33 | + |
| 34 | + def forward(self, x): |
| 35 | + """ |
| 36 | + Args: |
| 37 | + x: (batch_size * seq_len) |
| 38 | + """ |
| 39 | + emb = self.embedding(x).unsqueeze( |
| 40 | + 1) # batch_size * 1 * seq_len * emb_dim |
| 41 | + # [batch_size * num_filter * length] |
| 42 | + convs = [F.relu(conv(emb)).squeeze(3) for conv in self.convs] |
| 43 | + pools = [F.max_pool1d(conv, conv.size(2)).squeeze(2) |
| 44 | + for conv in convs] # [batch_size * num_filter] |
| 45 | + pred = torch.cat(pools, 1) # batch_size * num_filters_sum |
| 46 | + highway = self.highway(pred) |
| 47 | + pred = torch.sigmoid(highway) * F.relu(highway) + \ |
| 48 | + (1. - torch.sigmoid(highway)) * pred |
| 49 | + pred = F.log_softmax(self.linear(self.dropout(pred)), dim=-1) |
| 50 | + return pred |
| 51 | + |
| 52 | + def init_parameters(self): |
| 53 | + for param in self.parameters(): |
| 54 | + param.data.uniform_(-0.05, 0.05) |
| 55 | + |
| 56 | + |
| 57 | +class TCDiscriminator(nn.Module): |
| 58 | + |
| 59 | + def __init__(self, |
| 60 | + total_locations=8606, |
| 61 | + embedding_net=None, |
| 62 | + sembedding_dim=64, |
| 63 | + tembedding_dim=16, |
| 64 | + dropout=0.6): |
| 65 | + super(TCDiscriminator, self).__init__() |
| 66 | + num_filters = [100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160] |
| 67 | + filter_sizes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20] |
| 68 | + if embedding_net: |
| 69 | + self.tembedding = embedding_net[0] |
| 70 | + self.sembedding = embedding_net[1] |
| 71 | + else: |
| 72 | + self.tembedding = nn.Embedding( |
| 73 | + num_embeddings=total_locations, |
| 74 | + embedding_dim=tembedding_dim) |
| 75 | + self.sembedding = nn.Embedding( |
| 76 | + num_embeddings=total_locations, |
| 77 | + embedding_dim=sembedding_dim) |
| 78 | + self.convs = nn.ModuleList([nn.Conv2d(1, n, (f, tembedding_dim + sembedding_dim)) for ( |
| 79 | + n, f) in zip(num_filters, filter_sizes)]) |
| 80 | + self.highway = nn.Linear(sum(num_filters), sum(num_filters)) |
| 81 | + self.dropout = nn.Dropout(p=dropout) |
| 82 | + self.linear = nn.Linear(sum(num_filters), 2) |
| 83 | + self.init_parameters() |
| 84 | + |
| 85 | + def forward(self, xt, xs): |
| 86 | + """ |
| 87 | + Args: |
| 88 | + x: (batch_size * seq_len) |
| 89 | + """ |
| 90 | + temb = self.tembedding(xt) |
| 91 | + semb = self.sembedding(xs) |
| 92 | + emb = torch.cat([temb, semb], dim=-1).unsqueeze(1) |
| 93 | + # [batch_size * num_filter * length] |
| 94 | + convs = [F.relu(conv(emb)).squeeze(3) for conv in self.convs] |
| 95 | + pools = [F.max_pool1d(conv, conv.size(2)).squeeze(2) |
| 96 | + for conv in convs] # [batch_size * num_filter] |
| 97 | + pred = torch.cat(pools, 1) # batch_size * num_filters_sum |
| 98 | + highway = self.highway(pred) |
| 99 | + pred = torch.sigmoid(highway) * F.relu(highway) + \ |
| 100 | + (1. - torch.sigmoid(highway)) * pred |
| 101 | + pred = F.log_softmax(self.linear(self.dropout(pred)), dim=-1) |
| 102 | + return pred |
| 103 | + |
| 104 | + def init_parameters(self): |
| 105 | + for param in self.parameters(): |
| 106 | + param.data.uniform_(-0.05, 0.05) |
0 commit comments