From 91dd90acc1d1cc33f68561d92bc7d13b5d03c010 Mon Sep 17 00:00:00 2001 From: avr-lab Date: Thu, 21 Nov 2024 23:22:36 -0600 Subject: [PATCH 1/7] Add files via upload --- ...ient_boosting_tree for classificaton.ipynb | 976 ++++++++++++++++++ 1 file changed, 976 insertions(+) create mode 100644 Gradient_boosting_tree for classificaton.ipynb diff --git a/Gradient_boosting_tree for classificaton.ipynb b/Gradient_boosting_tree for classificaton.ipynb new file mode 100644 index 0000000..9881942 --- /dev/null +++ b/Gradient_boosting_tree for classificaton.ipynb @@ -0,0 +1,976 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "f56409cf-1f4b-4380-9c0f-28013e7f463f", + "metadata": {}, + "source": [ + "### Diabetes-Healthcare Classifier" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "6484283c-dfc6-4ad0-8bf0-871fdefe3d85", + "metadata": {}, + "outputs": [], + "source": [ + "# Importing Libraries\n", + "import pandas as pd\n", + "import numpy as np\n", + "import dtale\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.ensemble import GradientBoostingClassifier\n", + "from sklearn.model_selection import KFold, cross_val_score\n", + "from sklearn.metrics import accuracy_score\n", + "from sklearn.metrics import roc_auc_score, roc_curve, classification_report, f1_score, precision_score, recall_score\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.model_selection import StratifiedKFold\n", + "from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay\n", + "%matplotlib inline\n", + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "import logging\n", + "logging.disable(logging.CRITICAL)\n", + "import optuna\n", + "from sklearn.model_selection import cross_val_score" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "60709447-9642-4478-bd46-43f7275a8dc8", + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv(\"Healthcare-Diabetes.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "a197665a-d240-4de6-88b0-c5b107acf065", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdPregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
0161487235033.60.627501
121856629026.60.351310
238183640023.30.672321
3418966239428.10.167210
450137403516843.12.288331
\n", + "
" + ], + "text/plain": [ + " Id Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "0 1 6 148 72 35 0 33.6 \n", + "1 2 1 85 66 29 0 26.6 \n", + "2 3 8 183 64 0 0 23.3 \n", + "3 4 1 89 66 23 94 28.1 \n", + "4 5 0 137 40 35 168 43.1 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome \n", + "0 0.627 50 1 \n", + "1 0.351 31 0 \n", + "2 0.672 32 1 \n", + "3 0.167 21 0 \n", + "4 2.288 33 1 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "d8b81900-5379-4685-9cdb-d4c1c18bb453", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2768, 10)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "6d235e98-7a43-4d85-a68f-175de24fe590", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Id False\n", + "Pregnancies False\n", + "Glucose False\n", + "BloodPressure False\n", + "SkinThickness False\n", + "Insulin False\n", + "BMI False\n", + "DiabetesPedigreeFunction False\n", + "Age False\n", + "Outcome False\n", + "dtype: bool" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Checking Null Values --None\n", + "df.isnull().any()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "fd288850-4531-4aa8-b24f-06209efb584b", + "metadata": {}, + "outputs": [], + "source": [ + "df.drop(columns = ['Id'],inplace = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "d8c755af-3723-4eab-9553-543691c53d41", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Uni/Bi/Multivariate- Analysis\n", + "dtale.show(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "94317b41-7d71-44c2-8e6a-840fb4c70c8c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',\n", + " 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],\n", + " dtype='object')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "e6b56ac6-9afa-4931-b74a-e460189cb125", + "metadata": {}, + "outputs": [], + "source": [ + "# Standardization (Not required for Gradient Descent)\n", + "scaler = StandardScaler()\n", + "columns_to_standardize = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness',\n", + " 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age']\n", + "standardized_data = scaler.fit_transform(df[columns_to_standardize])\n", + "\n", + "# Converting the standardized data back to a DataFrame\n", + "df_standardized = pd.DataFrame(standardized_data, columns=columns_to_standardize)\n", + "\n", + "# Adding the target column to the standardized DataFrame\n", + "df_standardized[\"Outcome\"] = df[\"Outcome\"].values" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "50ad7847-bedf-4d4d-853f-7ce1aeb5d045", + "metadata": {}, + "outputs": [], + "source": [ + "df1 = df_standardized.copy(deep = True)" + ] + }, + { + "cell_type": "markdown", + "id": "d11e60c0-7af1-48e1-b2b5-d46555c202fc", + "metadata": {}, + "source": [ + "### K-FOLD BASE MODEL" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "0ae6918f-871a-462e-8f11-34314f42295a", + "metadata": {}, + "outputs": [], + "source": [ + "X = df1.drop(columns=['Outcome']) # Features\n", + "y = df1['Outcome'] # Target" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "47dedd54-86c4-4f86-9d53-53ce62b05722", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHFCAYAAAAOmtghAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/lUlEQVR4nO3deVxUZfs/8M8MzMAAAqIIoggq4VYqSm5k7iL2NTXLBXLXUit3TX+VZpY8Lrnk1lMaWA8qbrmkUVhqalqiopaWpLglZmqCsg4z1+8PYnScAWeQRYbP+/Wa18O5z33Ouc6Bp7m8l3MrRERAREREZCOUZR0AERERUXFickNEREQ2hckNERER2RQmN0RERGRTmNwQERGRTWFyQ0RERDaFyQ0RERHZFCY3REREZFOY3BAREZFNYXJDVMKio6OhUCiQkJBgVH7jxg0EBwfDxcUF8fHxZo+9cOECFAqF2U9wcLBVceSfKzo6+qF13333XSgUCqvO/8ILL0ChUOD11183u7+g55Dv//7v/+Dv729SnpaWhg8++ADBwcFwdXWFg4MD/P39MWzYMBw7duyhce3du9foudnZ2cHT0xM9evQoMBYRwdq1a9GxY0dUrlwZDg4OqFOnDl577TVcvny5wGvt2LEDPXr0gJeXF9RqNTw8PNCpUyfExMRAq9U+NFa9Xo8vvvgCnTt3RtWqVaFSqVCtWjX83//9H3bs2AG9Xv/QcxARYF/WARBVRFeuXEGXLl3w119/Yffu3WjVqlWh9d944w2Eh4cblbm4uJRkiFa5fv06vvrqKwBATEwMFixYAEdHx0c+77lz59C1a1dcv34do0aNwqxZs+Di4oILFy5gw4YNaN68OW7fvg03N7eHnmvOnDno0KEDtFotjh8/jlmzZqFdu3ZITEzEE088Yain1+sRHh6O2NhYDBgwANHR0XBzc8PJkycxf/58rF27Fl999RVCQkIMx4gIhg0bhujoaHTv3h0LFy6Er68vUlNTsWfPHowZMwY3btzAuHHjCowvKysLvXr1wrfffov+/ftj5cqV8Pb2xt9//424uDi89NJLiI2NRc+ePR/toRJVBEJEJSoqKkoAyJEjR0RE5OzZs1KrVi2pXr26nDx5stBjk5OTBYDMnz//kePIP1dUVNRD686cOVOs+c/D/PnzBYA899xzAkBiYmJM6jz4HB703HPPiZ+fn2E7NzdXnnrqKXF1dZVTp06ZPWbXrl2Snp5eaGx79uwRALJx40aj8jVr1ggAmTFjhlH5nDlzBID85z//MTnXtWvXxM/PT7y8vOSff/4xlM+dO1cAyKxZs8zGkJKSIvv37y80ztGjRwsAWbNmjdn9Z8+elRMnThR6Dks97JkRlXfsliIqRYmJiXjmmWdgb2+PAwcO4KmnniqW8/7yyy/o2bMnKleuDEdHRzRt2hRr1qyx6NidO3eiadOmcHBwQO3atbFgwQKrr//ZZ5/By8sLa9asgUajwWeffWb1OR60detWnDp1CtOnT8eTTz5ptk5YWBicnJyKdP78br2//vrLUJaTk4P58+ejQYMGmDp1qskxXl5eiIyMxF9//YXVq1cDALRaLebOnYv69evjnXfeMXstb29vPPPMMwXGcu3aNaxatQqhoaEYNGiQ2TpPPPEEGjduDOBeF9+FCxeM6uR3we3du9dQ1r59ezz55JP44Ycf0KZNGzg5OWHYsGHo1asX/Pz8zHZ1tWzZEs2aNTNsiwhWrFiBpk2bQqPRoHLlynjxxRdx/vz5Au+JqCwxuSEqJQcOHED79u1RrVo1HDhwAHXq1LH4WL1ej9zcXKOPiAAAfv/9d7Rp0wa//vorPvroI2zZsgUNGzbEkCFDMG/evELP+91336Fnz56oVKkS1q9fj/nz52PDhg2IioqyOLYff/wRZ86cwaBBg1ClShX06dMH33//PZKTky0+hznffvstAKBXr16PdJ6C5McXGBhoKDt69Cj++ecfPP/88wWOOerRoweUSqVhnFRCQgJu3bqFnj17Wj1OKd+ePXug1WpL7F5TUlLw8ssvIzw8HLt27cKYMWMwbNgwXLp0Cd9//71R3d9++w0///wzhg4daih79dVXMX78eHTu3Blbt27FihUr8Ouvv6JNmzZGySHR44JjbohKyYQJE+Dm5obvv/8enp6eVh375ptv4s033zQqi4+PR+fOnfHuu+8iJycHe/bsga+vLwCge/fuuH37NmbNmoVXX321wDEpb731Fry8vBAfH28YIxMaGmp2YG9B8lswhg0bBgAYPnw4/ve//yEqKgrvvfeeVfd5v0uXLgEAateuXeRz3C8/QcwfczNp0iQ0bNjQELel13RxcYGnp6ehbnHEWdz3+qBbt25h48aN6Nixo6EsNzcXXl5eiIqKQufOnQ3lUVFRUKvVhjFehw8fxqeffooPP/wQEydONNRr27YtAgMDsXDhQsydO7dE4iYqKrbcEJWS559/HqmpqRg/fjx0Op3RvoJaZfKNGzcOR44cMfq0bNkSAPD999+jU6dOhsQm35AhQ5CRkYFDhw6ZjSc9PR1HjhzBCy+8YDT4t1KlSujRo4dF93T37l1s2LABbdq0Qf369QEA7dq1Q926dREdHV2qs3se9gz79esHlUoFJycnhISEIC0tDTt37oS7u7vV1xKRIrfSlIXKlSsbJTYAYG9vj5dffhlbtmxBamoqAECn0+GLL75Az549UaVKFQDAV199BYVCgZdfftno+Xp7e6NJkyZGXWBEjwsmN0Sl5J133sGMGTOwdu1avPzyy0YJjkqlMvo8OF6mZs2aCA4ONvpUqlQJAHDz5k1Ur17d5Ho+Pj6G/eb8888/0Ov18Pb2Ntlnrsyc2NhY3L17F3379sXt27dx+/ZtpKamom/fvrh8+bLRFHd7+7yG4gcTu3y5ublQqVSG7Vq1agGARd1bFy5cMHmG+/btM6ozd+5cHDlyBPv27cNbb72Fv/76C7169UJ2drZV10xPT8eNGzcMyaQ1cRakOM5RGHN/H0Bea1tWVhbWr18PAPjmm2+QkpJi1CX1119/QUTg5eVl8owPHz6MGzdulEjMRI+C3VJEpWjWrFlQKBSYNWsW9Ho9YmJiYG9vjyNHjhjVs6Z7okqVKkhJSTEpv3r1KgCgatWqZo+rXLkyFAoFrl27ZrLPXJk5+V1S48ePx/jx483uDw0NBZA3GBcA/vzzT7Pn+vPPPw11gLzusU8++QRbt27FtGnTCo3Dx8fH5BnWq1fPaLtOnTqGQcTPPvssNBoN3n77bSxduhSTJ08GADRv3hyVK1fG9u3bERkZabZ1Zvv27dDr9ejSpQuAvIHJHh4e2LZtW4HHPEyHDh2gUqmwdetWjBo16qH181va7k/MABSYaBQUU8OGDdGiRQtERUXh1VdfRVRUFHx8fNC1a1dDnapVq0KhUGD//v1wcHAwOYe5MqIyV5ZTtYgqAnNToGfNmiUA5KWXXhKtVlvgsZZMBR8wYIA4OjrKn3/+aVT+3HPPiZOTk9y+fdvoXPdPBW/ZsqX4+PhIZmamoSwtLU08PDweOhX89OnTAkD69Okje/bsMfl06tRJ1Gq13Lhxw3BeFxcX6du3r8m5fv31V1EoFDJz5kxDmSVTwePi4oo8FTwnJ0cCAgKkSpUqkpaWZijPnwo+d+5ck3P99ddfhqng+c9V5OFTwf/66y85cOBAoXE+bCr4H3/8YZgKfujQIQEgGzZsMKozcOBAASB79uwxlLVr104aNWpU4HVXrlwpAGT//v3i4OAg06dPN9p/4MABASCxsbGFxk/0OGFyQ1TCCnq/y+zZswWAvPjiiwUmOJYkN7/99ptUqlRJAgMD5X//+5/s2rVLIiIiBIDMmzfP5Fz3JzfffvutKJVKeeaZZ+TLL7+UTZs2ydNPPy2+vr4PTW4mTZokAOSnn34yu3/79u0CQBYvXmwo+/DDDw33vHHjRtm9e7csWrRIPD09xd/fX27evGl0jj/++EPq1KkjLi4uMmXKFNm1a5fs27dPPv/8c3n++edFoVAYJRnmFJTciIhs2LBBAMjs2bMNZTqdTvr16ycAJDw8XLZt2yZ79+6Vjz76SHx9fcXd3d0kUdHr9TJkyBDDu35iYmLkhx9+kB07dsiUKVPEzc3N6DmYk5mZKaGhoaJQKCQ8PFw2btwoP/zwg2zZskVGjx4tjo6OsnXrVhHJS/zq1asntWrVkrVr18rXX38tr7zyitSuXdvq5Ob27dui0WikZs2aAkB+//13kzqvvPKKODk5yZQpU2THjh3y/fffS0xMjIwePVpWrFhR6H0RlQUmN0QlrLCX133wwQcCQF544QXJyckx2W/pS/xOnTolPXr0EDc3N1Gr1dKkSROTl/UV9BK/7du3S+PGjUWtVkutWrXkP//5z0Nf4peTkyPVqlWTpk2bFlgnNzdXatasKU899ZRR+YYNG+SZZ56RSpUqib29vdSqVUtGjx4t165dM3ue27dvy+zZs6VZs2bi4uIiKpVKatWqJS+//LIcPHiw0OciUnhyI5LXelW5cmWjJEmv10tMTIy0b99e3N3dRa1WS+3atWX06NFy8eLFAq+1bds2ee6558TT01Ps7e2lcuXK0qFDB/n4448lOzv7obHm5ubKmjVrpGPHjuLh4SH29vbi6ekpYWFhsnbtWtHpdIa6Z8+ela5du4qrq6t4enrKG2+8ITt37rQ6uRERCQ8PFwASEhJSYJ3PPvtMWrZsKc7OzqLRaKRu3boyaNAgSUhIeOh9EZU2hcgDUwqIiIiIyjHOliIiIiKbwuSGiIiIbAqTGyIiIrIpTG6IiIjIpjC5ISIiIpvC5IaIiIhsSoVbfkGv1+Pq1auoVKlSuVr4joiIqCITEdy5cwc+Pj5QKgtvm6lwyc3Vq1dNVk8mIiKi8uHy5cuoWbNmoXUqXHKTv5Ly5cuX4erqWsbREBERkSXS0tLg6+tr+B4vTIVLbvK7olxdXZncEBERlTOWDCnhgGIiIiKyKUxuiIiIyKYwuSEiIiKbwuSGiIiIbAqTGyIiIrIpTG6IiIjIpjC5ISIiIpvC5IaIiIhsCpMbIiIisilMboiIiMimlGly88MPP6BHjx7w8fGBQqHA1q1bH3rMvn370Lx5czg6OqJOnTr4+OOPSz5QIiIiKjfKNLlJT09HkyZNsGzZMovqJycno3v37mjbti2OHz+O//f//h/Gjh2LzZs3l3CkREREVF6U6cKZYWFhCAsLs7j+xx9/jFq1amHx4sUAgAYNGiAhIQELFixAnz59SihKIjIQAbQZZR0FmSEiyNTqICLI0mWVdTjFSkSg00qpXQtZtvX8ykpVn1qwV6nK5NrlalXwQ4cOoWvXrkZloaGhWL16NbRaLVRmHmJ2djays7MN22lpaSUeJ5FNEgE+CwUu/1TWkZAZCgAaAIOqeyHR0aGswyk+AvT6dRy879Qp60jISn2mA95+dcvk2uUqubl27Rq8vLyMyry8vJCbm4sbN26gevXqJsdERkZi1qxZpRUike3SZhQ5sREBcsWGvnAfUxkKBX5RVYK9rqwjKT72ejUTG7JauUpuAEChUBhti4jZ8nzTp0/HxIkTDdtpaWnw9fUtuQCJikF+F0Nh+3Nz9KUYEYCcbDjp8xKUjNeOA/Yaiw/dtfx33LqaWVKR0X1G/FXWEZScnpNrwV5177/1IsDtcZOhSzpf7NeqsmUtFBrHYj9vRVLVp1aZXbtcJTfe3t64du2aUdn169dhb2+PKlWqmD3GwcEBDg78FyOVHyKCFz8+hKMX/ymgAhB+V40aOrvSDQwAsD7vf2b+XgbXporMLfUc0v7vNZj7Z2xx/z9B06wZvOs1LPAfzfT4K1fJTevWrbFjxw6jsm+//RbBwcFmx9sQlUeZWl3BiQ0AFVBGic2j+VuZi02auyidYaGPn3perlj+8pPovb17iV/rqapPYWnHpcX25azPysS5Tl2K5VxFpdTnmE1sAMChQQP4/+8LoJjuV6HRMLEp58o0ubl79y7++OMPw3ZycjISExPh4eGBWrVqYfr06fjzzz/x+eefAwBGjRqFZcuWYeLEiRg5ciQOHTqE1atXY926dWV1C0QlKuHtznBSGycy2mwd/jflIACg/wetYJ+/XwQO616A3Z8JFp9fAFzaUwVZN9XFFXKBlPoc9Cvxqzzebn8GRJXKlX5GMloW6xnz/wqfOHgASo3lXZKlgckIPahMk5uEhAR06NDBsJ0/Nmbw4MGIjo5GSkoKLl26ZNhfu3Zt7Nq1CxMmTMDy5cvh4+ODjz76iNPAqdx42FgaAMjIubffSW0HJ7Xx/021cu8/4q4uDlA5/Pu1k5MOpBy06u1V+lwFtH8Ddsix/CCqsDTNmsHOw4OJBD32yjS5ad++vWFAsDnR0dEmZe3atcOxY8dKMCqikvHQsTTFafIfgNrp4fUyMoFNbQEAT+z51rJ/kas0xdb8X5JEBCO/HYmTN06WdShm7e27D06qx6sF5GHYQkLlRbkac0OUz5IWEAtPVGovpcvI0eH0xRRY+nXWrFZlaCQLkg2jmVHa+37Wp96EXv1vU402A8j994snVwEoH/4lpNfdq6N0qwKlkwUJUTmRoc3AkbRTgPrx+zIOqhYEZ1e2gBCVFCY39Nh7MJERAV76+BBOpzzqCxkFm9SzEKw8+4jnsYwTgDPWzCy9DsgcYMutObimbWC2SlL7LrDT39+l9O+7nv5tjaE8e/vuhcaKqeslTWPPFhCiksTkhh5rJdmVo0F2qSU2RZUrDgUmNm6p56DUF89YGU2zZlAU0iUlIsjMLV/vqbk/Xo29Bk4q22mVIqLCMbmhx879LTUZOQVPi25Y3RUbR7UufPhHYd1O2gxgSd6PGeN+A4rw5SciECvXodHY5w0AzrVgrRxtjh54/zQA4JmDb8JOdy+ZUepzEPjvOBkRQab+3zjsrB8To9A4Fpq8DI4bjN9u/WbVOYmIygqTG3qsFNZS8+C0aI3KrvCmfSvWQnJydgXUzlbHejE8ApnHj1t3HIBjQROR6mbdmit2uhyjLihNs2aw864JABj89SAk/p1o1fkqiqBqQY9VlxQRlTwmN/RYKegFdsF+lVHFWW2czIjkTX8uSI75tZBEALlvIC1qPA1oAeRaN7BYn5lpdWIDAHql2urExi31HBwCa6P6mlXAv68yy29tyczNLJXEpr5HfazptqbEr1PcOL6FqOJhckOPrftbakxaaaxdofrfqdEigouDhyMz8f7pwVeAJcGPFKs1LzbTZuuwb/oRAMDgWc2hUhu/mEZE8Pp3r+OXm78YynKVOchWA9jaAYUpyYGzTBKIqLxgckOPLXMvsDO4b4Vqk5aYB9V4GlA4AbkK6DOzHkhsikaQ1wIDAI5Nm0Lv7Aax8ItfZ3dv5peDu8u9l/D9K0ObgZ8yjsN4zvjDzx1ULQgejpxeTETE5IbKNRHg4pmuyDz5SyG1zLfMFPU18iKCrUt/xbULd+8Vjv/B6vNYwpqWGLasEBHlYXJD5cO/s55EBJKZZXhhnT5X8ZDExryivEZeRJCbo4c2W2ec2BRRtTqVkKPIglZrHAOnMBMRPRomN1R6LHkbcE4uNPh3SnNOOgD7vOOiukFSTiH5G09k385fAb660aHWtMRY+xp5EcGW+cdw7XyqUfnQec+YdCtZcq6R347EsVsJeI9rvhIRFTsmN1Q6LBwAbPQW3wXGhxsnNsZKekG/3By9SWJTva4bNJVUVl8zQ5uBY/8kPHQYDacwExEVDZMbKjn3t9QUMC27oMMeHCCsz1UYEhu1Xy3Ujv0fAIVhEceSWtDv/q6ofPmtNfb/znLKsHJtqvu7nQobU8MxNERERcPkhkpGYS01k/+AqDSIWP0zjl/6x+S4Ofs/Rf1blwo8de0tW6B0tu6Fe0VRUFeUysEOKgc7iAgGPeLL8zimhoio+DG5oZKRk24+sfFtBThXRaZWhx8vZQIwXknSQZddaGKjadYMikJWrs5vaXlUIoI7Gekmic39g4Af9eV57HYiIioZTG6o+P07ANjg3xfoAchbv+mBrpb7X9anz8jA5a/eAmB+gHBh3U8FtbQUh+jgt5CrzEGuMsfsIOCivDyP3U5ERCWDyQ0VP20GcO1U3s/eTwHOVQtdyPH+l/Xpc+/9SSo1GiitaKXRZutKJLFJqXQeWfZ3CxwAzJfnERE9XpjcUPGT+1a7Hhpn9QrVll2i8FaawqZoi0ihK2Bn5Wai25YwAEDcC1/Dxakl/p8ivMD6bIEhInq8MLmh4vVgl1QpTs3OV9gUbYsHAf+bF1VyduGAXyKicobJDRWv+7qkxPspZIoayMk1qZaRozPaznvzcCb0mQW3qBTkwVYae7WywMTmVtYtiwcBc8AvEVH5xOSGSszLulk4OPPbh9YTEVwMj0Dm8eNFuk7+1OyHXePBFpuHDQJmdxMRUfnE5IZKzLHLt/HgVO8HBftVhmNujkli4xDUBJn2AsW/60k9OL37/u0MbQZUysKTmwenbXMQMBGR7WJyQyXu/qneD9Ko7CD3dUUFHNiPV/ePxZHUk8C6VoAAvX4dB+87dQo8f/sN7ZFrl2NxPHv77mViQ0Rkw5jcUNGZWwgzx3i7YXVXVHFWF5pI3De3CtkqBY6knTIMRLbXqwtNbFIqnUeu0vLEhi02RES2j8kNFY2FC2FuHNW6yInE3r57Ya9T438/HwEA9J/T3LCeUz57deHTtB/EcTRERLaPyQ0VjdZ0IUwBkPlv4nBMH4BMhQJZukwotPe6pPJmRWUZH3dft1SW7t7PGnsNVEoHw7ars8tDBw4TERExuSHriUCy0w2JDMadBFQaDN49Cr/dPvtvpWxUwky03zjT6Lj3vtCh/p8PnA6AXqkGAPzfhudhr877WZutA/TGU8aJiIgehskNWUcE8llXDMq9iER/37yybc9ZdKiDFmYTm2NBE5HqVhcAMDDx3r787igiIiJrMLkh62gzkHnlyL3E5gH1PepjRYfVePqD7wAAR9/pDI0qf1HMTFz+8BkAQM298YCjI7LSc5E6+/RDL1u9rpvJeBsiIiJzmNzQI9n70h5o7luewNHOEf+39CAgeV1LGnsNnFT/LoqpunecU6XK2Lr8N6MlFApbD6qgtw4TERE9iMkNWSZ/2vcDU701KiejtZfSs7U4d/lvOABo4O0KB2029Ll5U7XvX1rhwbWhClsPioiIyBpMbujhHpz2XUACIiL4a/AgbE1MNJSdXfXw0w+d9wwTGyIiKjYcxEAPZ2batzmSmYns+xKbgmiaNYNCc29NJ5WDHRMbIiIqNmy5IetM/gNQKoCNHYyKRcSo26l/2EwcnNkdTmrTPzGFRmOyVhQREVFxYXJD1lE7mXRLmVvVO8tODaWTE5RmkhsiIqKSxG8espper4dDTt6KUBlpd6HLuWOU2Pzq4Y9spRrabB20Yr67SZvNl/MREVHJYHJDVtHr9TgQ1h9fpOQlJ39/2M5of/+wmUhVuSA83QH/m3KwLEIkIqIKjskNPZSIIAMKiE6BzKtX4Jdy3my9Xz38kap2gQoK1NBZtgYUX85HRETFjckNFUpEMCh+JF7YXz1v6YSNLxj2jRhrh239voejnSMAoJZGg+4KBbTZOkOrTWEv5gP4cj4iIip+TG7ILBFBZm4mMnMzcSbllGFNqPxFLn+vAdTxCYKrs4dxciIA7htno3Kw40reRERUqpjckEF+QgMAg+MG47dbvwEAHPL3A0gc8An+SdECAFrFAZ/G/VAGkRIRERWMyQ0B+Lf76etBSPw7scA6eqXakNhYguNpiIioLDC5IQBAZm6mSWIT6F4PHz/7EfD3Ndz4MMJo34GGDljzSstCx8twPA0REZUFJjcEEcHguMGG7T0v7cHI6JOY9scUpM9vi8wbapNj1rzSEmpH/vkQEdHjh99ONu7+cTQFydRm5I2vEcFTzk/A4a4Wf52/hCD780i64W2op6t6r4uJLTJERPS4YnJjwywZR3NfZbz3hQ71//wNV9ARqwEk4V5iU+Obndj5+d/An+klFi8REVFx4GhPG2ZuHE1BHLQwTPd+kKZZMzh61cKtfxObqr4uHChMRESPLbbc2KgHx9HsfW4zNMtbFFhf79EQl/EPAKDKV1+h68c/AwAOvNUdzu6uRqt4957UjN1SRET02GJyY6MyczMN76mpn50Dj2VPIz8dkUlJEJ1xy4tOK8DyZwEAbT8+gWx7VwCA0tnZJJFhYkNERI8zJjcVwJqUv+4lNjVb4uIr441W8QbuvXkYAOwF0AsQ5OsOe33eCt5cxZuIiMoLJjcVxeQ/ALUTRAtkLgg22iUAjgVNRKpbXQDAmPwxw6nZ+HQ830BMRETlC5MbG2BuundmbiYgAgctoM9VQJ+rAJQK6LPy6gmA2nv2QeHgiDsZWqS+f8Kia/Gtw0RE9LhTiIiUdRClKS0tDW5ubkhNTYWrq2tZh/PICpzubZjabeYYGLfU3G+5ayYOvdMZTmrzeS/fOkxERGXBmu9vttyUcwVN9y5sardeqTab2Fyx06GhvztcXdRMYIiIqNxicmND9vbdC429BgCgz8jE5Q+fAQA80esalNOSALUTgLwBwvumHwGQ11KjVQD7p3ZAJRcVnNT2TGyIiKhcY3JTjokIMrQZcMjJ61l0yAEc/+1k1Ofeq6e0FyidNHkDikWgy723srdWkfdxraQusCuKiIioPCnzkaErVqxA7dq14ejoiObNm2P//v2F1o+JiUGTJk3g5OSE6tWrY+jQobh582YpRfv40Ov1GL41Aj+HtcUXH+rwxYc6XG75DH5v1hy/N2uOpJBnDHVF8lprcrJysWHOEURNPVCGkRMREZWsMk1uYmNjMX78eLz11ls4fvw42rZti7CwMFy6dMls/QMHDmDQoEEYPnw4fv31V2zcuBFHjhzBiBEjSjnysiUiuBAejinTj6P2X4XXdayaja1pH+CTKQn4dPwPuHH5rmFftTqu0BZyLBERUXlUpv0QCxcuxPDhww3JyeLFi/HNN99g5cqViIyMNKl/+PBh+Pv7Y+zYsQCA2rVr49VXX8W8efNKNe6yJpmZyE68N3Xbvt4TqBOzFgrlv7lqTgawIAAAkKtUY9f1BkbHV/V1Qe9JzaBVCKbM/LbU4iYiIioNZdZyk5OTg6NHj6Jr165G5V27dsWPP/5o9pg2bdrgypUr2LVrF0QEf/31FzZt2oTnnnuuwOtkZ2cjLS3N6GNLRoy1g8/GdbBzcYHSyenfjyZvnI29QDHulKHu0HnP4JUl7dD3/z0NtSMHDhMRkW0qs+Tmxo0b0Ol08PLyMir38vLCtWvXzB7Tpk0bxMTEoF+/flCr1fD29oa7uzuWLl1a4HUiIyPh5uZm+Pj6+hbrfZS2/EHE+bJVD6z1JJLXcpNPrTH8qHKwg8rBjkkNERHZtDIfUPzgF62IFPjle/r0aYwdOxYzZszA0aNHERcXh+TkZIwaNarA80+fPh2pqamGz+XLl4s1/tIkIhi0ayB+eL5tQRWAz0INXVKFnScjJxcZOVwvioiIbE+ZjbmpWrUq7OzsTFpprl+/btKaky8yMhIhISGYMmUKAKBx48ZwdnZG27Zt8f7776N69eomxzg4OMDBwaH4b6CUiQhuZd3CmauJhkHEyV5AwxpBhnfbQJsBXP7p3kG+rQCVk8l5Xvz4EI5e/KeUIiciIipdZZbcqNVqNG/eHPHx8ejdu7ehPD4+Hj179jR7TEZGBuztjUO2s7MDkPelbav0oke/r/rht1u/4f407dnt+xHmWsV8S9fkPyBOVZCRfm8+VEZOLrRamCQ2wX6VoVHZlVD0REREpatMZ0tNnDgRAwcORHBwMFq3bo1PPvkEly5dMnQzTZ8+HX/++Sc+//xzAECPHj0wcuRIrFy5EqGhoUhJScH48ePRokUL+Pj4lOWtlBgRMSQ2D3JSORXYhScqDV7872GcvPAPxiOvZSf4/d3Q3lc94e3OcFLbQaPiOBwiIrIdZZrc9OvXDzdv3sR7772HlJQUPPnkk9i1axf8/PwAACkpKUbvvBkyZAju3LmDZcuWYdKkSXB3d0fHjh0xd+7csrqFEpXfFZWf2Pi5+mF9xzWGZRUKk6nV4eiFf+BUQINWsF9lVHHmGlJERGR7uCr4Y8rcat8/hf8ERy3we7PmAIB6x45C6XTfmJqcdGBOXgtW+qSL+GDaEdTQ3etuenl+CFQOedtsrSEiovKEq4LbgAdX+w6qljdwWLSZZuvr9XrcuZMNJ33eqJx//sk2Smyq13Xjat9ERFQhMLkpB/b23QsPRw8oFAqYa2bT6/WInLwP7hkCYH1e4ZxfDfv7f9AKHh4aJjZERFQhlPl7bujhNPaFJyZ30rX/JjambjspULmyIxMbIiKqMNhyU86JCHYtTjRsD/UcApUiCxnjfgPUzqjkrIJSyRyWiIgqDiY35Vxujh63/kwHAFS1Pw+NMhUKBeBWyQFQl/+XFxIREVmLyU05kr9sQr6MnFzo7O4NGu7t8RYUCph9MzEREVFFweSmnBARvLjyRwxdMwN1/y1rPns3+mW5wuvfoVMKCDLG/QYnd2+AY2yIiKiCYnJTTmRqdfjl/F+om3oVAHDOzQd6OzW8dHmJTVX787BXZMPeqRITGyIiqtA40rQcyOuOMl7Bu/03XyLhnS6G7fwuKc6KIiKiio4tN48zEThogaEf78eJSxlwzM2BTqkGAKhEAaXcS2QUEMD7KY61ISKiCo/JzWNKRPDeFzrU/xMAJkAAHAuaiH3PLgIA7Jt+xPSgoXHskiIiogqP3VKPKcnM+jexAQSAVuWCVLe6ZutWV52BvSKbiQ0RERHYcvPYEwDrOi6Et/7eO2uGzA2B2sEO0GYAOZmw/6g38xoiIqJ/Mbl5DIkIXtn9Ct4BoFeqjRKb6nXd4FRJBUVUN+DyT3mFTGyIiIgMmNw8RkQEkpmJDG0mLv71OwSAzk5t2D903jPQVFJBoc24l9jk44v7iIiIADC5eWyICC6GRyDz+HEAwKfIG0B8/zgblVqZl9jkZNw7cPIfgNopL7Fh3xQRERGTm8eFZGYaEhsgrzvq/sSmWm1X2P+vO3DlgRYbtROgdi6tMImIiB57nC31GKq5Nx4jxt5bM2q5aya6jwmA4sHEhl1RREREJthy87gQMfyo0GiQrb7XxaR98M3D7IoiIiIqEJObx4CI4MLLAw3bWbrMwg9gVxQREVGB2C31GJDMTGSfOQMASPYCOmzvVsYRERERlV9suSkD+VO+8+nv+3nGy3bsaiIiInoETG5K2YNTvs3Z23cv7HJViPk5AQDgiKy8txETERHRQzG5KWWSkVFgYvNbTSBbBWjsNdBq7/UYHnMYDdWS7NIKkYiIqFxjclOKHhw4/MTBA1BqNBARDIwbhFN3fr/XJVVQSw2nfxMRERWKyU0pun/gsEODBrDz8IBCoUCGNgOn7p4FFArU96if13KDLMNxGa8dh1tl97wNTv8mIiIqFJObMuL/vy+M313zrzXd1piW22s49ZuIiMhCnApeVgppfRER7Fr+eykGQ0REZDuY3Dxm9Ho9bt3KxK2redPDq9qfh72avyYiIiJLsVuqjIkIBscN/ncDWDL9Z7jfN5a4t8dbyFW8VDbBERERlUNMbspYZm4mfrv1GwCgfqVGRolNddUZqBRZUKnsCjiaiIiIHsTk5jGytNX72Bx/CQAw1HMINMpUoFYrKDiYmIiIyGJMbkqJiBgtsyAiyNBmIPO+99loPgkBsA4AoH39EJwqu3PqNxERkZWKlNzk5uZi7969OHfuHMLDw1GpUiVcvXoVrq6ucHFxKe4Yyz1zSy6M/HYkjqSdKvggTRVA7VgK0REREdkWq5Obixcvolu3brh06RKys7PRpUsXVKpUCfPmzUNWVhY+/vjjkoizXJPMTKPExiGoCY6knjRqkQnKykKXrEUYnF/A1hoiIqIisXqO8bhx4xAcHIx//vkHGo3GUN67d2989913xRqcLXri4AF4rVltSF729t6Fny5cRvTV68iVey01Gg4iJiIiKhKrW24OHDiAgwcPQq1WG5X7+fnhzz//LLbAbJVSozFqlHG0c4RGL9hyaw6Ga90N5ebeXkxEREQPZ3XLjV6vh06nMym/cuUKKlWqVCxBVSRZGXeQKw64pm1gKKte140v7iMiIioiq79Bu3TpgsWLFxu2FQoF7t69i5kzZ6J79+7FGVuFoFnRzGh76Lxn0HtyM7bcEBERFZHV3VKLFi1Chw4d0LBhQ2RlZSE8PBxJSUmoWrUq1q1bVxIx2h6Rf/8X0OodAHEw7FI52DGxISIiegRWJzc+Pj5ITEzE+vXrcfToUej1egwfPhwRERFGA4ypELmZgAC9fh2H/92pU9bREBER2RSrk5sffvgBbdq0wdChQzF06FBDeW5uLn744Qc8++yzxRqgrbLXq+H9QGJTrY4rx9oQERE9IquTmw4dOiAlJQXVqlUzKk9NTUWHDh3MDjauyB58M3F+mb3+3myz5a6Z0CqAxHFt2SVFRET0iKxObkTE7BfwzZs34ezMNZDuZ+7NxCKCXUvPYciFDwxlWkXeh4kNERHRo7M4uXnhhRcA5H0BDxkyBA4O9wbB6nQ6nDx5Em3atCn+CMuxB99MrGnWDDqlGtcv3FtPqqqfBtrbmeYOJyIioiKwOLlxc3MDkNfyUKlSJaPBw2q1Gq1atcLIkSOLP0Ib8cTBA1BWroyNkQmGsujgt/B1ny3A3FtlGBkREZFtsTi5iYqKAgD4+/tj8uTJ7IKyksLREXcy0nHj8l0AwA2nK8iyv8uuKCIiomJm9dScmTNnMrEpgpHfjkT7De0N21ufXAIogIwcDsAmIiIqTlYPKAaATZs2YcOGDbh06RJycnKM9h07dqxYArM1J2+cBOwcjMqCsrLQdeEhAHw/EBERUXGxuuXmo48+wtChQ1GtWjUcP34cLVq0QJUqVXD+/HmEhYWVRIw2ae/FK1iTch1AXrdUsF9lrgRORERUDKxuuVmxYgU++eQTDBgwAGvWrMHUqVNRp04dzJgxA7ducWDs/SR/mQUznESgUAD7p3aAk4srNCouu0BERFQcrG65uXTpkmHKt0ajwZ07dwAAAwcO5NpSD8jMzTLabuLZxKSOk9oOTmp7JjZERETFxOrkxtvbGzdv3gQA+Pn54fDhwwCA5OTkQlsqKrq4PnH4pMsnZR0GERGRzbM6uenYsSN27NgBABg+fDgmTJiALl26oF+/fujdu3exB2grHO00bJ0hIiIqBVaPufnkk0+g1+sBAKNGjYKHhwcOHDiAHj16YNSoUcUeoK3jIGIiIqLiZXVyo1QqoVTea/Dp27cv+vbtCwD4888/UaNGjeKLzsaY67Zjaw4REVHxsrpbypxr167hjTfeQEBAgNXHrlixArVr14ajoyOaN2+O/fv3F1o/Ozsbb731Fvz8/ODg4IC6devis88+K2ropUZEcCs95+EViYiI6JFYnNzcvn0bERER8PT0hI+PDz766CPo9XrMmDEDderUweHDh61OMmJjYzF+/Hi89dZbOH78ONq2bYuwsDBcunSpwGP69u2L7777DqtXr8bvv/+OdevWoX79+lZdt7QJgJHRCeg4d09Zh0JERGTzFGLhFKcxY8Zgx44d6NevH+Li4nDmzBmEhoYiKysLM2fORLt27ay+eMuWLdGsWTOsXLnSUNagQQP06tULkZGRJvXj4uLQv39/nD9/Hh4eHlZfDwDS0tLg5uaG1NRUuLq6FukclrqbehOXWj6DY0ETkepW12jfK9X6Q6XMBv7fVUDN5SyIiIgKY833t8UtNzt37kRUVBQWLFiA7du3Q0QQGBiI77//vkiJTU5ODo4ePYquXbsalXft2hU//vij2WO2b9+O4OBgzJs3DzVq1EBgYCAmT56MzMzMAq+TnZ2NtLQ0o09p0ivVJomNt/NF2CuySzUOIiKiisLiAcVXr15Fw4YNAQB16tSBo6MjRowYUeQL37hxAzqdDl5eXkblXl5euHbtmtljzp8/jwMHDsDR0RFffvklbty4gTFjxuDWrVsFdolFRkZi1qxZRY6zOC13zcShN1vD9aPeUCgAeD8FqJzKOiwiIiKbYnHLjV6vh0qlMmzb2dkVy+rgD84WEpECZxDp9XooFArExMSgRYsW6N69OxYuXIjo6OgCW2+mT5+O1NRUw+fy5cuPHHNRaRWAysEOhtsbGgdwthQREVGxsrjlRkQwZMgQODjkrWydlZWFUaNGmSQ4W7Zsseh8VatWhZ2dnUkrzfXr101ac/JVr14dNWrUgJubm6GsQYMGEBFcuXIFTzzxhMkxDg4OhpgfO0xsiIiIip3FLTeDBw9GtWrV4ObmBjc3N7z88svw8fExbOd/LKVWq9G8eXPEx8cblcfHxxvWrnpQSEgIrl69irt37xrKzp49C6VSiZo1a1p8bSIiIrJdFrfcREVFFfvFJ06ciIEDByI4OBitW7fGJ598gkuXLhnedDx9+nT8+eef+PzzzwEA4eHhmD17NoYOHYpZs2bhxo0bmDJlCoYNGwaNRlPs8REREVH5Y/UbiotTv379cPPmTbz33ntISUnBk08+iV27dsHPzw8AkJKSYvTOGxcXF8THx+ONN95AcHAwqlSpgr59++L9998vq1soAi4uSkREVJIsfs+NrSjt99xcaN0R+55dBABY7JaB3/3/A+Vfp/Iq8B03REREFimR99yQ9UT0RtuNvRzuJTacBk5ERFQimNyUEBHBtcHG7wFaO7zFvQ1OAyciIioRTG5KiGRmIvf3s0ZlSuV9yQwTGyIiohJRpOTmiy++QEhICHx8fHDx4kUAwOLFi7Ft27ZiDY6IiIjIWlYnNytXrsTEiRPRvXt33L59GzqdDgDg7u6OxYsXF3d8RERERFaxOrlZunQpPv30U7z11luws7MzlAcHB+PUqVPFGhwRERGRtaxObpKTkxEUFGRS7uDggPT09GIJioiIiKiorE5uateujcTERJPyr7/+2rBqOBEREVFZsfoNxVOmTMFrr72GrKwsiAh+/vlnrFu3DpGRkVi1alVJxEhERERkMauTm6FDhyI3NxdTp05FRkYGwsPDUaNGDSxZsgT9+/cviRiJiIiILFaktaVGjhyJkSNH4saNG9Dr9ahWrVpxx0VERERUJFaPuZk1axbOnTsHAKhatSoTGyIiInqsWJ3cbN68GYGBgWjVqhWWLVuGv//+uyTiIiIiIioSq5ObkydP4uTJk+jYsSMWLlyIGjVqoHv37li7di0yMjJKIkYiIiIiixVp+YVGjRphzpw5OH/+PPbs2YPatWtj/Pjx8Pb2Lu74iIiIiKzyyAtnOjs7Q6PRQK1WQ6vVFkdMtisns6wjICIisnlFSm6Sk5PxwQcfoGHDhggODsaxY8fw7rvv4tq1a8Udn21Z8lRZR0BERGTzrJ4K3rp1a/z888946qmnMHToUMN7bsgKvq0AlVNZR0FERGSTrE5uOnTogFWrVqFRo0YlEY/NEBHzOyb/AThXBRSK0g2IiIiogrA6uZkzZ05JxGFzMrU600KvRkxsiIiISphFyc3EiRMxe/ZsODs7Y+LEiYXWXbhwYbEEZpMGbmViQ0REVMIsSm6OHz9umAl1/PjxEg3IFogIsnRZEAA6O/W9HUxsiIiISpxFyc2ePXvM/kymRASDvh6EM1eOY3zQRKS61S3rkIiIiCoUq6eCDxs2DHfu3DEpT09Px7Bhw4olqPIsMzcTiX8dh2uWi1Fi4606A3v1I79WiIiIiB5CIQVO6zHPzs4OKSkpJgtm3rhxA97e3sjNzS3WAItbWloa3NzckJqaCldX12I//93su1j7yjpoNfcSm8EeQ+Gsug3FW1cBtXOxX5OIiMjWWfP9bfFsqbS0NIgIRAR37tyBo6OjYZ9Op8OuXbu4QjgAbVqGUWKjSr8Cp2q3OdyGiIiolFic3Li7u0OhUEChUCAwMNBkv0KhwKxZs4o1uPLuc00K0lyd8Ap7o4iIiEqNxcnNnj17ICLo2LEjNm/eDA8PD8M+tVoNPz8/+Pj4lEiQ5dVdO3tAySYbIiKi0mRxctOuXTsAeetK1apVCwr2s5hn1QgmIiIiKm4WJTcnT57Ek08+CaVSidTUVJw6darAuo0bNy624MobvV6PT+bvgQs8yzoUIiKiCsui5KZp06a4du0aqlWrhqZNm0KhUJhdO0mhUECnM7PsQAVxJyMdLnfyEhuXO5eR61wJSjblEBERlSqLkpvk5GR4enoafqaHa5a4CAibUdZhEBERVTgWJTd+fn5mf6aCKax7fRAREREVE6snKa9ZswY7d+40bE+dOhXu7u5o06YNLl68WKzBEREREVnL6uRmzpw50Gg0AIBDhw5h2bJlmDdvHqpWrYoJEyYUe4BERERE1rB4Kni+y5cvIyAgAACwdetWvPjii3jllVcQEhKC9u3bF3d8RERERFaxuuXGxcUFN2/eBAB8++236Ny5MwDA0dERmZmZxRsdERERkZWsbrnp0qULRowYgaCgIJw9exbPPfccAODXX3+Fv79/ccdHREREZBWrW26WL1+O1q1b4++//8bmzZtRpUoVAMDRo0cxYMCAYg+QiIiIyBpWt9y4u7tj2bJlJuVcNJOIiIgeB1YnNwBw+/ZtrF69GmfOnIFCoUCDBg0wfPhwuLm5FXd8RERERFaxulsqISEBdevWxaJFi3Dr1i3cuHEDixYtQt26dXHs2LGSiJGIiIjIYla33EyYMAHPP/88Pv30U9jb5x2em5uLESNGYPz48fjhhx+KPUgiIiIiS1md3CQkJBglNgBgb2+PqVOnIjg4uFiDIyIiIrKW1d1Srq6uuHTpkkn55cuXUalSpWIJioiIiKiorE5u+vXrh+HDhyM2NhaXL1/GlStXsH79eowYMYJTwYmIiKjMWd0ttWDBAigUCgwaNAi5ubkAAJVKhdGjR+M///lPsQdIREREZA2rkxu1Wo0lS5YgMjIS586dg4ggICAATk5OJRFfuSEi2LX417IOg4iIqMKzuFsqIyMDr732GmrUqIFq1aphxIgRqF69Oho3blzhExsAyM3R49aVDACAy53LUOpzyjgiIiKiisni5GbmzJmIjo7Gc889h/79+yM+Ph6jR48uydjKrWaJi6DI/7lW5TKNhYiIqKKxuFtqy5YtWL16Nfr37w8AePnllxESEgKdTgc7O7sSC7A8UogAAI6+3RnOGiUQWcYBERERVSAWt9xcvnwZbdu2NWy3aNEC9vb2uHr1aokEZguc1PZQKBQPr0hERETFxuLkRqfTQa1WG5XZ29sbZkwRERERPQ4s7pYSEQwZMgQODg6GsqysLIwaNQrOzs6Gsi1bthRvhERERERWsDi5GTx4sEnZyy+/XKzBEBERET0qi5ObqKiokoyDiIiIqFhYvfxCcVuxYgVq164NR0dHNG/eHPv377fouIMHD8Le3h5NmzYt2QCJiIioXCnT5CY2Nhbjx4/HW2+9hePHj6Nt27YICwszuzDn/VJTUzFo0CB06tSplCIlIiKi8qJMk5uFCxdi+PDhGDFiBBo0aIDFixfD19cXK1euLPS4V199FeHh4WjdunUpRfpw8u+7bYiIiKhslVlyk5OTg6NHj6Jr165G5V27dsWPP/5Y4HFRUVE4d+4cZs6cWdIhWiVTqzO/g0kPERFRqbJ64czicuPGDeh0Onh5eRmVe3l54dq1a2aPSUpKwrRp07B//37Y21sWenZ2NrKzsw3baWlpRQ/aWiJAVLfSux4REREVreXmiy++QEhICHx8fHDx4kUAwOLFi7Ft2zarz/XgG3xFxOxbfXU6HcLDwzFr1iwEBgZafP7IyEi4ubkZPr6+vlbHWGTaTODaqbyfvZ8CVFxglIiIqKRZndysXLkSEydORPfu3XH79m3odHndMe7u7li8eLHF56latSrs7OxMWmmuX79u0poDAHfu3EFCQgJef/112Nvbw97eHu+99x5OnDgBe3t7fP/992avM336dKSmpho+ly9ftvxmi9PQOIBLMRAREZU4q5ObpUuX4tNPP8Vbb71ltGBmcHAwTp06ZfF51Go1mjdvjvj4eKPy+Ph4tGnTxqS+q6srTp06hcTERMNn1KhRqFevHhITE9GyZUuz13FwcICrq6vRp0wwsSEiIioVVo+5SU5ORlBQkEm5g4MD0tPTrTrXxIkTMXDgQAQHB6N169b45JNPcOnSJYwaNQpAXqvLn3/+ic8//xxKpRJPPvmk0fHVqlWDo6OjSTkRERFVXFYnN7Vr10ZiYiL8/PyMyr/++ms0bNjQqnP169cPN2/exHvvvYeUlBQ8+eST2LVrl+HcKSkpD33nDREREdH9rE5upkyZgtdeew1ZWVkQEfz8889Yt24dIiMjsWrVKqsDGDNmDMaMGWN2X3R0dKHHvvvuu3j33XetviYRERHZLquTm6FDhyI3NxdTp05FRkYGwsPDUaNGDSxZsgT9+/cviRiJiIiILFak99yMHDkSI0eOxI0bN6DX61GtWrXijouIiIioSB7pJX5Vq1YtrjiIiIiIikWRBhSbe8levvPnzz9SQDaFSy8QERGVOquTm/Hjxxtta7VaHD9+HHFxcZgyZUpxxWUb/terrCMgIiKqcKxObsaNG2e2fPny5UhISHjkgGzKX7/mPWEuvUBERFRqim1V8LCwMGzevLm4Tlf+FNYFxaUXiIiISk2xJTebNm2Ch4dHcZ2u/NFmmC/3bQWonUs3FiIiogrM6m6poKAgowHFIoJr167h77//xooVK4o1uHJv8h+AWxW22hAREZUiq5ObXr16GW0rlUp4enqiffv2qF+/fnHFZRvUTkxsiIiISplVyU1ubi78/f0RGhoKb2/vkoqJiIiIqMisGnNjb2+P0aNHIzs7u6TisRmq+vWg0GjKOgwiIqIKx+oBxS1btsTx48dLIhab4r1mVaEvOyQiIqKSYfWYmzFjxmDSpEm4cuUKmjdvDmdn45lAjRs3LrbgyjcmNkRERGXB4uRm2LBhWLx4Mfr16wcAGDt2rGGfQqGAiEChUECn0xV/lEREREQWsji5WbNmDf7zn/8gOTm5JOMhIiIieiQWJzfy7xt4/fz8SiwYIiIiokdl1YBiDpAlIiKix51VA4oDAwMfmuDcunXrkQIiIiIiehRWJTezZs2Cm5tbScVCRERE9MisSm769++PatWqlVQsRERERI/M4jE3HG9DRERE5YHFyU3+bCkiIiKix5nF3VJ6vb4k4yj3BEz+iIiIHgdWry1F5mXrjBcT1dg7llEkREREFRuTmxLCMUpERERlg8kNERER2RQmN0RERGRTrHrPDRERlW86nQ5arbaswyAyS61WQ6l89HYXJjdERBWAiODatWu4fft2WYdCVCClUonatWtDrVY/0nmY3BARVQD5iU21atXg5OTESQ/02NHr9bh69SpSUlJQq1atR/obZXJDRGTjdDqdIbGpUqVKWYdDVCBPT09cvXoVubm5UKlURT4PBxQTEdm4/DE2Tk5OZRwJUeHyu6N0Ot0jnYfJDRFRBcGuKHrcFdffKJMbIiIisilMboiIiP61d+9eKBSKQmeVRUdHw93dvdRiIusxuSEiosfWkCFD0KtXL6OyTZs2wdHREfPmzTOpf+HCBSgUCpPPyy+/XEoR57n/2i4uLmjSpAmio6NN6ul0OixatAiNGzeGo6Mj3N3dERYWhoMHD5rUzcnJwbx589CkSRM4OTmhatWqCAkJQVRUVKHvLhIRfPLJJ2jZsiVcXFzg7u6O4OBgLF68GBkZGcV5248NzpYiIqJyY9WqVXjttdewfPlyjBgxosB6u3fvRqNGjQzbGo2mNMIzEhUVhW7duiE9PR2xsbEYOnQoqlevjtDQUAB5SUf//v2xe/duzJ8/H506dUJaWhqWL1+O9u3bY+PGjYbELicnB6GhoThx4gRmz56NkJAQuLq64vDhw1iwYAGCgoLQtGlTs3EMHDgQW7Zswdtvv41ly5bB09MTJ06cwOLFi+Hv72+SPFoqJyfnkd9HU2KkgklNTRUAkpqaWqznvfbXn7Ls1e9k2avfyakGjUWXnl6s5yciKqrMzEw5ffq0ZGZmlnUoVhs8eLD07NlTRETmzp0rDg4OsmnTpgLrJycnCwA5fvy42f1ZWVnyxhtviKenpzg4OEhISIj8/PPPhv179uwRAPLPP/8YyqKiosTX11c0Go306tVLFixYIG5uboXGDUC+/PJLozIPDw+ZOHGiYXv9+vUCQLZv325y/AsvvCBVqlSRu3fvGu5dqVTKsWPHTOrm5OQY6j0oNjZWAMjWrVtN9un1erl9+7aIiLRr107GjRtntL9nz54yePBgw7afn5/Mnj1bBg8eLK6urjJo0CBp1aqVvPnmm0bHXb9+Xezt7eX7778XEZHs7GyZMmWK+Pj4iJOTk7Ro0UL27NljNt7C/lat+f5mt1QxEZGyDoGIyGIigoyc3FL/FPW/ldOmTcPs2bPx1VdfoU+fPkW+76lTp2Lz5s1Ys2YNjh07hoCAAISGhuLWrVtm6//0008YNmwYxowZg8TERHTo0AHvv/++VdfU6XTYsGEDbt26ZfTulrVr1yIwMBA9evQwOWbSpEm4efMm4uPjAQAxMTHo3LkzgoKCTOqqVCo4OzubvXZMTAzq1auHnj17muxTKBRwc3Oz6l7mz5+PJ598EkePHsU777yDiIgIrFu3zuj3GhsbCy8vL7Rr1w4AMHToUBw8eBDr16/HyZMn8dJLL6Fbt25ISkqy6trWYLdUccnKMvxo90QdKMqgCZSIyFKZWh0azvim1K97+r1QOKmt++r5+uuvsW3bNnz33Xfo2LGjRce0adPGaI2i/fv3IzAwECtXrkR0dDTCwsIAAJ9++ini4+OxevVqTJkyxeQ8S5YsQWhoKKZNmwYACAwMxI8//oi4uLiHxjBgwADY2dkhKysLOp0OHh4eRl1pZ8+eRYMGDcwem19+9uxZAEBSUhLat29v0b3fLykpCfXq1bP6uIJ07NgRkydPNmz369cPEyZMwIEDB9C2bVsAeUlbeHg4lEolzp07h3Xr1uHKlSvw8fEBAEyePBlxcXGIiorCnDlzii22+7HlpgS4L1nA90kQERWTxo0bw9/fHzNmzMCdO3cM5WFhYXBxcYGLi4vR+Bogr/UgMTHR8GnYsCHOnTsHrVaLkJAQQz2VSoUWLVrgzJkzZq995swZtG7d2qjswe2CLFq0CImJiYiPj0fTpk2xaNEiBAQEWHrbAO6990VEivS9UtTjChIcHGy07enpiS5duiAmJgYAkJycjEOHDiEiIgIAcOzYMYgIAgMDDb8rFxcX7Nu3D+fOnSu2uB7ElpsSwLyGiB53GpUdTr8XWibXtVaNGjWwefNmdOjQAd26dUNcXBwqVaqEVatWITMzEwBMXtXv6+trkkjkd508+GVfWALwKEMOvL29ERAQgICAAGzcuBFBQUEIDg5Gw4YNAeS1Ap0+fdrssfnJ1hNPPGGoW1ACVhhLj1MqlSb3am4Glrnur4iICIwbNw5Lly7F2rVr0ahRIzRp0gRA3npRdnZ2OHr0KOzsjH/3Li4u1tyKVdhyQ0RUASkUCjip7Uv9U9RWhFq1amHfvn24fv06unbtirS0NNSoUcOQPPj5+T30HAEBAVCr1Thw4IChTKvVIiEhocDuoYYNG+Lw4cNGZQ9uWyIgIAB9+vTB9OnTDWX9+/dHUlISduzYYVL/ww8/RJUqVdClSxcAQHh4OHbv3o3jx4+b1M3NzUV6errZ64aHh+Ps2bPYtm2byT4RQWpqKoC8FpiUlBTDPp1Oh19++cWie+vVqxeysrIQFxeHtWvXGk27DwoKgk6nw/Xr1w2/q/yPt7e3RecvCiY3RERULtSsWRN79+7FzZs30bVrV8MXs6WcnZ0xevRoTJkyBXFxcTh9+jRGjhyJjIwMDB8+3OwxY8eORVxcHObNm4ezZ89i2bJlFo23MWfSpEnYsWMHEhISAOQlN71798bgwYOxevVqXLhwASdPnsSrr76K7du3Y9WqVYaWkvHjxyMkJASdOnXC8uXLceLECZw/fx4bNmxAy5YtCxyc27dvX/Tr1w8DBgxAZGQkEhIScPHiRXz11Vfo3Lkz9uzZAyBvLM3OnTuxc+dO/PbbbxgzZkyhLzK8n7OzM3r27Il33nkHZ86cQXh4uGFfYGAgIiIiMGjQIGzZsgXJyck4cuQI5s6di127dhXpOVrkofOpbExJTQVPufCHYSp4yoU/ivXcRESPwlamgue7evWq1KtXT55++mmjKdsiD58KnpmZKW+88YZUrVrV4qngq1evlpo1a4pGo5EePXoUeSq4iEiXLl0kLCzMsK3VamXBggXSqFEjcXBwEFdXVwkNDZX9+/ebHJuVlSWRkZHy1FNPiaOjo3h4eEhISIhER0eLVqstMBadTicrV66Up59+WpycnMTV1VWaN28uS5YskYyMDBHJm04+evRo8fDwkGrVqklkZKTZqeCLFi0ye42dO3cKAHn22WdN9uXk5MiMGTPE399fVCqVeHt7S+/eveXkyZMmdYtrKrhCpGLNYU5LS4ObmxtSU1Ph6upabOe9dvEcNkdeBAD0me4Hb7+6xXZuIqJHkZWVheTkZNSuXRuOjo5lHQ5RgQr7W7Xm+5vdUkRERGRTmNwQERGRTWFyQ0RERDaFyQ0RERHZFCY3REREZFOY3BAREZFNYXJDRERENoXJDREREdkUJjdERERkU8o8uVmxYoXhTYTNmzfH/v37C6y7ZcsWdOnSBZ6ennB1dUXr1q3xzTfflGK0RERky/bu3QuFQlHoukrR0dFwd3cvtZjIemWa3MTGxmL8+PF46623cPz4cbRt2xZhYWG4dOmS2fo//PADunTpgl27duHo0aPo0KEDevToYXaVVCIiKv+GDBmCXr16GZVt2rQJjo6OmDdvnkn9CxcuQKFQmHzuX6m6NNx/bRcXFzRp0gTR0dEm9XQ6HRYtWoTGjRvD0dER7u7uCAsLw8GDB03q5uTkYN68eWjSpAmcnJxQtWpVhISEICoqClqttsBYRASffPIJWrZsCRcXF7i7uyM4OBiLFy9GRkZGcd72Y8O+LC++cOFCDB8+HCNGjAAALF68GN988w1WrlyJyMhIk/qLFy822p4zZw62bduGHTt2ICgoqDRCJiKiMrRq1Sq89tprWL58ueG7w5zdu3ejUaNGhm2NRlMa4RmJiopCt27dkJ6ejtjYWAwdOhTVq1dHaGgogLyko3///ti9ezfmz5+PTp06IS0tDcuXL0f79u2xceNGQ2KXk5OD0NBQnDhxArNnz0ZISAhcXV1x+PBhLFiwAEFBQWjatKnZOAYOHIgtW7bg7bffxrJly+Dp6YkTJ05g8eLF8Pf3N0keLZWTkwO1Wl2kY0vcQ5fWLCHZ2dliZ2cnW7ZsMSofO3as2VVFzdHpdOLr6ytLly61+LpcFZyIKhpbWRV87ty54uDgIJs2bSqw/sNWBc/KypI33nhDPD09LV4VPCoqSnx9fUWj0UivXr2KvCq4h4eHTJw40bC9fv16ASDbt283Of6FF16QKlWqyN27dw33rlQq5dixYyZ1c3JyDPUeFBsbKwBk69atJvv0er3cvn1bRETatWsn48aNM9pvblXw2bNny+DBg8XV1VUGDRokrVq1kjfffNPouOvXr4u9vb18//33IpL3fT9lyhTx8fERJycnadGihezZs8dsvMW1KniZdUvduHEDOp0OXl5eRuVeXl64du2aRef48MMPkZ6ejr59+xZYJzs7G2lpaUYfIqIKTwTISS/9j0iRwp02bRpmz56Nr776Cn369CnybU+dOhWbN2/GmjVrcOzYMQQEBCA0NBS3bt0yW/+nn37CsGHDMGbMGCQmJqJDhw54//33rbqmTqfDhg0bcOvWLahUKkP52rVrERgYiB49epgcM2nSJNy8eRPx8fEAgJiYGHTu3NlsL4VKpYKzs7PZa8fExKBevXro2bOnyT6FQgE3Nzer7mX+/Pl48skncfToUbzzzjuIiIjAunXrIPf9XmNjY+Hl5YV27doBAIYOHYqDBw9i/fr1OHnyJF566SV069YNSUlJVl3bGmXaLQXkPdz7iYhJmTnr1q3Du+++i23btqFatWoF1ouMjMSsWbMeOU4iIpuizQDm+JT+df/fVUBt/ou4IF9//TW2bduG7777Dh07drTomDZt2kCpvPfv9/379yMwMBArV65EdHQ0wsLCAACffvop4uPjsXr1akyZMsXkPEuWLEFoaCimTZsGAAgMDMSPP/6IuLi4h8YwYMAA2NnZISsrCzqdDh4eHkZdaWfPnkWDBg3MHptffvbsWQBAUlIS2rdvb9G93y8pKQn16tWz+riCdOzYEZMnTzZs9+vXDxMmTMCBAwfQtm1bAHlJW3h4OJRKJc6dO4d169bhypUr8PHJ+3ubPHky4uLiEBUVhTlz5hRbbPcrs5abqlWrws7OzqSV5vr16yatOQ+KjY3F8OHDsWHDBnTu3LnQutOnT0dqaqrhc/ny5UeOnYiISk/jxo3h7++PGTNm4M6dO4bysLAwuLi4wMXFxWh8DZD3PZGYmGj4NGzYEOfOnYNWq0VISIihnkqlQosWLXDmzBmz1z5z5gxat25tVPbgdkEWLVqExMRExMfHo2nTpli0aBECAgIsvW0A9xoALP2H/4OKelxBgoODjbY9PT3RpUsXxMTEAACSk5Nx6NAhREREAACOHTsGEUFgYKDhd+Xi4oJ9+/bh3LlzxRbXg8qs5UatVqN58+aIj49H7969DeXx8fFmm8/yrVu3DsOGDcO6devw3HPPPfQ6Dg4OcHBwKJaYiYhshsoprxWlLK5rpRo1amDz5s3o0KEDunXrhri4OFSqVAmrVq1CZmZm3mnv6+4BAF9fX5NEIr/rxJoeAyliNxoAeHt7IyAgAAEBAdi4cSOCgoIQHByMhg0bAshrBTp9+rTZY/OTrSeeeMJQt6AErDCWHqdUKk3u1dwMLHPdXxERERg3bhyWLl2KtWvXolGjRmjSpAkAQK/Xw87ODkePHoWdnZ3RcS4uLtbcilXKdCr4xIkTsWrVKnz22Wc4c+YMJkyYgEuXLmHUqFEA8lpdBg0aZKi/bt06DBo0CB9++CFatWqFa9eu4dq1a0hNTS2rWyAiKp8UirzuodL+FLEVoVatWti3bx+uX7+Orl27Ii0tDTVq1DAkD35+fg89R0BAANRqNQ4cOGAo02q1SEhIKLB7qGHDhjh8+LBR2YPblggICECfPn0wffp0Q1n//v2RlJSEHTt2mNT/8MMPUaVKFXTp0gUAEB4ejt27d5t99Ulubi7S09PNXjc8PBxnz57Ftm3bTPaJiOH709PTEykpKYZ9Op0Ov/zyi0X31qtXL2RlZSEuLg5r1641mnYfFBQEnU6H69evG35X+R9vb2+Lzl8kDx1yXMKWL18ufn5+olarpVmzZrJv3z7DvsGDB0u7du0M2+3atRMAJp/7R3M/DGdLEVFFYyuzpURErly5Ik888YS0bNnSMNPnfg+bLTVu3Djx8fGRr7/+Wn799VcZPHiwVK5cWW7duiUiprOlDh06JAqFQubOnSu///67LF26VNzd3Ys0W+rkyZOiUCjkyJEjIpI3W6l3795SuXJlWbVqlSQnJ8uJEyfklVdeEXt7e6Pjs7KypG3btlK5cmVZtmyZJCYmyrlz5yQ2NlaaNWtW4P3q9Xrp16+faDQamTNnjhw5ckQuXLggO3bskI4dOxqu8fHHH4uTk5N89dVXcubMGXnllVfE1dXVZLbUokWLzF4nPDxcmjRpIgqFQi5evGi0LyIiQvz9/WXz5s1y/vx5+fnnn+U///mP7Ny50+Q8xTVbqsyTm9LG5IaIKhpbSm5ERK5evSr16tWTp59+2mjKtsjDk5vMzEx54403pGrVqhZPBV+9erXUrFlTNBqN9OjRo8hTwUVEunTpImFhYYZtrVYrCxYskEaNGomDg4O4urpKaGio7N+/3+TYrKwsiYyMlKeeekocHR3Fw8NDQkJCJDo6WrRabYGx6HQ6WblypTz99NPi5OQkrq6u0rx5c1myZIlkZGSISN508tGjR4uHh4dUq1ZNIiMjzU4FLyi52blzpwAw+yqXnJwcmTFjhvj7+4tKpRJvb2/p3bu3nDx50qRucSU3CpFH6FAsh9LS0uDm5obU1FS4uroW23mvXTyHzZEXAQB9pvvB269usZ2biOhRZGVlITk52bDUDdHjqrC/VWu+v8t8bSkiIiKi4sTkhoiIiGwKkxsiIiKyKUxuiIiIyKYwuSEiIiKbwuSGiIiIbAqTGyIiIrIpTG6IiIjIpjC5ISIiIpvC5IaIiOhfe/fuhUKhwO3btwusEx0dDXd391KLiazH5IaIiB5bQ4YMQa9evYzKNm3aBEdHR8ybN8+k/oULF6BQKEw+969UXRruv7aLiwuaNGmC6Ohok3o6nQ6LFi1C48aN4ejoCHd3d4SFheHgwYMmdXNycjBv3jw0adIETk5OqFq1KkJCQhAVFQWtVltgLCKCTz75BC1btoSLiwvc3d0RHByMxYsXIyMjozhv+7FhX9YBEBERWWrVqlV47bXXsHz5cowYMaLAert370ajRo0M2xqNpjTCMxIVFYVu3bohPT0dsbGxGDp0KKpXr47Q0FAAeUlH//79sXv3bsyfPx+dOnVCWloali9fjvbt22Pjxo2GxC4nJwehoaE4ceIEZs+ejZCQELi6uuLw4cNYsGABgoKC0LRpU7NxDBw4EFu2bMHbb7+NZcuWwdPTEydOnMDixYvh7+9vkjxaKicnB2q1ukjHlriHLq1pY7gqOBFVNOZWWtbr9ZKek17qH71eb1Xs968KPnfuXHFwcJBNmzYVWP9hq4JnZWXJG2+8IZ6enhavCh4VFSW+vr6i0WikV69eRV4V3MPDQyZOnGjYXr9+vQCQ7du3mxz/wgsvSJUqVeTu3buGe1cqlXLs2DGTujk5OYZ6D4qNjRUAsnXrVpN9er1ebt++LSIi7dq1k3HjxhntN7cq+OzZs2Xw4MHi6uoqgwYNklatWsmbb75pdNz169fF3t5evv/+exERyc7OlilTpoiPj484OTlJixYtZM+ePWbjLa5VwdlyQ0RUAWXmZqLl2palft2fwn+Ck8rJ6uOmTZuG5cuX46uvvkLnzp2LfP2pU6di8+bNWLNmDfz8/DBv3jyEhobijz/+gIeHh2m8P/2EYcOGYc6cOXjhhRcQFxeHmTNnWnVNnU6HzZs349atW1CpVIbytWvXIjAwED169DA5ZtKkSdiyZQvi4+PRq1cvxMTEoHPnzggKCjKpq1KpjM57v5iYGNSrVw89e/Y02adQKODm5mbVvcyfPx/vvPMO3n77bQBAXFwc5s+fj8jISCgUCgBAbGwsvLy80K5dOwDA0KFDceHCBaxfvx4+Pj748ssv0a1bN5w6dQpPPPGEVde3FMfcEBHRY+3rr7/G3LlzsW3bNosTmzZt2sDFxcXwOX78ONLT07Fy5UrMnz8fYWFhaNiwIT799FNoNBqsXr3a7HmWLFmC0NBQTJs2DYGBgRg7dqyhW+lhBgwYABcXFzg4OKBfv37w8PAw6ko7e/YsGjRoYPbY/PKzZ88CAJKSklC/fn2Lrnu/pKQk1KtXz+rjCtKxY0dMnjwZAQEBCAgIQL9+/XD16lUcOHDAUGft2rUIDw+HUqnEuXPnsG7dOmzcuBFt27ZF3bp1MXnyZDzzzDOIiooqtrgexJYbIqIKSGOvwU/hP5XJda3VuHFj3LhxAzNmzMDTTz+NSpUqAQDCwsKwf/9+AICfnx9+/fVXwzGxsbFGiYOvry9+//13aLVahISEGMpVKhVatGiBM2fOmL32mTNn0Lt3b6Oy1q1bIy4u7qFxL1q0CJ07d8bly5cxceJETJgwAQEBAZbfOGBoDRERw8/WKOpxBQkODjba9vT0RJcuXRATE4O2bdsiOTkZhw4dwsqVKwEAx44dg4ggMDDQ6Ljs7GxUqVKl2OJ6EJMbIqIKSKFQFKl7qCzUqFEDmzdvRocOHdCtWzfExcWhUqVKWLVqFTIzMwHApFvG19fXJJEQEQAw+bIvLAHIP6YovL29DS0cGzduRFBQEIKDg9GwYUMAQGBgIE6fPm322PxkK7/bJjAwsMAErDCWHqdUKk3u1dwMLGdnZ5OyiIgIjBs3DkuXLsXatWvRqFEjNGnSBACg1+thZ2eHo0ePws7Ozug4FxcXa27FKuyWIiKix16tWrWwb98+XL9+HV27dkVaWhpq1KhhSB78/Pweeo6AgACo1WqjLhStVouEhIQCu4caNmyIw4cPG5U9uG2JgIAA9OnTB9OnTzeU9e/fH0lJSdixY4dJ/Q8//BBVqlRBly5dAADh4eHYvXs3jh8/blI3NzcX6enpZq8bHh6Os2fPYtu2bSb7RASpqakA8lpgUlJSDPt0Oh1++eUXi+6tV69eyMrKQlxcHNauXWs07T4oKAg6nQ7Xr183/K7yP97e3hadvyiY3BARUblQs2ZN7N27Fzdv3kTXrl0NX8yWcnZ2xujRozFlyhTExcXh9OnTGDlyJDIyMjB8+HCzx4wdOxZxcXGYN28ezp49i2XLllnUJWXOpEmTsGPHDiQkJADIS2569+6NwYMHY/Xq1bhw4QJOnjyJV199Fdu3b8eqVasMLSXjx49HSEgIOnXqhOXLl+PEiRM4f/48NmzYgJYtWyIpKcnsNfv27Yt+/fphwIABiIyMREJCAi5evGgYmL1nzx4AeWNpdu7ciZ07d+K3337DmDFjCn2R4f2cnZ3Rs2dPvPPOOzhz5gzCw8MN+wIDAxEREYFBgwZhy5YtSE5OxpEjRzB37lzs2rWrSM/RIg+dT2VjOBWciCqawqbXPu7unwqe7+rVq1KvXj15+umnjaZsizx8KnhmZqa88cYbUrVqVYungq9evVpq1qwpGo1GevToUeSp4CIiXbp0kbCwMMO2VquVBQsWSKNGjcTBwUFcXV0lNDRU9u/fb3JsVlaWREZGylNPPSWOjo7i4eEhISEhEh0dLVqttsBYdDqdrFy5Up5++mlxcnISV1dXad68uSxZskQyMjJEJG86+ejRo8XDw0OqVasmkZGRZqeCL1q0yOw1du7cKQDk2WefNdmXk5MjM2bMEH9/f1GpVOLt7S29e/eWkydPmtQtrqngCpFH6FAsh9LS0uDm5obU1FS4uroW23mvXTyHzZEXAQB9pvvB269usZ2biOhRZGVlITk5GbVr14ajo2NZh0NUoML+Vq35/ma3FBEREdkUJjdERERkU5jcEBERkU1hckNEREQ2hckNERER2RQmN0RERGRTmNwQERGRTWFyQ0RERDaFyQ0REdG/9u7dC4VCUejSA9HR0XB3dy+1mMh6TG6IiOixNWTIEPTq1cuobNOmTXB0dMS8efNM6l+4cAEKhcLkc/9ijqXh/mu7uLigSZMmiI6ONqmn0+mwaNEiNG7cGI6OjnB3d0dYWBgOHjxoUjcnJwfz5s1DkyZN4OTkhKpVqyIkJARRUVFmV/DOJyL45JNP0LJlS7i4uMDd3R3BwcFYvHgxMjIyivO2Hxv2ZR0AERGRpVatWoXXXnsNy5cvx4gRIwqst3v3bjRq1MiwrdFoSiM8I1FRUejWrRvS09MRGxuLoUOHonr16ggNDQWQl3T0798fu3fvxvz589GpUyekpaVh+fLlaN++PTZu3GhI7HJychAaGooTJ05g9uzZCAkJgaurKw4fPowFCxYgKCgITZs2NRvHwIEDsWXLFrz99ttYtmwZPD09ceLECSxevBj+/v4myaOlcnJyoFari3RsiXvo6lM2hgtnElFFYysLZ86dO1ccHBxk06ZNBdZ/2MKZWVlZ8sYbb4inp6fFC2dGRUWJr6+vaDQa6dWrV5EXzvTw8JCJEycattevXy8AZPv27SbHv/DCC1KlShW5e/eu4d6VSqUcO3bMpG5OTo6h3oNiY2MFgGzdutVkn16vl9u3b4uISLt27WTcuHFG+80tnDl79mwZPHiwuLq6yqBBg6RVq1by5ptvGh13/fp1sbe3l++//15ERLKzs2XKlCni4+MjTk5O0qJFC9mzZ4/ZeItr4Ux2SxERVUAiAn1GRql/pIhrNU+bNg2zZ8/GV199hT59+hT5vqdOnYrNmzdjzZo1OHbsGAICAhAaGopbt26Zrf/TTz9h2LBhGDNmDBITE9GhQwe8//77Vl1Tp9Nhw4YNuHXrFlQqlaF87dq1CAwMRI8ePUyOmTRpEm7evIn4+HgAQExMDDp37oygoCCTuiqVCs7OzmavHRMTg3r16qFnz54m+xQKBdzc3Ky6l/nz5+PJJ5/E0aNH8c477yAiIgLr1q0z+r3GxsbCy8sL7dq1AwAMHToUBw8exPr163Hy5Em89NJL6NatG5KSkqy6tjXYLUVEVAFJZiZ+b9a81K9b79hRKJycrDrm66+/xrZt2/Ddd9+hY8eOFh3Tpk0bKJX3/v2+f/9+BAYGYuXKlYiOjkZYWBgA4NNPP0V8fDxWr16NKVOmmJxnyZIlCA0NxbRp0wAAgYGB+PHHHxEXF/fQGAYMGAA7OztkZWVBp9PBw8PDqCvt7NmzaNCggdlj88vPnj0LAEhKSkL79u0tuvf7JSUloV69elYfV5COHTti8uTJhu1+/fphwoQJOHDgANq2bQsgL2kLDw+HUqnEuXPnsG7dOly5cgU+Pj4AgMmTJyMuLg5RUVGYM2dOscV2P7bcEBHRY61x48bw9/fHjBkzcOfOHUN5WFgYXFxc4OLiYjS+BshrPUhMTDR8GjZsiHPnzkGr1SIkJMRQT6VSoUWLFjhz5ozZa585cwatW7c2KntwuyCLFi1CYmIi4uPj0bRpUyxatAgBAQGW3jaAvNYVIK+lLf9naxT1uIIEBwcbbXt6eqJLly6IiYkBACQnJ+PQoUOIiIgAABw7dgwigsDAQMPvysXFBfv27cO5c+eKLa4HseWGiKgCUmg0qHfsaJlc11o1atTA5s2b0aFDB3Tr1g1xcXGoVKkSVq1ahczMTAAw6u4BAF9fX5NEIr/r5MEv+8ISgKJ2owGAt7c3AgICEBAQgI0bNyIoKAjBwcFo2LAhgLxWoNOnT5s9Nj/ZeuKJJwx1C0rACmPpcUql0uRezc3AMtf9FRERgXHjxmHp0qVYu3YtGjVqhCZNmgAA9Ho97OzscPToUdjZ2Rkd5+LiYs2tWIUtN0REFZBCoYDSyanUP0VtRahVqxb27duH69evo2vXrkhLS0ONGjUMyYOfn99DzxEQEAC1Wo0DBw4YyrRaLRISEgrsHmrYsCEOHz5sVPbgtiUCAgLQp08fTJ8+3VDWv39/JCUlYceOHSb1P/zwQ1SpUgVdunQBAISHh2P37t04fvy4Sd3c3Fykp6ebvW54eDjOnj2Lbdu2mewTEaSmpgLIa4FJSUkx7NPpdPjll18surdevXohKysLcXFxWLt2rdG0+6CgIOh0Oly/ft3wu8r/eHt7W3T+omByQ0RE5ULNmjWxd+9e3Lx5E127djV8MVvK2dkZo0ePxpQpUxAXF4fTp09j5MiRyMjIwPDhw80eM3bsWMTFxWHevHk4e/Ysli1bZtF4G3MmTZqEHTt2ICEhAUBectO7d28MHjwYq1evxoULF3Dy5Em8+uqr2L59O1atWmVoKRk/fjxCQkLQqVMnLF++HCdOnMD58+exYcMGtGzZssDBuX379kW/fv0wYMAAREZGIiEhARcvXsRXX32Fzp07Y8+ePQDyxtLs3LkTO3fuxG+//YYxY8YU+iLD+zk7O6Nnz5545513cObMGYSHhxv2BQYGIiIiAoMGDcKWLVuQnJyMI0eOYO7cudi1a1eRnqNFHjqfysZwKjgRVTS2MhU839WrV6VevXry9NNPG03ZFnn4VPDMzEx54403pGrVqhZPBV+9erXUrFlTNBqN9OjRo8hTwUVEunTpImFhYYZtrVYrCxYskEaNGomDg4O4urpKaGio7N+/3+TYrKwsiYyMlKeeekocHR3Fw8NDQkJCJDo6WrRabYGx6HQ6WblypTz99NPi5OQkrq6u0rx5c1myZIlkZGSISN508tGjR4uHh4dUq1ZNIiMjzU4FX7Rokdlr7Ny5UwDIs88+a7IvJydHZsyYIf7+/qJSqcTb21t69+4tJ0+eNKlbXFPBFSKP0KFYDqWlpcHNzQ2pqalwdXUttvNeu3gOmyMvAgD6TPeDt1/dYjs3EdGjyMrKQnJyMmrXrg1HR8eyDoeoQIX9rVrz/c1uKSIiIrIpTG6IiIjIpjC5ISIiIpvC5IaIiIhsCpMbIiIisilMboiIiMimMLkhIiIim8LkhoiIiGwKkxsiIiKyKUxuiIiI/rV3714oFIpC11WKjo6Gu7t7qcVE1mNyQ0REj60hQ4agV69eRmWbNm2Co6Mj5s2bZ1L/woULUCgUJp/7V6ouDfdf28XFBU2aNEF0dLRJPZ1Oh0WLFqFx48ZwdHSEu7s7wsLCcPDgQZO6OTk5mDdvHpo0aQInJydUrVoVISEhiIqKglarLTAWEcEnn3yCli1bwsXFBe7u7ggODsbixYuRkZFRnLf92LAv6wCIiIgstWrVKrz22mtYvnw5RowYUWC93bt3o1GjRoZtjUZTGuEZiYqKQrdu3ZCeno7Y2FgMHToU1atXR2hoKIC8pKN///7YvXs35s+fj06dOiEtLQ3Lly9H+/btsXHjRkNil5OTg9DQUJw4cQKzZ89GSEgIXF1dcfjwYSxYsABBQUFo2rSp2TgGDhyILVu24O2338ayZcvg6emJEydOYPHixfD39zdJHi2Vk5MDtVpdpGNL3EOX1rQxXBWciCoaW1kVfO7cueLg4CCbNm0qsP7DVgXPysqSN954Qzw9PS1eFTwqKkp8fX1Fo9FIr169irwquIeHh0ycONGwvX79egEg27dvNzn+hRdekCpVqsjdu3cN965UKuXYsWMmdXNycgz1HhQbGysAZOvWrSb79Hq93L59W0RE2rVrJ+PGjTPab25V8NmzZ8vgwYPF1dVVBg0aJK1atZI333zT6Ljr16+Lvb29fP/99yIikp2dLVOmTBEfHx9xcnKSFi1ayJ49e8zGW1yrgrNbioioAhIRaLN1pf4RkSLFO23aNMyePRtfffUV+vTpU+T7njp1KjZv3ow1a9bg2LFjCAgIQGhoKG7dumW2/k8//YRhw4ZhzJgxSExMRIcOHfD+++9bdU2dTocNGzbg1q1bUKlUhvK1a9ciMDAQPXr0MDlm0qRJuHnzJuLj4wEAMTEx6Ny5M4KCgkzqqlQqODs7m712TEwM6tWrh549e5rsUygUcHNzs+pe5s+fjyeffBJHjx7FO++8g4iICKxbt87o9xobGwsvLy+0a9cOADB06FAcPHgQ69evx8mTJ/HSSy+hW7duSEpKsura1mC3FBFRBZSbo8cn4/aV+nVfWdIOKgc7q475+uuvsW3bNnz33Xfo2LGjRce0adMGSuW9f7/v378fgYGBWLlyJaKjoxEWFgYA+PTTTxEfH4/Vq1djypQpJudZsmQJQkNDMW3aNABAYGAgfvzxR8TFxT00hgEDBsDOzg5ZWVnQ6XTw8PAw6ko7e/YsGjRoYPbY/PKzZ88CAJKSktC+fXuL7v1+SUlJqFevntXHFaRjx46YPHmyYbtfv36YMGECDhw4gLZt2wLIS9rCw8OhVCpx7tw5rFu3DleuXIGPjw8AYPLkyYiLi0NUVBTmzJlTbLHdr8xbblasWIHatWvD0dERzZs3x/79+wutv2/fPjRv3hyOjo6oU6cOPv7441KKlIiIykLjxo3h7++PGTNm4M6dO4bysLAwuLi4wMXFxWh8DZDXepCYmGj4NGzYEOfOnYNWq0VISIihnkqlQosWLXDmzBmz1z5z5gxat25tVPbgdkEWLVqExMRExMfHo2nTpli0aBECAgIsvW0Aea0rQF5LW/7P1ijqcQUJDg422vb09ESXLl0QExMDAEhOTsahQ4cQEREBADh27BhEBIGBgYbflYuLC/bt24dz584VW1wPKtOWm9jYWIwfPx4rVqxASEgI/vvf/yIsLAynT59GrVq1TOonJyeje/fuGDlyJP73v//h4MGDGDNmDDw9PR+pmZKIqKKxVyvxypJ2ZXJda9WoUQObN29Ghw4d0K1bN8TFxaFSpUpYtWoVMjMzAcCouwcAfH19TRKJ/K6TB7/sC0sAitqNBgDe3t4ICAhAQEAANm7ciKCgIAQHB6Nhw4YA8lqBTp8+bfbY/GTriSeeMNQtKAErjKXHKZVKk3s1NwPLXPdXREQExo0bh6VLl2Lt2rVo1KgRmjRpAgDQ6/Wws7PD0aNHYWdn3GLn4uJiza1YpUxbbhYuXIjhw4djxIgRaNCgARYvXgxfX1+sXLnSbP2PP/4YtWrVwuLFi9GgQQOMGDECw4YNw4IFC0o5ciKi8k2hUEDlYFfqn6K2ItSqVQv79u3D9evX0bVrV6SlpaFGjRqG5MHPz++h5wgICIBarcaBAwcMZVqtFgkJCQV2DzVs2BCHDx82Kntw2xIBAQHo06cPpk+fbijr378/kpKSsGPHDpP6H374IapUqYIuXboAAMLDw7F7924cP37cpG5ubi7S09PNXjc8PBxnz57Ftm3bTPaJCFJTUwHktcCkpKQY9ul0Ovzyyy8W3VuvXr2QlZWFuLg4rF271mjafVBQEHQ6Ha5fv274XeV/vL29LTp/UZRZcpOTk4OjR4+ia9euRuVdu3bFjz/+aPaYQ4cOmdQPDQ1FQkJCgXP8s7OzkZaWZvQhIqLyp2bNmti7dy9u3ryJrl27Gr6YLeXs7IzRo0djypQpiIuLw+nTpzFy5EhkZGRg+PDhZo8ZO3Ys4uLiMG/ePJw9exbLli2zaLyNOZMmTcKOHTuQkJAAIC+56d27NwYPHozVq1fjwoULOHnyJF599VVs374dq1atMrSUjB8/HiEhIejUqROWL1+OEydO4Pz589iwYQNatmxZ4ODcvn37ol+/fhgwYAAiIyORkJCAixcv4quvvkLnzp2xZ88eAHljaXbu3ImdO3fit99+w5gxYwp9keH9nJ2d0bNnT7zzzjs4c+YMwsPDDfsCAwMRERGBQYMGYcuWLUhOTsaRI0cwd+5c7Nq1q0jP0RJlltzcuHEDOp0OXl5eRuVeXl64du2a2WOuXbtmtn5ubi5u3Lhh9pjIyEi4ubkZPr6+vsVzA0REVOpq1KiBffv24fbt2+jSpYvFX8D5/vOf/6BPnz4YOHAgmjVrhj/++APffPMNKleubLZ+q1atsGrVKixduhRNmzbFt99+i7fffrtIsT/11FPo3LkzZsyYASCv9WzDhg146623sGjRItSvXx9t27bFxYsXsWfPHqP3zzg4OCA+Ph5Tp07Ff//7X7Rq1QpPP/00PvroI4wdOxZPPvmk2WsqFAqsXbsWCxcuxJdffol27dqhcePGePfdd9GzZ0/DO3eGDRuGwYMHY9CgQWjXrh1q166NDh06WHxvEREROHHiBNq2bWsyrCQqKgqDBg3CpEmTUK9ePTz//PP46aefSvT7WCGP0qH4CK5evYoaNWrgxx9/NBqc9cEHH+CLL77Ab7/9ZnJMYGAghg4datSsd/DgQTzzzDNISUkx28SVnZ2N7Oxsw3ZaWhp8fX2RmpoKV1fXYrufXK0WN65eAgBU9akF+wf6f4mIykpWVhaSk5MNkzeIHleF/a2mpaXBzc3Nou/vMhtQXLVqVdjZ2Zm00ly/ft2kdSaft7e32fr29vaoUqWK2WMcHBzg4OBQPEEXwl6lgrdf3RK/DhERERWuzLql1Go1mjdvbnhBUb74+Hi0adPG7DGtW7c2qf/tt98iODjYZKQ8ERERVUxlOltq4sSJWLVqFT777DOcOXMGEyZMwKVLlzBq1CgAwPTp0zFo0CBD/VGjRuHixYuYOHEizpw5g88++wyrV682eqEQERERVWxl+p6bfv364ebNm3jvvfeQkpKCJ598Ert27TJM6UtJScGlS5cM9WvXro1du3ZhwoQJWL58OXx8fPDRRx/xHTdERERkUGYDisuKNQOSiIhsAQcUU3lRXAOKy3z5BSIiKh0V7N+yVA4V198okxsiIhuXP+EiIyOjjCMhKlxOTg4AmCzVYC2uCk5EZOPs7Ozg7u6O69evAwCcnJyKdTFFouKg1+vx999/w8nJCfb2j5aeMLkhIqoA8l9ymp/gED2OlEolatWq9cjJN5MbIqIKQKFQoHr16qhWrVqBa/ERlTW1Wg2l8tFHzDC5ISKqQOzs7B55PAPR444DiomIiMimMLkhIiIim8LkhoiIiGxKhRtzk/+CoLS0tDKOhIiIiCyV/71tyYv+Klxyc+fOHQCAr69vGUdCRERE1rpz5w7c3NwKrVPh1pbS6/W4evUqKlWqVOwvsUpLS4Ovry8uX77MdatKEJ9z6eBzLh18zqWHz7p0lNRzFhHcuXMHPj4+D50uXuFabpRKJWrWrFmi13B1deX/cUoBn3Pp4HMuHXzOpYfPunSUxHN+WItNPg4oJiIiIpvC5IaIiIhsCpObYuTg4ICZM2fCwcGhrEOxaXzOpYPPuXTwOZcePuvS8Tg85wo3oJiIiIhsG1tuiIiIyKYwuSEiIiKbwuSGiIiIbAqTGyIiIrIpTG6stGLFCtSuXRuOjo5o3rw59u/fX2j9ffv2oXnz5nB0dESdOnXw8ccfl1Kk5Zs1z3nLli3o0qULPD094erqitatW+Obb74pxWjLL2v/nvMdPHgQ9vb2aNq0ackGaCOsfc7Z2dl466234OfnBwcHB9StWxefffZZKUVbfln7nGNiYtCkSRM4OTmhevXqGDp0KG7evFlK0ZZPP/zwA3r06AEfHx8oFAps3br1oceUyfegkMXWr18vKpVKPv30Uzl9+rSMGzdOnJ2d5eLFi2brnz9/XpycnGTcuHFy+vRp+fTTT0WlUsmmTZtKOfLyxdrnPG7cOJk7d678/PPPcvbsWZk+fbqoVCo5duxYKUdevlj7nPPdvn1b6tSpI127dpUmTZqUTrDlWFGe8/PPPy8tW7aU+Ph4SU5Olp9++kkOHjxYilGXP9Y+5/3794tSqZQlS5bI+fPnZf/+/dKoUSPp1atXKUdevuzatUveeust2bx5swCQL7/8stD6ZfU9yOTGCi1atJBRo0YZldWvX1+mTZtmtv7UqVOlfv36RmWvvvqqtGrVqsRitAXWPmdzGjZsKLNmzSru0GxKUZ9zv3795O2335aZM2cyubGAtc/566+/Fjc3N7l582ZphGczrH3O8+fPlzp16hiVffTRR1KzZs0Si9HWWJLclNX3ILulLJSTk4OjR4+ia9euRuVdu3bFjz/+aPaYQ4cOmdQPDQ1FQkICtFpticVanhXlOT9Ir9fjzp078PDwKIkQbUJRn3NUVBTOnTuHmTNnlnSINqEoz3n79u0IDg7GvHnzUKNGDQQGBmLy5MnIzMwsjZDLpaI85zZt2uDKlSvYtWsXRAR//fUXNm3ahOeee640Qq4wyup7sMItnFlUN27cgE6ng5eXl1G5l5cXrl27ZvaYa9euma2fm5uLGzduoHr16iUWb3lVlOf8oA8//BDp6eno27dvSYRoE4rynJOSkjBt2jTs378f9vb8T4clivKcz58/jwMHDsDR0RFffvklbty4gTFjxuDWrVscd1OAojznNm3aICYmBv369UNWVhZyc3Px/PPPY+nSpaURcoVRVt+DbLmxkkKhMNoWEZOyh9U3V07GrH3O+datW4d3330XsbGxqFatWkmFZzMsfc46nQ7h4eGYNWsWAgMDSys8m2HN37Ner4dCoUBMTAxatGiB7t27Y+HChYiOjmbrzUNY85xPnz6NsWPHYsaMGTh69Cji4uKQnJyMUaNGlUaoFUpZfA/yn18Wqlq1Kuzs7Ez+FXD9+nWTrDSft7e32fr29vaoUqVKicVanhXlOeeLjY3F8OHDsXHjRnTu3Lkkwyz3rH3Od+7cQUJCAo4fP47XX38dQN6XsIjA3t4e3377LTp27FgqsZcnRfl7rl69OmrUqAE3NzdDWYMGDSAiuHLlCp544okSjbk8KspzjoyMREhICKZMmQIAaNy4MZydndG2bVu8//77bFkvJmX1PciWGwup1Wo0b94c8fHxRuXx8fFo06aN2WNat25tUv/bb79FcHAwVCpVicVanhXlOQN5LTZDhgzB2rVr2WduAWufs6urK06dOoXExETDZ9SoUahXrx4SExPRsmXL0gq9XCnK33NISAiuXr2Ku3fvGsrOnj0LpVKJmjVrlmi85VVRnnNGRgaUSuOvQDs7OwD3Whbo0ZXZ92CJDle2MflTDVevXi2nT5+W8ePHi7Ozs1y4cEFERKZNmyYDBw401M+fAjdhwgQ5ffq0rF69mlPBLWDtc167dq3Y29vL8uXLJSUlxfC5fft2Wd1CuWDtc34QZ0tZxtrnfOfOHalZs6a8+OKL8uuvv8q+ffvkiSeekBEjRpTVLZQL1j7nqKgosbe3lxUrVsi5c+fkwIEDEhwcLC1atCirWygX7ty5I8ePH5fjx48LAFm4cKEcP37cMOX+cfkeZHJjpeXLl4ufn5+o1Wpp1qyZ7Nu3z7Bv8ODB0q5dO6P6e/fulaCgIFGr1eLv7y8rV64s5YjLJ2uec7t27QSAyWfw4MGlH3g5Y+3f8/2Y3FjO2ud85swZ6dy5s2g0GqlZs6ZMnDhRMjIySjnq8sfa5/zRRx9Jw4YNRaPRSPXq1SUiIkKuXLlSylGXL3v27Cn0v7ePy/egQoTtb0RERGQ7OOaGiIiIbAqTGyIiIrIpTG6IiIjIpjC5ISIiIpvC5IaIiIhsCpMbIiIisilMboiIiMimMLkhIiPR0dFwd3cv6zCKzN/fH4sXLy60zrvvvoumTZuWSjxEVPqY3BDZoCFDhkChUJh8/vjjj7IODdHR0UYxVa9eHX379kVycnKxnP/IkSN45ZVXDNsKhQJbt241qjN58mR89913xXK9gjx4n15eXujRowd+/fVXq89TnpNNorLA5IbIRnXr1g0pKSlGn9q1a5d1WADyFuJMSUnB1atXsXbtWiQmJuL555+HTqd75HN7enrCycmp0DouLi4luiJxvvvvc+fOnUhPT8dzzz2HnJycEr82UUXG5IbIRjk4OMDb29voY2dnh4ULF+Kpp56Cs7MzfH19MWbMGKMVqB904sQJdOjQAZUqVYKrqyuaN2+OhIQEw/4ff/wRzz77LDQaDXx9fTF27Fikp6cXGptCoYC3tzeqV6+ODh06YObMmfjll18MLUsrV65E3bp1oVarUa9ePXzxxRdGx7/77ruoVasWHBwc4OPjg7Fjxxr23d8t5e/vDwDo3bs3FAqFYfv+bqlvvvkGjo6OuH37ttE1xo4di3bt2hXbfQYHB2PChAm4ePEifv/9d0Odwn4fe/fuxdChQ5GammpoAXr33XcBADk5OZg6dSpq1KgBZ2dntGzZEnv37i00HqKKgskNUQWjVCrx0Ucf4ZdffsGaNWvw/fffY+rUqQXWj4iIQM2aNXHkyBEcPXoU06ZNg0qlAgCcOnUKoaGheOGFF3Dy5EnExsbiwIEDeP31162KSaPRAAC0Wi2+/PJLjBs3DpMmTcIvv/yCV199FUOHDsWePXsAAJs2bcKiRYvw3//+F0lJSdi6dSueeuops+c9cuQIACAqKgopKSmG7ft17twZ7u7u2Lx5s6FMp9Nhw4YNiIiIKLb7vH37NtauXQsAhucHFP77aNOmDRYvXmxoAUpJScHkyZMBAEOHDsXBgwexfv16nDx5Ei+99BK6deuGpKQki2MislklvjQnEZW6wYMHi52dnTg7Oxs+L774otm6GzZskCpVqhi2o6KixM3NzbBdqVIliY6ONnvswIED5ZVXXjEq279/vyiVSsnMzDR7zIPnv3z5srRq1Upq1qwp2dnZ0qZNGxk5cqTRMS+99JJ0795dREQ+/PBDCQwMlJycHLPn9/Pzk0WLFhm2AciXX35pVOfBFc3Hjh0rHTt2NGx/8803olar5datW490nwDE2dlZnJycDKsnP//882br53vY70NE5I8//hCFQiF//vmnUXmnTp1k+vTphZ6fqCKwL9vUiohKSocOHbBy5UrDtrOzMwBgz549mDNnDk6fPo20tDTk5uYiKysL6enphjr3mzhxIkaMGIEvvvgCnTt3xksvvYS6desCAI4ePYo//vgDMTExhvoiAr1ej+TkZDRo0MBsbKmpqXBxcYGIICMjA82aNcOWLVugVqtx5swZowHBABASEoIlS5YAAF566SUsXrwYderUQbdu3dC9e3f06NED9vZF/89ZREQEWrdujatXr8LHxwcxMTHo3r07Kleu/Ej3WalSJRw7dgy5ubnYt28f5s+fj48//tiojrW/DwA4duwYRASBgYFG5dnZ2aUylojoccfkhshGOTs7IyAgwKjs4sWL6N69O0aNGoXZs2fDw8MDBw4cwPDhw6HVas2e591330V4eDh27tyJr7/+GjNnzsT69evRu3dv6PV6vPrqq0ZjXvLVqlWrwNjyv/SVSiW8vLxMvsQVCoXRtogYynx9ffH7778jPj4eu3fvxpgxYzB//nzs27fPqLvHGi1atEDdunWxfv16jB49Gl9++SWioqIM+4t6n0ql0vA7qF+/Pq5du4Z+/frhhx9+AFC030d+PHZ2djh69Cjs7OyM9rm4uFh170S2iMkNUQWSkJCA3NxcfPjhh1Aq84bcbdiw4aHHBQYGIjAwEBMmTMCAAQMQFRWF3r17o1mzZvj1119NkqiHuf9L/0ENGjTAgQMHMGjQIEPZjz/+aNQ6otFo8Pzzz+P555/Ha6+9hvr16+PUqVNo1qyZyflUKpVFs7DCw8MRExODmjVrQqlU4rnnnjPsK+p9PmjChAlYuHAhvvzyS/Tu3dui34darTaJPygoCDqdDtevX0fbtm0fKSYiW8QBxUQVSN26dZGbm4ulS5fi/Pnz+OKLL0y6Se6XmZmJ119/HXv37sXFixdx8OBBHDlyxJBovPnmmzh06BBee+01JCYmIikpCdu3b8cbb7xR5BinTJmC6OhofPzxx0hKSsLChQuxZcsWw0Da6OhorF69Gr/88ovhHjQaDfz8/Myez9/fH9999x2uXbuGf/75p8DrRkRE4NixY/jggw/w4osvwtHR0bCvuO7T1dUVI0aMwMyZMyEiFv0+/P39cffuXXz33Xe4ceMGMjIyEBgYiIiICAwaNAhbtmxBcnIyjhw5grlz52LXrl1WxURkk8pywA8RlYzBgwdLz549ze5buHChVK9eXTQajYSGhsrnn38uAOSff/4REeMBrNnZ2dK/f3/x9fUVtVotPj4+8vrrrxsNov3555+lS5cu4uLiIs7OztK4cWP54IMPCozN3ADZB61YsULq1KkjKpVKAgMD5fPPPzfs+/LLL6Vly5bi6uoqzs7O0qpVK9m9e7dh/4MDirdv3y4BAQFib28vfn5+ImI6oDjf008/LQDk+++/N9lXXPd58eJFsbe3l9jYWBF5+O9DRGTUqFFSpUoVASAzZ84UEZGcnByZMWOG+Pv7i0qlEm9vb+ndu7ecPHmywJiIKgqFiEjZpldERERExYfdUkRERGRTmNwQERGRTWFyQ0RERDaFyQ0RERHZFCY3REREZFOY3BAREZFNYXJDRERENoXJDREREdkUJjdERERkU5jcEBERkU1hckNEREQ2hckNERER2ZT/DwPz5G+1m+NfAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHFCAYAAABvgvpjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABN+klEQVR4nO3deVxUVf8H8M+wzLAIyCKbIqLhCm6gCC5AKIpKmpqaZmBoGmrxqNnPfFSsBKVSS1NbVMgl7ClxaXHLpUwtJC23TAsUE8QFQfbt/P4wJkdABuYC4v28fd3Xy7n33HvOHYbLd77nnHsVQggBIiIiki29hm4AERERNSwGA0RERDLHYICIiEjmGAwQERHJHIMBIiIimWMwQEREJHMMBoiIiGSOwQAREZHMMRggIiKSuVoFA7/99hsmTpwIFxcXGBkZoUmTJujevTtiYmJw+/Ztqduo4eTJk/D19YWFhQUUCgVWrFgheR0KhQKRkZGSH7c6sbGxUCgUUCgUOHToUIXtQgg88cQTUCgU8PPzq1Udq1evRmxsbI32OXToUJVtqq2tW7eiU6dOMDY2hkKhwKlTpyQ79oPK2//FF1/UWR33y8vLQ2RkpNbvV0pKivrn/uDi6elZo7rLj6XNzzgyMhIKhaLacqGhoWjVqlWN2vEw5W185513NNaXlpbihRdegEKhwOLFi6vcv1WrVlW+Xzk5OTVqS6tWrRAaGlptuZr+DjTkNVIK3bp1Q/PmzVFaWlplmd69e8PGxgZFRUVaHbOyz2b5NS8lJaXa/f38/Gp93YuKisL27dsrrK+La1tjZVDTHT7++GOEh4ejXbt2ePXVV9GxY0cUFxfjxIkTWLt2LY4dO4aEhIS6aCsA4IUXXkBubi7i4+NhaWkp6UWq3LFjx9CiRQvJj6stMzMzrFu3rsIH//Dhw/jzzz9hZmZW62OvXr0aNjY2Wl0Ay3Xv3h3Hjh1Dx44da13v/W7cuIEJEyZg0KBBWL16NVQqFdq2bSvJsR8FeXl5WLRoEQDU6OI1Y8YMjBs3TmNdkyZNpGxarcyfPx+vvPJKndZRVFSEZ599Ftu3b8fq1avx0ksvPbR87969KwQTAGBiYlJXTdRaQ18jpRAWFoYZM2Zgz549GDx4cIXtf/zxB44ePYqIiAgolcpa1zNkyBAcO3YMDg4OujS3WlFRURg1ahSGDx+usV7qa1tjVqNg4NixY3jppZcwYMAAbN++HSqVSr1twIABmDVrFnbv3i15I+935swZTJ48GUFBQXVWR69evers2NoYM2YMNm/ejA8++ADm5ubq9evWrYO3tzeys7PrpR3FxcVQKBQwNzeX9D35448/UFxcjOeeew6+vr6SHDMvL++R+EOgi5YtWzb4Z68ybdq0qdPj5+bmYvjw4Th8+DA2b96MsWPHVrtP06ZNH8n3SoprZH5+PoyNjeu6qQ81fvx4vPrqq1i/fn2lwcD69esB3PtypotmzZqhWbNmOh1DF1Jf2xqzGnUTREVFQaFQ4KOPPtL4kJdTKpV46qmn1K/LysoQExOD9u3bQ6VSwdbWFs8//zyuXr2qsZ+fnx/c3NyQmJiIvn37wsTEBK1bt8aSJUtQVlYG4N90UklJCdasWaNOCwJVpzsrS0EdOHAAfn5+sLa2hrGxMVq2bImRI0ciLy9PXaayboIzZ85g2LBhsLS0hJGREbp27Yq4uDiNMuUpp88++wzz5s2Do6MjzM3N0b9/f1y4cEG7NxnAs88+CwD47LPP1OuysrLw5ZdfVvnLt2jRInh5ecHKygrm5ubo3r071q1bh/ufQ9WqVSucPXsWhw8fVr9/5ZmV8rZv3LgRs2bNQvPmzaFSqXDp0qUKqbSbN2/CyckJPj4+KC4uVh//3LlzMDU1xYQJE6o8t9DQUPTp0wfAvaDnwS6PnTt3wtvbGyYmJjAzM8OAAQNw7NgxjWOU/7x/+eUXjBo1CpaWlpL8wdLmPQQe/hlKSUlRX9wWLVqkfp9rkompijafwap8/fXX6Nq1K1QqFVxcXCr9Vl2VyroJFAoFpk+fjo0bN6JDhw4wMTFBly5d8NVXX9XklJCZmYn+/fvjxx9/xPbt27UKBLRx+/ZthIeHo3nz5lAqlWjdujXmzZuHwsLCavf9/fffMWjQIJiYmMDGxgZTp07F3bt3taq3ptfIVq1aYejQodi2bRu6desGIyMjdVZJm593WVkZ3nrrLbRr1w7GxsZo2rQpOnfujPfee09d5saNG3jxxRfh5OQElUqFZs2aoXfv3ti/f3+V52FpaYmnn34au3btwq1btzS2lZaWYuPGjejRowfc3d1x6dIlTJw4Ea6urjAxMUHz5s0RHByM06dPV/t+VXaNFkIgJiYGzs7OMDIyQvfu3fHtt99W2LegoACzZs1C165dYWFhASsrK3h7e2PHjh0a5RQKBXJzcxEXF6f+fSy/5lTVTVCT69DZs2fx7LPPwsLCAnZ2dnjhhReQlZVV7bk/arTODJSWluLAgQPw8PCAk5OTVvu89NJL+OijjzB9+nQMHToUKSkpmD9/Pg4dOoRffvkFNjY26rLp6ekYP348Zs2ahYULFyIhIQFz586Fo6Mjnn/+eXU6ydvbG6NGjcKsWbNqfLIpKSkYMmQI+vbti/Xr16Np06b4+++/sXv3bhQVFVX5zfLChQvw8fGBra0t3n//fVhbW2PTpk0IDQ3F9evXMWfOHI3yr7/+Onr37o1PPvkE2dnZeO211xAcHIzz589DX1+/2naam5tj1KhRWL9+PaZMmQLgXmCgp6eHMWPGVDpOIiUlBVOmTEHLli0BAMePH8eMGTPw999/Y8GCBQCAhIQEjBo1ChYWFli9ejUAVLhgzZ07F97e3li7di309PRga2uL9PR0jTI2NjaIj4+Hn58fXnvtNSxbtgx5eXl45pln0LJlS6xdu7bKc5s/fz569uyJadOmISoqCv7+/ursx5YtWzB+/HgEBgbis88+Q2FhIWJiYuDn54fvvvtOHUSUGzFiBMaOHYupU6ciNze32ve1Otq8h9V9hhwcHLB7924MGjQIYWFhmDRpEgBo9e2nrKwMJSUlGuv09fWhUChq/Bm833fffYdhw4bB29sb8fHxKC0tRUxMDK5fv17btwrAvQAjMTERb7zxBpo0aYKYmBg8/fTTuHDhAlq3bl3t/mlpaejXrx9SU1Oxd+/eCj/fhxFCVHiv9PT0oKenh4KCAvj7++PPP//EokWL0LlzZ/zwww+Ijo7GqVOn8PXXX1d53OvXr8PX1xeGhoZYvXo17OzssHnzZkyfPr3aNtXmGgkAv/zyC86fP4///ve/cHFxgampqdY/75iYGERGRuK///0v+vXrh+LiYvz++++4c+eO+vgTJkzAL7/8gsWLF6Nt27a4c+cOfvnllwp/5B8UFhaGzz77DJs2bdLoJtqzZw+uXbum/p24du0arK2tsWTJEjRr1gy3b99GXFwcvLy8cPLkSbRr107r9wK4F0QvWrQIYWFhGDVqFFJTUzF58mSUlpZqHKuwsBC3b9/G7Nmz0bx5cxQVFWH//v0YMWIENmzYgOeffx7AvWzNk08+CX9/f8yfPx8ANDKuD6rpdWjkyJEYM2YMwsLCcPr0acydOxfAv9mTRkNoKT09XQAQY8eO1ar8+fPnBQARHh6usf6nn34SAMTrr7+uXufr6ysAiJ9++kmjbMeOHcXAgQM11gEQ06ZN01i3cOFCUdmpbNiwQQAQycnJQgghvvjiCwFAnDp16qFtByAWLlyofj127FihUqnElStXNMoFBQUJExMTcefOHSGEEAcPHhQAxODBgzXKff755wKAOHbs2EPrLW9vYmKi+lhnzpwRQgjRo0cPERoaKoQQolOnTsLX17fK45SWlori4mLxxhtvCGtra1FWVqbeVtW+5fX169evym0HDx7UWL906VIBQCQkJIiQkBBhbGwsfvvtt4ee4/3H+9///qfRZkdHR+Hu7i5KS0vV6+/evStsbW2Fj4+Pel35z3vBggXV1lVVfdWp6j3U5jN048aNCp+hh0lOThYAKl327dsnhND+M1h+rA0bNqjLeHl5CUdHR5Gfn69el52dLaysrCr9vXlQSEiIcHZ21lgHQNjZ2Yns7Gz1uvT0dKGnpyeio6NrdL579+6ttg33c3Z2rvS9mjdvnhBCiLVr1woA4vPPP9fYr/zzen99zs7OIiQkRP36tddeEwqFosLPd8CAAZX+DtyvptfI8vr19fXFhQsXNNZr+/MeOnSo6Nq160PraNKkiYiIiNC6TeXKysqEi4uL6Ny5s8b6kSNHChMTE5GVlVXpfiUlJaKoqEi4urqK//znP+r1lX02H7xGZ2ZmCiMjI/H0009rHPPHH38UAB563SspKRHFxcUiLCxMdOvWTWObqampxs+53IPXttpch2JiYjSOGR4eLoyMjDSuu41BnU0tPHjwIABUSI/27NkTHTp0wHfffaex3t7eHj179tRY17lzZ1y+fFmyNnXt2hVKpRIvvvgi4uLi8Ndff2m134EDBxAQEFAh2g8NDUVeXl6F9NH9aUDg3nkAqNG5+Pr6ok2bNli/fj1Onz6NxMTEh/bPHThwAP3794eFhQX09fVhaGiIBQsW4NatW8jIyNC63pEjR2pd9tVXX8WQIUPw7LPPIi4uDitXroS7u7vW+9/vwoULuHbtGiZMmAA9vX8/lk2aNMHIkSNx/Phxja6cmrZVG9q8h7X9DGnjlVdeQWJiosbi5eWlbltNPoPlcnNzkZiYiBEjRsDIyEi93szMDMHBwTq119/fX2Mwq52dHWxtbbX+nA8cOBAqlQozZ87EjRs3NLaVlpaipKREvZR3F5br06dPhfcqPDwcwL33ytTUFKNGjdLYp/xa9OC1534HDx5Ep06d0KVLF431Dw7slFLnzp0rDKDV9ufds2dP/PrrrwgPD8eePXsqHU/Us2dPxMbG4q233sLx48c1uvaAf7Ms9y/AvfT6xIkT8dtvvyEpKQkAcOvWLezatQsjR45Uf7suKSlBVFQUOnbsCKVSCQMDAyiVSly8eBHnz5+v0Xtx7NgxFBQUYPz48RrrfXx84OzsXKH8//73P/Tu3RtNmjSBgYEBDA0NsW7duhrXW64216HKrvcFBQU1uu4+CrQOBmxsbGBiYoLk5GStypenoCobJero6FghRWVtbV2hnEqlQn5+vrZNrFabNm2wf/9+2NraYtq0aWjTpg3atGmj0b9WmVu3blV5HuXb7/fguZSn4mtyLuW/iJs2bcLatWvRtm1b9O3bt9KyP//8MwIDAwHcG8n8448/IjExEfPmzatxvTUZ1VveF15QUAB7e/uHjhWoTnWfl7KyMmRmZta6rdXR9j2s7WdIGy1atICnp6fGUv7HtqafwXKZmZkoKyuDvb19hW2VrasJXX9n+/fvj4SEBFy8eBH+/v4aF8+AgAAYGhqqlwcDYQsLiwrv1f3vhb29fYVxRLa2tjAwMHhoerx83wdp817V9BpZrrKfq7Y/77lz5+Kdd97B8ePHERQUBGtrawQEBODEiRPqfbZu3YqQkBB88skn8Pb2hpWVFZ5//nl1919cXJzGe21oaKjed+LEidDT08OGDRsAAJs3b0ZRURHCwsLUZWbOnIn58+dj+PDh2LVrF3766SckJiaiS5cuNb5+l5+XNj+Dbdu2YfTo0WjevDk2bdqEY8eOqb80FRQU1KjeB+uvyXVIiuv9o0DrYEBfXx8BAQFISkqqMACwMuVvUFpaWoVt165d0xgvoKvybzwPDg66efNmhbJ9+/bFrl27kJWVhePHj8Pb2xsRERGIj4+v8vjW1tZVngcASc/lfqGhobh58ybWrl2LiRMnVlkuPj4ehoaG+OqrrzB69Gj4+PjUeH56OW3mnZdLS0vDtGnT0LVrV9y6dQuzZ8+uVZ1A9Z8XPT09WFpa1rqt1anJe1ibz5CuavsZtLS0hEKhqDDuA0Cl6+pbUFAQduzYgT///BP+/v7qcQwffvihxrf+mtz3w9raGtevX68w8DMjIwMlJSUP/X21trau9XtV02tkuco+x9r+vA0MDDBz5kz88ssvuH37Nj777DOkpqZi4MCB6m+wNjY2WLFiBVJSUnD58mVER0dj27Zt6kxJcHBwhSxLuRYtWiAwMBBbtmxBYWEhNmzYgCeeeAL9+vVTl9m0aROef/55REVFYeDAgejZsyc8PT0rvf5Wp/w6oM3PYNOmTXBxccHWrVsxfPhw9OrVC56enloNEq2u/ppchx4XNeommDt3LoQQmDx5cqU3miguLsauXbsAAE8++SSAez+w+yUmJuL8+fMICAiobZsrKB/p/Ntvv2msL29LZfT19eHl5YUPPvgAwL1BPFUJCAjAgQMH1L+I5T799FOYmJjU2dSU5s2b49VXX0VwcDBCQkKqLKdQKGBgYKAxODE/Px8bN26sUFaqbEtpaSmeffZZKBQKfPvtt4iOjsbKlSuxbdu2Wh2vXbt2aN68ObZs2aJxEc/NzcWXX36pHtlbV2ryHpar6jNUF98MavsZNDU1Rc+ePbFt2zaNb0t379596O9HfRo4cCB27NiBv/76C/7+/khPT0e7du00vvXX5H4iAQEByMnJqXCTmU8//VS9vSr+/v44e/Ysfv31V431W7Zs0arumlwjH6Y2P++mTZti1KhRmDZtGm7fvl3pjXxatmyJ6dOnY8CAAerPq7W1dYUsy/3CwsKQmZmJBQsW4NSpU5g4caJGAKNQKCoMRP7666/x999/V3ueD+rVqxeMjIywefNmjfVHjx6t0P2kUCigVCo12pKenl5hNgGg/XWvoa9DDalG9xnw9vbGmjVrEB4eDg8PD7z00kvo1KkTiouLcfLkSXz00Udwc3NDcHAw2rVrhxdffBErV66Enp4egoKC1LMJnJyc8J///Eeykxg8eDCsrKwQFhaGN954AwYGBoiNjUVqaqpGubVr1+LAgQMYMmQIWrZsiYKCAvWIz/79+1d5/IULF+Krr76Cv78/FixYACsrK2zevBlff/01YmJiYGFhIdm5PGjJkiXVlhkyZAiWLVuGcePG4cUXX8StW7fwzjvvVDq1yd3dHfHx8di6dStat24NIyOjWvXzL1y4ED/88AP27t0Le3t7zJo1C4cPH0ZYWBi6desGFxeXGh1PT08PMTExGD9+PIYOHYopU6agsLAQb7/9Nu7cuaPV+1Cd48ePV7re19dX6/dQm8+QmZkZnJ2dsWPHDgQEBMDKygo2NjY63SBLl8/gm2++iUGDBqnnuZeWlmLp0qUwNTV9ZO6GFxgYiJ07d2LYsGHw9/fHgQMHat0N9Pzzz+ODDz5ASEgIUlJS4O7ujiNHjiAqKgqDBw9+6O96REQE1q9fjyFDhuCtt95Szyb4/ffftaq7JtfIh9H25x0cHAw3Nzd4enqiWbNmuHz5MlasWAFnZ2e4uroiKysL/v7+GDduHNq3bw8zMzMkJiZi9+7dGDFihFbn9NRTT8HGxgZvv/029PX1K3wxGTp0KGJjY9G+fXt07twZSUlJePvtt2t14zZLS0vMnj0bb731FiZNmoRnnnkGqampiIyMrNBNUD4lMzw8XD3r4M0334SDgwMuXryoUdbd3R2HDh3Crl274ODgADMzs0pnOdTHdeiRVZtRh6dOnRIhISGiZcuWQqlUClNTU9GtWzexYMECkZGRoS5XWloqli5dKtq2bSsMDQ2FjY2NeO6550RqaqrG8Xx9fUWnTp0q1FPVKOYHZxMIIcTPP/8sfHx8hKmpqWjevLlYuHCh+OSTTzRGqh47dkw8/fTTwtnZWahUKmFtbS18fX3Fzp07K9Tx4Ejw06dPi+DgYGFhYSGUSqXo0qWLxqhYIaoetV7ZKNrK3D+b4GEqmxGwfv160a5dO6FSqUTr1q1FdHS0WLduncb5CyFESkqKCAwMFGZmZgKA+v192Ij7B0fc7t27V+jp6VV4j27duiVatmwpevToIQoLC6ts/8Pq2r59u/Dy8hJGRkbC1NRUBAQEiB9//FGjTPko3hs3blT9JlVSX1VL+Xlp8x5q+xnav3+/6Natm1CpVAJApSOZy5V/Pt5+++2Hnoc2n8GqPms7d+4UnTt3FkqlUrRs2VIsWbKkylk4D6rJ7+GDo/Mr87Dz3b9/vzA2Nhbt2rUTf//9d6X7Ozs7iyFDhjy0jlu3bompU6cKBwcHYWBgIJydncXcuXNFQUFBte09d+6cGDBggDAyMhJWVlYiLCxM7Nixo9rZBPfT9hr5sHPR5uf97rvvCh8fH2FjY6P+2YaFhYmUlBQhhBAFBQVi6tSponPnzsLc3Fz93i5cuFDk5uZqdS5CCPGf//yn0plSQtybARAWFiZsbW2FiYmJ6NOnj/jhhx+Er6+vxnVKm9kEQtybxRAdHS2cnJyEUqkUnTt3Frt27apwPCGEWLJkiWjVqpVQqVSiQ4cO4uOPP670c33q1CnRu3dvYWJiojEroaqZUrpchyo7p8ZAIcQDHWtEREQkK3xqIRERkcwxGCAiIpI5BgNEREQyx2CAiIhI5hgMEBERyRyDASIiIpmr0U2HGpuysjJcu3YNZmZmkt66loiI6ocQAnfv3oWjo6PGw4OkVlBQUOldI2tKqVRqPBSssXisg4Fr167V6LniRET0aEpNTa3VXQ21UVBQAGMza6Akr/rC1bC3t0dycnKjCwge62Cg/Ilvyo4hUOgrG7g1RHXjyqF3GroJRHXmbnY2nnBx0nhcttSKioqAkjyoOoYAuvytKC1C+rk4FBUVMRh4lJR3DSj0lQwG6LFV/lx5osdZvXT1Ghjp9LdCKBrvMLzHOhggIiLSmgKALkFHIx6axmCAiIgIABR69xZd9m+kGm/LiYiISBLMDBAREQH3ugh06iZovP0EDAaIiIgAdhMQERGRfDEzQEREBLCbgIiIiHTsJmjEyfbG23IiIiKSBDMDREREALsJiIiIZI+zCYiIiEiumBkgIiIC2E1AREQkezLuJmAwQEREBMg6M9B4wxgiIiKSBDMDREREALsJiIiIZE+h0DEYYDcBERERNVLMDBAREQGAnuLeosv+jRSDASIiIkDWYwYab8uJiIhIEswMEBERAbK+zwCDASIiIoDdBERERCRfzAwQEREB7CYgIiKSPRl3EzAYICIiAmSdGWi8YQwRERFJgpkBIiIigN0EREREssduAiIiIpIrZgaIiIgAADp2EzTi79cMBoiIiAB2ExAREZF8MTNAREQE/JMZ0GU2QePNDDAYICIiAmQ9tbDxtpyIiIgkwcwAERERwAGEREREslfeTaDLUgNr1qxB586dYW5uDnNzc3h7e+Pbb79VbxdCIDIyEo6OjjA2Noafnx/Onj2rcYzCwkLMmDEDNjY2MDU1xVNPPYWrV6/W+NQZDBAREQH/ZgZ0WWqgRYsWWLJkCU6cOIETJ07gySefxLBhw9R/8GNiYrBs2TKsWrUKiYmJsLe3x4ABA3D37l31MSIiIpCQkID4+HgcOXIEOTk5GDp0KEpLS2vUFgYDREREDSA4OBiDBw9G27Zt0bZtWyxevBhNmjTB8ePHIYTAihUrMG/ePIwYMQJubm6Ii4tDXl4etmzZAgDIysrCunXr8O6776J///7o1q0bNm3ahNOnT2P//v01aguDASIiIkCyboLs7GyNpbCwsNqqS0tLER8fj9zcXHh7eyM5ORnp6ekIDAxUl1GpVPD19cXRo0cBAElJSSguLtYo4+joCDc3N3UZbTEYICIiAiTrJnBycoKFhYV6iY6OrrLK06dPo0mTJlCpVJg6dSoSEhLQsWNHpKenAwDs7Ow0ytvZ2am3paenQ6lUwtLSssoy2uJsAiIiIgmlpqbC3Nxc/VqlUlVZtl27djh16hTu3LmDL7/8EiEhITh8+LB6u+KBcQhCiArrHqRNmQcxM0BERIR7f3h1XQCoZweULw8LBpRKJZ544gl4enoiOjoaXbp0wXvvvQd7e3sAqPANPyMjQ50tsLe3R1FRETIzM6ssoy0GA0RERJAuGNCFEAKFhYVwcXGBvb099u3bp95WVFSEw4cPw8fHBwDg4eEBQ0NDjTJpaWk4c+aMuoy22E1ARETUAF5//XUEBQXByckJd+/eRXx8PA4dOoTdu3dDoVAgIiICUVFRcHV1haurK6KiomBiYoJx48YBACwsLBAWFoZZs2bB2toaVlZWmD17Ntzd3dG/f/8atYXBABEREQAo/ll02b8Grl+/jgkTJiAtLQ0WFhbo3Lkzdu/ejQEDBgAA5syZg/z8fISHhyMzMxNeXl7Yu3cvzMzM1MdYvnw5DAwMMHr0aOTn5yMgIACxsbHQ19evWdOFEKJmzW88srOzYWFhAZX7ZCj0lQ3dHKI6kZm4qqGbQFRnsrOzYWdtgaysLI1BeVLXYWFhAZPhq6EwNK71cURxPvK2h9dpW+sKxwwQERHJHLsJiIiIAN0HATbiBxUxGCAiIgKDASIiItmTczDAMQNEREQyx8wAERERUO9TCx8lDAaIiIjAbgIiIiKSMWYGiIiIUP4UYl0yA9K1pb4xGCAiIgKggK4PG2q80QC7CYiIiGSOmQEiIiLIewAhgwEiIiJA1lML2U1AREQkc8wMEBERAYCO3QSC3QRERESNm65jBnSbidCwGAwQERFB3sEAxwwQERHJHDMDREREgKxnEzAYICIiArsJiIiISMaYGSAiIoK8MwMMBoiIiCDvYIDdBERERDLHzAARERHknRlgMEBERATIemohuwmIiIhkjpkBIiIisJuAiIhI9hgMEBERyZycgwGOGSAiIpI5ZgaIiIgAWc8mYDBAREQEdhMQERGRjDEzQNV6YWQfvDCyL5wcrAAAv/+VjrfXfYv9R88BAF6bPBgjArujuZ0liotLcer3K3hr9S4knb2sPkar5jZ485Wn0atraygNDfDdsfN47Z3/4cbtuw1yTkQPs2zDHnx18FdcvHwdRipD9OzcGpHTh8G1lV2l5SOiPkNcwo+I+s9IvDTOv55bS1JhZuARt3r1ari4uMDIyAgeHh744YcfGrpJsnIt4w4WrdqBJ0PexpMhb+OHE39g8zsvon1rewDAn1cyMOft/6H3s1EImrwMV67dxrZV02HdtAkAwMRIiW2rpkFAYNhLKxE0aTmUhvr4bNmURv3LQ4+vo79cwqRn+mHv+tnYtmo6SkpLMWLGKuTmF1Yo+/WhX5F0JgUOzSwaoKUkJQUU6oCgVksjHjTwyAcDW7duRUREBObNm4eTJ0+ib9++CAoKwpUrVxq6abKx+4cz2Hf0HP68koE/r2TgrTW7kJtXCE83FwDAF3tO4PDPF3D571v4/a90/HfFNpg3MUYnV0cAgFeX1mjpYI1pizbh3J/XcO7Pa5j2xiZ4dGqFfj3aNuSpEVXqi5XTMC64Fzq0cYB72xb4YMFzuJqeiVPnUzXKXcu4gzlv/w8fvRkKAwP9Bmotke4e+WBg2bJlCAsLw6RJk9ChQwesWLECTk5OWLNmTUM3TZb09BQYMcADJsZKJJ5OrrDd0EAfIU/3RtbdPJz5428AgEppACEECotK1OUKi0pQWlqGXl3a1FvbiWorO6cAAGBpbqJeV1ZWhqkLP8WM5wLQoY1DQzWNJKRTVkDHLoaG9kiPGSgqKkJSUhL+7//+T2N9YGAgjh492kCtkqeObRyxZ/0sGCkNkJtfiAmvfowLyenq7QP7uOGTxRNhYmSI9JvZeHr6KtzOygUAJJ5OQV5BESJnDMObH+yEQqFA5Ixh0NfXg72NeUOdEpFWhBCYt/xL9OraBh2fcFSvXxG3Dwb6epgy1q/hGkfSkvHUwkc6M3Dz5k2UlpbCzk5z0I6dnR3S09MrlC8sLER2drbGQtK4ePk6+o2PxoAX3sX6L49gdeQEtHOxV2//4cQf6Dc+GgPDluG7Y+ewIeoF2FjeGzNw604OQv9vHQb1dcPV79/F5YNvw7yJMU6dv4LSsrKGOiUirbwa8znOXrqGT94KVa87df4KPow/hA8WPteovw0SlXukMwPlHvxlE0JU+gsYHR2NRYsW1VezZKW4pBTJV28CuHch7NaxJaaO9cN/ouMBAHkFRUi+ehPJV2/ixJkUnPhyASYM88Hy2L0AgIM//Y7uTy+ClYUpSkrLkJ2Tj993R+Hy3lsNdk5E1Znz9uf49vvT+OajCDS3s1SvP3byT9zIzIF78AL1utLSMvz3vW1YE38Qv+18oyGaSzqS82yCRzoYsLGxgb6+foUsQEZGRoVsAQDMnTsXM2fOVL/Ozs6Gk5NTnbdTjhQKBZTKqj8+CoUCSsOK28u7Dvp6tkUzyyb49ofTddZGotoSQmDO2//D14d+xa61r8C5uY3G9jGDe8C3ZzuNdaNe/gCjg3pifHCv+mwqSYjBwCNKqVTCw8MD+/btw9NPP61ev2/fPgwbNqxCeZVKBZVKVZ9NlIX54cHYf/Qcrl7PhJmJEUYEeqBPd1eMenk1TIyUmPXCQHz7/Wlcv5kFSwtThI3qB0fbptjx3S/qY4wL7oU/ktNxMzMHPTu7IHrmKKz+7CAuXc5owDMjqtzspZ/jiz0nsOWdF9HExAjXb97rcjRvYgRjIyWsmjaB1T9TZ8sZGOjDztq8ynsR0KNPobi36LJ/Y/VIBwMAMHPmTEyYMAGenp7w9vbGRx99hCtXrmDq1KkN3TTZaGZlhrWLnoedjTmycwpw9tLfGPXyahz6+XeolAZwbWWHsUO8YN3UFLez8nDy3GUMfnE5fv/r34yOq7MtFkx7CpbmJrhy7Tbe3bAHq7ccaMCzIqra+i/v3ctk6NT3NNZ/sOA5jOM3f3oMKYQQoqEbUZ3Vq1cjJiYGaWlpcHNzw/Lly9GvX79q98vOzoaFhQVU7pOh0FfWQ0uJ6l9m4qqGbgJRncnOzoadtQWysrJgbl43s4/K/1a0nvEF9FSmtT5OWWEu/lo5qk7bWlce+cwAAISHhyM8PLyhm0FERI8zHbsJOLWQiIiIGi0GA0RERKj/OxBGR0ejR48eMDMzg62tLYYPH44LFy5olAkNDa1QR69emuNWCgsLMWPGDNjY2MDU1BRPPfUUrl69WqO2MBggIiLCv7MJdFlq4vDhw5g2bRqOHz+Offv2oaSkBIGBgcjNzdUoN2jQIKSlpamXb775RmN7REQEEhISEB8fjyNHjiAnJwdDhw5FaWmp1m1pFGMGiIiIHje7d+/WeL1hwwbY2toiKSlJY5C8SqWCvb39g7sDALKysrBu3Tps3LgR/fv3BwBs2rQJTk5O2L9/PwYOHKhVW5gZICIiwr0Hsem66CIrKwsAYGVlpbH+0KFDsLW1Rdu2bTF58mRkZPx7f5akpCQUFxcjMDBQvc7R0RFubm41eoYPMwNERESQ7qZDDz4XR5sb4gkhMHPmTPTp0wdubm7q9UFBQXjmmWfg7OyM5ORkzJ8/H08++SSSkpKgUqmQnp4OpVIJS0tLjeNV9QyfqjAYICIiktCDt8FfuHAhIiMjH7rP9OnT8dtvv+HIkSMa68eMGaP+v5ubGzw9PeHs7Iyvv/4aI0aMqPJ4VT3DpyoMBoiIiCDdswlSU1M1bjpUXVZgxowZ2LlzJ77//nu0aNHioWUdHBzg7OyMixcvAgDs7e1RVFSEzMxMjexARkYGfHx8tG47xwwQERFButkE5ubmGktVwYAQAtOnT8e2bdtw4MABuLi4VNvGW7duITU1FQ4ODgAADw8PGBoaYt++feoyaWlpOHPmTI2CAWYGiIiIUP9PLZw2bRq2bNmCHTt2wMzMTN3Hb2FhAWNjY+Tk5CAyMhIjR46Eg4MDUlJS8Prrr8PGxkb98D4LCwuEhYVh1qxZsLa2hpWVFWbPng13d3f17AJtMBggIiJqAGvWrAEA+Pn5aazfsGEDQkNDoa+vj9OnT+PTTz/FnTt34ODgAH9/f2zduhVmZmbq8suXL4eBgQFGjx6N/Px8BAQEIDY2Fvr6+lq3hcEAERER6j8zUN1zAo2NjbFnz55qj2NkZISVK1di5cqVNar/fgwGiIiIIN3UwsaIAwiJiIhkjpkBIiIiAAro2E3QiJ9hzGCAiIgI7CYgIiIiGWNmgIiICPU/m+BRwmCAiIgI7CYgIiIiGWNmgIiICOwmICIikj05dxMwGCAiIoK8MwMcM0BERCRzzAwQEREBgI7dBI34BoQMBoiIiAB2ExAREZGMMTNAREQEziYgIiKSPXYTEBERkWwxM0BERAR2ExAREckeuwmIiIhItpgZICIigrwzAwwGiIiIwDEDREREsifnzADHDBAREckcMwNERERgNwEREZHssZuAiIiIZIuZASIiIgAK6NhNIFlL6h+DASIiIgB6CgX0dIgGdNm3obGbgIiISOaYGSAiIgJnExAREcmenGcTMBggIiICoKe4t+iyf2PFMQNEREQyx8wAERERACh0TPU34swAgwEiIiLIewAhuwmIiIhkjpkBIiIiAIp//umyf2PFYICIiAicTUBEREQyxswAEREReNMhnb3//vtal3355ZelqJKIiEhScp5NIEkwsHz5cq3KKRQKBgNERESPGEmCgeTkZCkOQ0RE1GD4COM6UFRUhAsXLqCkpKSuqiAiIpJMeTeBLktjJXkwkJeXh7CwMJiYmKBTp064cuUKgHtjBZYsWSJ1dURERJIoH0Coy9JYSR4MzJ07F7/++isOHToEIyMj9fr+/ftj69atUldHREREOpI8GNi+fTtWrVqFPn36aERJHTt2xJ9//il1dURERJKo726C6Oho9OjRA2ZmZrC1tcXw4cNx4cIFjTJCCERGRsLR0RHGxsbw8/PD2bNnNcoUFhZixowZsLGxgampKZ566ilcvXq1Rm2RPBi4ceMGbG1tK6zPzc1t1CkUIiJ6vJUPINRlqYnDhw9j2rRpOH78OPbt24eSkhIEBgYiNzdXXSYmJgbLli3DqlWrkJiYCHt7ewwYMAB3795Vl4mIiEBCQgLi4+Nx5MgR5OTkYOjQoSgtLdX+3GvUci306NEDX3/9tfp1eQDw8ccfw9vbW+rqiIiIGqXdu3cjNDQUnTp1QpcuXbBhwwZcuXIFSUlJAO5lBVasWIF58+ZhxIgRcHNzQ1xcHPLy8rBlyxYAQFZWFtatW4d3330X/fv3R7du3bBp0yacPn0a+/fv17otkt+BMDo6GoMGDcK5c+dQUlKC9957D2fPnsWxY8dw+PBhqasjIiKShOKfRZf9ASA7O1tjvUqlgkqlqnb/rKwsAICVlRWAe9P209PTERgYqHEsX19fHD16FFOmTEFSUhKKi4s1yjg6OsLNzQ1Hjx7FwIEDtWq75JkBHx8f/Pjjj8jLy0ObNm2wd+9e2NnZ4dixY/Dw8JC6OiIiIklINZvAyckJFhYW6iU6OrrauoUQmDlzJvr06QM3NzcAQHp6OgDAzs5Oo6ydnZ16W3p6OpRKJSwtLasso406eTaBu7s74uLi6uLQREREj7TU1FSYm5urX2uTFZg+fTp+++03HDlypMK2B8fbCSGqHYOnTZn71UkwUFpaioSEBJw/fx4KhQIdOnTAsGHDYGDA5yIREdGjSapHGJubm2sEA9WZMWMGdu7cie+//x4tWrRQr7e3twdw79u/g4ODen1GRoY6W2Bvb4+ioiJkZmZqZAcyMjLg4+Ojfdu1LqmlM2fOoG3btggJCUFCQgK2bduGkJAQuLq64vTp01JXR0REJIn6vumQEALTp0/Htm3bcODAAbi4uGhsd3Fxgb29Pfbt26deV1RUhMOHD6v/0Ht4eMDQ0FCjTFpaGs6cOVOjYEDyr+qTJk1Cp06dcOLECXWUkpmZidDQULz44os4duyY1FUSERE1OtOmTcOWLVuwY8cOmJmZqfv4LSwsYGxsDIVCgYiICERFRcHV1RWurq6IioqCiYkJxo0bpy4bFhaGWbNmwdraGlZWVpg9ezbc3d3Rv39/rdsieTDw66+/agQCAGBpaYnFixejR48eUldHREQkmfq8Hc6aNWsAAH5+fhrrN2zYgNDQUADAnDlzkJ+fj/DwcGRmZsLLywt79+6FmZmZuvzy5cthYGCA0aNHIz8/HwEBAYiNjYW+vr7WbZE8GGjXrh2uX7+OTp06aazPyMjAE088IXV1REREktD1+QK16SbQ5piRkZGIjIyssoyRkRFWrlyJlStX1qj++0kSDNw/pzIqKgovv/wyIiMj0atXLwDA8ePH8cYbb2Dp0qVSVEdERCQ5qQYQNkaSBANNmzbViIiEEBg9erR6XXn0ExwcXKPbIxIREVHdkyQYOHjwoBSHISIiajD13U3wKJEkGPD19ZXiMERERA1GqtsRN0Z1dhegvLw8XLlyBUVFRRrrO3fuXFdVEhERUS1IHgzcuHEDEydOxLffflvpdo4ZICKiR1FtHkP84P6NleR3IIyIiEBmZiaOHz8OY2Nj7N69G3FxcXB1dcXOnTulro6IiEgSCoXuS2MleWbgwIED2LFjB3r06AE9PT04OztjwIABMDc3R3R0NIYMGSJ1lURERKQDyTMDubm5sLW1BXDvmcw3btwAcO9Jhr/88ovU1REREUmivp9N8CiRPBho164dLly4AADo2rUrPvzwQ/z9999Yu3atxlOXiIiIHiXsJpBQREQE0tLSAAALFy7EwIEDsXnzZiiVSsTGxkpdHREREelI8mBg/Pjx6v9369YNKSkp+P3339GyZUvY2NhIXR0REZEk5DyboM7uM1DOxMQE3bt3r+tqiIiIdKJrqr8RxwLSBAMzZ87UuuyyZcukqJKIiEhSvB2xjk6ePKlVucb8RhERET2uZPGgorPfRsPM3Lyhm0FUJzYlXW7oJhDVmfzcu/VWlx50m2In+fS8elTnYwaIiIgaAzl3EzTmQIaIiIgkwMwAERER7s0G0ONsAiIiIvnS0zEY0GXfhsZuAiIiIpmrk2Bg48aN6N27NxwdHXH58r2RzitWrMCOHTvqojoiIiKd8UFFElqzZg1mzpyJwYMH486dOygtLQUANG3aFCtWrJC6OiIiIkmUdxPosjRWkgcDK1euxMcff4x58+ZBX19fvd7T0xOnT5+WujoiIiLSkeQDCJOTk9GtW7cK61UqFXJzc6WujoiISBJyfjaB5JkBFxcXnDp1qsL6b7/9Fh07dpS6OiIiIkmUP7VQl6Wxkjwz8Oqrr2LatGkoKCiAEAI///wzPvvsM0RHR+OTTz6RujoiIiJJ8HbEEpo4cSJKSkowZ84c5OXlYdy4cWjevDnee+89jB07VurqiIiISEd1ctOhyZMnY/Lkybh58ybKyspga2tbF9UQERFJRs5jBur0DoQ2NjZ1eXgiIiLJ6EG3fn89NN5oQPJgwMXF5aE3Xvjrr7+krpKIiIh0IHkwEBERofG6uLgYJ0+exO7du/Hqq69KXR0REZEk2E0goVdeeaXS9R988AFOnDghdXVERESS4IOK6kFQUBC+/PLL+qqOiIiItFRvjzD+4osvYGVlVV/VERER1YhCAZ0GELKb4D7dunXTGEAohEB6ejpu3LiB1atXS10dERGRJDhmQELDhw/XeK2np4dmzZrBz88P7du3l7o6IiIi0pGkwUBJSQlatWqFgQMHwt7eXspDExER1SkOIJSIgYEBXnrpJRQWFkp5WCIiojqnkOBfYyX5bAIvLy+cPHlS6sMSERHVqfLMgC5LYyX5mIHw8HDMmjULV69ehYeHB0xNTTW2d+7cWeoqiYiISAeSBQMvvPACVqxYgTFjxgAAXn75ZfU2hUIBIQQUCgVKS0ulqpKIiEgych4zIFkwEBcXhyVLliA5OVmqQxIREdUbhULx0GfraLN/YyVZMCCEAAA4OztLdUgiIiKqB5KOGWjMUREREckbuwkk0rZt22oDgtu3b0tZJRERkSR4B0KJLFq0CBYWFlIekoiIiOqYpMHA2LFjYWtrK+UhiYiI6oWeQqHTg4p02behSXbTIY4XICKixqwhbjr0/fffIzg4GI6OjlAoFNi+fbvG9tDQUPUsh/KlV69eGmUKCwsxY8YM2NjYwNTUFE899RSuXr1as3OvedMrVz6bgIiIiLSTm5uLLl26YNWqVVWWGTRoENLS0tTLN998o7E9IiICCQkJiI+Px5EjR5CTk4OhQ4fW6L4+knUTlJWVSXUoIiKi+qfjAMLaPJogKCgIQUFBDy2jUqmqfPhfVlYW1q1bh40bN6J///4AgE2bNsHJyQn79+/HwIEDtWqH5M8mICIiaoz0oNB5AYDs7GyNRdeH9x06dAi2trZo27YtJk+ejIyMDPW2pKQkFBcXIzAwUL3O0dERbm5uOHr0aA3OnYiIiNRTC3VZAMDJyQkWFhbqJTo6utZtCgoKwubNm3HgwAG8++67SExMxJNPPqkOMNLT06FUKmFpaamxn52dHdLT07WuR/IHFREREclZamoqzM3N1a9VKlWtj1X+vB8AcHNzg6enJ5ydnfH1119jxIgRVe5X/jwgbTEzQEREBOlmE5ibm2ssugQDD3JwcICzszMuXrwIALC3t0dRUREyMzM1ymVkZMDOzk77c5eshURERI1Y+X0GdFnq2q1bt5CamgoHBwcAgIeHBwwNDbFv3z51mbS0NJw5cwY+Pj5aH5fdBERERA0kJycHly5dUr9OTk7GqVOnYGVlBSsrK0RGRmLkyJFwcHBASkoKXn/9ddjY2ODpp58GAFhYWCAsLAyzZs2CtbU1rKysMHv2bLi7u6tnF2iDwQAREREa5tkEJ06cgL+/v/r1zJkzAQAhISFYs2YNTp8+jU8//RR37tyBg4MD/P39sXXrVpiZman3Wb58OQwMDDB69Gjk5+cjICAAsbGx0NfX17odDAaIiIjwz9RCXW5HXIsbDfj5+T30pn179uyp9hhGRkZYuXIlVq5cWeP6y3HMABERkcwxM0BERAQ+wpiIiEj29KBburwxp9obc9uJiIhIAswMEBERAepHBOuyf2PFYICIiAj3HjpYzw8tfGQwGCAiIgJ0votgfdyBsK5wzAAREZHMMTNARET0j8b73V43DAaIiIgg7/sMsJuAiIhI5pgZICIiAqcWEhERyR7vQEhERESyxcwAERER2E1AREQke3K+AyG7CYiIiGSOmQEiIiKwm4CIiEj25DybgMEAERER5J0ZaMyBDBEREUmAmQEiIiLIezYBgwEiIiLwQUVEREQkY8wMEBERAdCDAno6JPt12behMRggIiICuwmIiIhIxpgZICIiAqD4558u+zdWDAaIiIjAbgIiIiKSMWYGiIiIcC/Nr8uMAHYTEBERNXJy7iZgMEBERAR5BwMcM0BERCRzzAwQERGBUwuJiIhkT09xb9Fl/8aK3QREREQyx8wAERER2E1AREQke5xNQERERLLFzAAREREABXRL9TfixACDASIiIoCzCYiIiEjGmBkgnX2waT9iPvoaL4zqh4UvP61efzHlOpas3YWffv0TZWUCbV3s8cGiEDS3s2zA1hJVdOliKr7bm4grV9KRnZWLSVOHo0tX10rLxm/egx9/+A0jnvGHf4Bnhe1CCKxZ9SXOn01+6HHo0SPn2QSPdGbg+++/R3BwMBwdHaFQKLB9+/aGbhI94NfzV7Bl5zF0aOOosf7y3zcxavr7aONsi/j3pmH3htmYETIAKiXjT3r0FBYWo3mLZnhmbP+Hlvv11EWkJKfBwqJJlWUOfpfUiP8kyFv5bAJdlsbqkQ4GcnNz0aVLF6xataqhm0KVyM0rxCtvbsLSOaNhYWasse3tj7+Bf68OeP2lp+DWtgVaOtogwLsTbCzNGqi1RFXr5NYaQ4f1RddubasscyfzLr6I34+QF4ZCX7/yS+fVqxk4+N0JjH9+UF01leqQQoKlsXqkv6YFBQUhKCiooZtBVZi//As86d0BfTzbYeWn+9Try8rKcODYOUwZ9yQmzFqLsxf/hpODFcKf64+Bfd0bsMVEtVNWJvBp7DcIGNATDo42lZYpKipG3Cdf4ZkxATB/SOaA6FH0SGcGaqqwsBDZ2dkaC9WNnd/9gjN//I05Lw6tsO1mZg5y8wuxZvN38PVqj43vTsXAvu6Y8t8NOH7qUgO0lkg3+/f+BH09BXyf7F5lmW3/OwCXNo7ozDECjZYeFNBT6LDUIjdQXXe4EAKRkZFwdHSEsbEx/Pz8cPbsWY0yhYWFmDFjBmxsbGBqaoqnnnoKV69ereG5P0aio6NhYWGhXpycnBq6SY+la9czsej9BKyYPx5GKsMK24UQAIABfdwwabQfOrk2R/hz/RHg3RGbdxyt7+YS6eTK5XQcOpCE50IGQ1FFp/DpXy/hj9+vYOQzT9Zz60hKDdFNUF13eExMDJYtW4ZVq1YhMTER9vb2GDBgAO7evasuExERgYSEBMTHx+PIkSPIycnB0KFDUVpaqnU7HulugpqaO3cuZs6cqX6dnZ3NgKAOnP7jKm5m5mDo5GXqdaWlZfjp178Ql3AE5/cshYG+Hlyd7TT2e8LZDomn/6rv5hLp5M9LV5FzNw8LXl+rXldWJpDwxSEc+i4Ji6Km4I8LV3Dz5h3Mmfm+xr7rPtyBNk+0wCuzxtZ3s6mReFh3uBACK1aswLx58zBixAgAQFxcHOzs7LBlyxZMmTIFWVlZWLduHTZu3Ij+/e8NgN20aROcnJywf/9+DBw4UKt2PFbBgEqlgkqlauhmPPZ6e7hib+wcjXWzl3yGNi1t8dK4AKiUBujcviX+Ss3QKJN89Qaa21vVZ1OJdNbTqxPatXfWWLf6/S/Qo1dH9PK+NwZmwMCe8O6tOR4m+s1YjHjGH26d29RbW0lHuo4ClHgEYXJyMtLT0xEYGKhep1Kp4Ovri6NHj2LKlClISkpCcXGxRhlHR0e4ubnh6NGj8gwGqH40MTFCu9YOGutMjJSwNDdVr5/yrD+mR34Kry5t4N3tCRz66XfsP3oWW9+b1hBNJnqowoIi3LiRqX5962YWrqZeh4mpMayszGHaRHO2jL6+HszNTWH3T3BrbtGk0kGDllbmsLFpWqdtJ+lIdZ+BB8er1faLanp6OgDAzk4zy2pnZ4fLly+ryyiVSlhaWlYoU76/Nh7pYCAnJweXLv074Cw5ORmnTp2ClZUVWrZs2YAto+oM6tcZi2c9g9Wb9mPhewlo07IZ1r4Rih6dWzd004gquHI5He8v36p+nfDFQQBAz16dMCF0cEM1ixqpB7unFy5ciMjIyFof78GxKkKIKsev1KTM/R7pYODEiRPw9/dXvy4fDxASEoLY2NgGahVVZuv70yusGzPEC2OGeDVAa4hqxrVdS6xc+6rW5RdFTam2TE2OR48IXW8c9M++qampMDc3V6+ubfe1vb09gHvf/h0c/s3GZmRkqLMF9vb2KCoqQmZmpkZ2ICMjAz4+PlrX9UjPJvDz84MQosLCQICIiKQm1WwCc3NzjaW2wYCLiwvs7e2xb9+/93EpKirC4cOH1X/oPTw8YGhoqFEmLS0NZ86cqVEw8EhnBoiIiB5n1XWHR0REICoqCq6urnB1dUVUVBRMTEwwbtw4AICFhQXCwsIwa9YsWFtbw8rKCrNnz4a7u7t6doE2GAwQEREBDTKboLru8Dlz5iA/Px/h4eHIzMyEl5cX9u7dCzOzf2/tvnz5chgYGGD06NHIz89HQEAAYmNjoa+vr33TRfkdYh5D2dnZsLCwwKWrN2F2X/8N0eNk57lrDd0EojqTn3sXLwe4IysrS6MfXkrlfysO/pqKJma1ryPnbjb8uzjVaVvrCjMDRERE0P3Jg3xqIRERETVazAwQERHhkbsBYb1iMEBERATIOhpgNwEREZHMMTNAREQE6Z5N0BgxGCAiIgJnExAREZGMMTNAREQEWY8fZDBAREQEQNbRALsJiIiIZI6ZASIiInA2ARERkezJeTYBgwEiIiLIesgAxwwQERHJHTMDREREgKxTAwwGiIiIIO8BhOwmICIikjlmBoiIiMDZBERERLIn4yED7CYgIiKSO2YGiIiIAFmnBhgMEBERgbMJiIiISMaYGSAiIgJnExAREcmejIcMMBggIiICIOtogGMGiIiIZI6ZASIiIsh7NgGDASIiIgDQcQBhI44F2E1AREQkd8wMEBERQdbjBxkMEBERAZB1NMBuAiIiIpljZoCIiAicTUBERCR7cr4dMbsJiIiIZI6ZASIiIsh6/CCDASIiIgCyjgYYDBAREUHeAwg5ZoCIiEjmmBkgIiLCP70EuswmkKwl9Y/BABEREWQ9ZIDdBERERHLHzAARERHkfdMhBgNEREQA5NxRwG4CIiIimWNmgIiICPLuJmBmgIiICP92Euiy1ERkZCQUCoXGYm9vr94uhEBkZCQcHR1hbGwMPz8/nD17VreTrAKDASIiogbSqVMnpKWlqZfTp0+rt8XExGDZsmVYtWoVEhMTYW9vjwEDBuDu3buSt4PdBERERGiYbgIDAwONbEA5IQRWrFiBefPmYcSIEQCAuLg42NnZYcuWLZgyZUrtG1oJZgaIiIjw77MJdPkHANnZ2RpLYWFhlXVevHgRjo6OcHFxwdixY/HXX38BAJKTk5Geno7AwEB1WZVKBV9fXxw9elTyc2cwQEREBEg2aMDJyQkWFhbqJTo6utLqvLy88Omnn2LPnj34+OOPkZ6eDh8fH9y6dQvp6ekAADs7O4197Ozs1NukxG4CIiIiCaWmpsLc3Fz9WqVSVVouKChI/X93d3d4e3ujTZs2iIuLQ69evQAAigf6HoQQFdZJgZkBIiIiSDebwNzcXGOpKhh4kKmpKdzd3XHx4kX1OIIHswAZGRkVsgVSYDBARESEfwcQ6rLoorCwEOfPn4eDgwNcXFxgb2+Pffv2qbcXFRXh8OHD8PHx0fFMK2I3ARERUQOYPXs2goOD0bJlS2RkZOCtt95CdnY2QkJCoFAoEBERgaioKLi6usLV1RVRUVEwMTHBuHHjJG8LgwEiIiL8O5tAl/1r4urVq3j22Wdx8+ZNNGvWDL169cLx48fh7OwMAJgzZw7y8/MRHh6OzMxMeHl5Ye/evTAzM6t1G6vCYICIiAio9+cUxcfHP/xwCgUiIyMRGRlZ+zZpiWMGiIiIZI6ZASIiIsj5AcYMBoiIiADwqYVEREQkY8wMEBERAYCOswkac0cBgwEiIiKwm4CIiIhkjMEAERGRzLGbgIiICPLuJmAwQEREhPq/HfGjhN0EREREMsfMABEREdhNQEREJHtyvh0xuwmIiIhkjpkBIiIiQNapAQYDRERE4GwCIiIikjFmBoiIiMDZBERERLIn4yEDDAaIiIgAyDoa4JgBIiIimWNmgIiICPKeTcBggIiICBxA+NgSQgAA7t6928AtIao7+bn8fNPjKz83B8C/1/O6lJ2d3aD7N6THOhgoDwK6dXBp4JYQEZEu7t69CwsLizo5tlKphL29PVxdnHQ+lr29PZRKpQStql8KUR/hVgMpKyvDtWvXYGZmBkVjzt80ItnZ2XByckJqairMzc0bujlEkuNnvH4JIXD37l04OjpCT6/uxrwXFBSgqKhI5+MolUoYGRlJ0KL69VhnBvT09NCiRYuGboYsmZub80JJjzV+xutPXWUE7mdkZNQo/4hLhVMLiYiIZI7BABERkcwxGCBJqVQqLFy4ECqVqqGbQlQn+Bmnx9FjPYCQiIiIqsfMABERkcwxGCAiIpI5BgNEREQyx2CAiIhI5hgMkGRWr14NFxcXGBkZwcPDAz/88ENDN4lIMt9//z2Cg4Ph6OgIhUKB7du3N3STiCTDYIAksXXrVkRERGDevHk4efIk+vbti6CgIFy5cqWhm0YkidzcXHTp0gWrVq1q6KYQSY5TC0kSXl5e6N69O9asWaNe16FDBwwfPhzR0dEN2DIi6SkUCiQkJGD48OEN3RQiSTAzQDorKipCUlISAgMDNdYHBgbi6NGjDdQqIiLSFoMB0tnNmzdRWloKOzs7jfV2dnZIT09voFYREZG2GAyQZB58TLQQgo+OJiJqBBgMkM5sbGygr69fIQuQkZFRIVtARESPHgYDpDOlUgkPDw/s27dPY/2+ffvg4+PTQK0iIiJtGTR0A+jxMHPmTEyYMAGenp7w9vbGRx99hCtXrmDq1KkN3TQiSeTk5ODSpUvq18nJyTh16hSsrKzQsmXLBmwZke44tZAks3r1asTExCAtLQ1ubm5Yvnw5+vXr19DNIpLEoUOH4O/vX2F9SEgIYmNj679BRBJiMEBERCRzHDNAREQkcwwGiIiIZI7BABERkcwxGCAiIpI5BgNEREQyx2CAiIhI5hgMEBERyRyDAaI6FhkZia5du6pfh4aGYvjw4fXejpSUFCgUCpw6darKMq1atcKKFSu0PmZsbCyaNm2qc9sUCgW2b9+u83GIqHYYDJAshYaGQqFQQKFQwNDQEK1bt8bs2bORm5tb53W/9957Wt+xTps/4EREuuKzCUi2Bg0ahA0bNqC4uBg//PADJk2ahNzcXKxZs6ZC2eLiYhgaGkpSr4WFhSTHISKSCjMDJFsqlQr29vZwcnLCuHHjMH78eHWqujy1v379erRu3RoqlQpCCGRlZeHFF1+Era0tzM3N8eSTT+LXX3/VOO6SJUtgZ2cHMzMzhIWFoaCgQGP7g90EZWVlWLp0KZ544gmoVCq0bNkSixcvBgC4uLgAALp16waFQgE/Pz/1fhs2bECHDh1gZGSE9u3bY/Xq1Rr1/Pzzz+jWrRuMjIzg6emJkydP1vg9WrZsGdzd3WFqagonJyeEh4cjJyenQrnt27ejbdu2MDIywoABA5CamqqxfdeuXfDw8ICRkRFat26NRYsWoaSkpMbtIaK6wWCA6B/GxsYoLi5Wv7506RI+//xzfPnll+o0/ZAhQ5Ceno5vvvkGSUlJ6N69OwICAnD79m0AwOeff46FCxdi8eLFOHHiBBwcHCr8kX7Q3LlzsXTpUsyfPx/nzp3Dli1bYGdnB+DeH3QA2L9/P9LS0rBt2zYAwMcff4x58+Zh8eLFOH/+PKKiojB//nzExcUBAHJzczF06FC0a9cOSUlJiIyMxOzZs2v8nujp6eH999/HmTNnEBcXhwMHDmDOnDkaZfLy8rB48WLExcXhxx9/RHZ2NsaOHavevmfPHjz33HN4+eWXce7cOXz44YeIjY1VBzxE9AgQRDIUEhIihg0bpn79008/CWtrazF69GghhBALFy4UhoaGIiMjQ13mu+++E+bm5qKgoEDjWG3atBEffvihEEIIb29vMXXqVI3tXl5eokuXLpXWnZ2dLVQqlfj4448rbWdycrIAIE6ePKmx3snJSWzZskVj3Ztvvim8vb2FEEJ8+OGHwsrKSuTm5qq3r1mzptJj3c/Z2VksX768yu2ff/65sLa2Vr/esGGDACCOHz+uXnf+/HkBQPz0009CCCH69u0roqKiNI6zceNG4eDgoH4NQCQkJFRZLxHVLY4ZINn66quv0KRJE5SUlKC4uBjDhg3DypUr1dudnZ3RrFkz9eukpCTk5OTA2tpa4zj5+fn4888/AQDnz5/H1KlTNbZ7e3vj4MGDlbbh/PnzKCwsREBAgNbtvnHjBlJTUxEWFobJkyer15eUlKjHI5w/fx5dunSBiYmJRjtq6uDBg4iKisK5c+eQnZ2NkpISFBQUIDc3F6ampgAAAwMDeHp6qvdp3749mjZtivPnz6Nnz55ISkpCYmKiRiagtLQUBQUFyMvL02gjETUMBgMkW/7+/lizZg0MDQ3h6OhYYYBg+R+7cmVlZXBwcMChQ4cqHKu20+uMjY1rvE9ZWRmAe10FXl5eGtv09fUBAEKCJ5NfvnwZgwcPxtSpU/Hmm2/CysoKR44cQVhYmEZ3CnBvauCDyteVlZVh0aJFGDFiRIUyRkZGOreTiHTHYIBky9TUFE888YTW5bt374709HQYGBigVatWlZbp0KEDjh8/jueff1697vjx41Ue09XVFcbGxvjuu+8wadKkCtuVSiWAe9+ky9nZ2aF58+b466+/MH78+EqP27FjR2zcuBH5+fnqgONh7ajMiRMnUFJSgnfffRd6eveGF33++ecVypWUlODEiRPo2bMnAODChQu4c+cO2rdvD+De+3bhwoUavddEVL8YDBBpqX///vD29sbw4cOxdOlStGvXDteuXcM333yD4cOHw9PTE6+88gpCQkLg6emJPn36YPPmzTh79ixat25d6TGNjIzw2muvYc6cOVAqlejduzdu3LiBs2fPIiwsDLa2tjA2Nsbu3bvRokULGBkZwcLCApGRkXj55Zdhbm6OoKAgFBYW4sSJE8jMzMTMmTMxbtw4zJs3D2FhYfjvf/+LlJQUvPPOOzU63zZt2qCkpAQrV65EcHAwfvzxR6xdu7ZCOUNDQ8yYMQPvv/8+DA0NMX36dPTq1UsdHCxYsABDhw6Fk5MTnnnmGejp6eG3337D6dOn8dZbb9X8B0FEkuNsAiItKRQKfPPNN+jXrx9eeOEFtG3bFmPHjkVKSop69P+YMWOwYMECvPbaa/Dw8MDly5fx0ksvPfS48+fPx6xZs7BgwQJ06NABY8aMQUZGBoB7/fHvv/8+PvzwQzg6OmLYsGEAgEmTJuGTTz5BbGws3N3d4evri9jYWPVUxCZNmmDXrl04d+4cunXrhnnz5mHp0qU1Ot+uXbti2bJlWLp0Kdzc3LB582ZER0dXKGdiYoLXXnsN48aNg7e3N4yNjREfH6/ePnDgQHz11VfYt28fevTogV69emHZsmVwdnauUXuIqO4ohBSdi0RERNRoMTNAREQkcwwGiIiIZI7BABERkcwxGCAiIpI5BgNEREQyx2CAiIhI5hgMEBERyRyDASIiIpljMEBERCRzDAaIiIhkjsEAERGRzDEYICIikrn/B9ty2NXH1Px9AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "K-Fold F1 Scores: [0.807799442896936, 0.7897727272727273, 0.8364611260053619, 0.8245125348189415, 0.8044692737430168]\n", + "K-Fold Precision Scores: [0.8630952380952381, 0.8633540372670807, 0.8524590163934426, 0.8757396449704142, 0.8571428571428571]\n", + "K-Fold Recall Scores: [0.7591623036649214, 0.7277486910994765, 0.8210526315789474, 0.7789473684210526, 0.7578947368421053]\n", + "K-Fold AUC Scores: [0.952605541372795, 0.953038235760749, 0.943984962406015, 0.9481078729882557, 0.9456140350877194]\n", + "Mean F1 Score (K-Fold): 0.8126030209473967\n", + "Mean AUC Score (K-Fold): 0.9486701295231068\n" + ] + } + ], + "source": [ + "# Initialize the Gradient Boosting Classifier\n", + "model = GradientBoostingClassifier(random_state=42)\n", + "\n", + "# Stratified K-Fold\n", + "skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)\n", + "\n", + "f1_scores_kfold = []\n", + "precision_scores_kfold = []\n", + "recall_scores_kfold = []\n", + "auc_scores_kfold = []\n", + "\n", + "# For Confusion Matrix Display\n", + "all_conf_matrices = []\n", + "\n", + "for train_index, test_index in skf.split(X, y):\n", + " # Splitting the data\n", + " X_train, X_test = X.iloc[train_index], X.iloc[test_index]\n", + " y_train, y_test = y.iloc[train_index], y.iloc[test_index]\n", + " \n", + " # Train the model\n", + " model.fit(X_train, y_train)\n", + " \n", + " # Predictions\n", + " y_pred = model.predict(X_test)\n", + " y_pred_proba = model.predict_proba(X_test)[:, 1]\n", + " \n", + " # Metrics\n", + " f1_scores_kfold.append(f1_score(y_test, y_pred))\n", + " precision_scores_kfold.append(precision_score(y_test, y_pred))\n", + " recall_scores_kfold.append(recall_score(y_test, y_pred))\n", + " auc_scores_kfold.append(roc_auc_score(y_test, y_pred_proba))\n", + " \n", + " # Save confusion matrix for the fold\n", + " conf_matrix = confusion_matrix(y_test, y_pred)\n", + " all_conf_matrices.append(conf_matrix)\n", + " \n", + " # ROC Curve for one fold\n", + " fpr, tpr, _ = roc_curve(y_test, y_pred_proba)\n", + " plt.plot(fpr, tpr, label=f\"K-Fold ROC Curve\")\n", + "\n", + "# Plot AUC-ROC Curve for K-Fold\n", + "plt.xlabel(\"False Positive Rate\")\n", + "plt.ylabel(\"True Positive Rate\")\n", + "plt.title(\"K-Fold AUC-ROC Curve\")\n", + "plt.legend(loc=\"lower right\")\n", + "plt.show()\n", + "\n", + "# Plot Confusion Matrix for the last fold as an example\n", + "disp = ConfusionMatrixDisplay(confusion_matrix=all_conf_matrices[-1], display_labels=model.classes_)\n", + "disp.plot(cmap='Blues', values_format='d')\n", + "plt.title(\"Confusion Matrix for Last Fold in K-Fold Cross-Validation\")\n", + "plt.show()\n", + "\n", + "# Print Metrics\n", + "print(f\"K-Fold F1 Scores: {f1_scores_kfold}\")\n", + "print(f\"K-Fold Precision Scores: {precision_scores_kfold}\")\n", + "print(f\"K-Fold Recall Scores: {recall_scores_kfold}\")\n", + "print(f\"K-Fold AUC Scores: {auc_scores_kfold}\")\n", + "print(f\"Mean F1 Score (K-Fold): {np.mean(f1_scores_kfold)}\")\n", + "print(f\"Mean AUC Score (K-Fold): {np.mean(auc_scores_kfold)}\")" + ] + }, + { + "cell_type": "markdown", + "id": "2b9e433e-dbf4-4552-a65f-84e1764a08a1", + "metadata": {}, + "source": [ + "### Bootstrap Model" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "1fe832a2-8da1-4617-ab65-793d4cfc9ade", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIhCAYAAABdSTJTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjuElEQVR4nOy9eZhlV1nv/1lrT2esU/PUc3fSCSRAQiKakBAGJcQADyIoIsLFgALei8r9ocZHBYfnegmIXESIeJUQuaCCgIQZBBMwATI0Q+ah5+6aq858zp7W+/tjV1VXdVUPaRKSTtbneSrp2nvttddee5863/2ud1AiIlgsFovFYrFYLKch+rEegMVisVgsFovFcqpYMWuxWCwWi8ViOW2xYtZisVgsFovFctpixazFYrFYLBaL5bTFilmLxWKxWCwWy2mLFbMWi8VisVgsltMWK2YtFovFYrFYLKctVsxaLBaLxWKxWE5brJi1WCwWi8VisZy2WDFrsTzBuO6661BKrfoZGhriuc99Lp///Ocf9fN/8IMf5LrrrjulY2+++Wbe+c53Uq1WH9ExPZoszffevXsf03G8//3vRynFueeeu+7+vXv3opTiPe95z7r73/Oe96x7HcYY/umf/omf/dmfZXBwEM/zGB4e5sUvfjE33HADxpgTju3o57Gnp4eLL76YT3ziE8c85jvf+Q6vfOUrGRsbw/d9RkdHecUrXsEtt9xyzGN++MMf8vrXv55t27aRy+UolUo885nP5JprrmF+fv6E4wT41re+xS/90i+xYcMGfN+nUqlw8cUX86EPfYhWq3VSfVgslp8sVsxaLE9QPvKRj3DLLbdw88038+EPfxjHcXjJS17CDTfc8Kie98cVs3/6p396WonZK6+8kltuuYWxsbHHdBz/+I//CMBdd93Fd7/73Uekz263y8///M/zute9juHhYT70oQ/xjW98g2uvvZbx8XFe+cpXnvTztCREb775Zq699lrq9TqvfvWr+fjHP76m7d/8zd/w7Gc/m4MHD3LNNdfw9a9/nfe85z0cOnSISy65hA984ANrjvn7v/97LrjgAm699Vbe/va38+Uvf5nPfOYzvPKVr+Taa6/lqquuOuEY3/GOd/Cc5zyHQ4cO8ed//ud87Wtf45//+Z95wQtewDvf+U7+6I/+6KSu1WKx/IQRi8XyhOIjH/mIAHLrrbeu2t5utyUIAvmVX/mVR/X855xzjlx22WWndOy73/1uAWTPnj0n1b7dbp/SeZ5o3HrrrQLIlVdeKYC88Y1vXNNmz549Asi73/3udftYb+7f/OY3CyAf/ehH1z3m/vvvlx/84AcnHB8gv/Vbv7Vq2969ewWQ5zznOau2f/vb3xattbz4xS+WOI5X7YvjWF784heL1lq+/e1vL2+/+eabxXEcedGLXiTdbnfN+cMwlH//938/7hj/9V//VQC56qqrxBizZn+9XpevfOUrJ7zWk6HVaj0i/VgslgwrZi2WJxjHErPGGCmXy/La17521fa5uTl585vfLOPj4+J5nmzbtk3+8A//cI0o6HQ68gd/8AeydetW8TxPxsfH5S1veYssLCwst9myZYsAq362bNkiIiJpmsqf//mfy86dOyWXy0mlUpGnPe1p8r73vU9ERN7xjnesORaQb37zm8t9X3nllfJv//Zvct5550kQBPL7v//7IiLygQ98QC699FIZGhqSQqEg5557rrzrXe+SKIpWXcNll10m55xzjtx0003y0z/905LL5WR8fFz+6I/+SJIkWW63JPze9a53yV/8xV/Ipk2bJAgCueCCC+TrX//6uvO9UgQuned73/ueXHLJJZLP52Xbtm3yl3/5l5Km6arj77zzTvm5n/s5yefzMjg4KG95y1vk85///KprPxFvetObBJAf/ehHcvHFF0u5XF4jmB6umJ2YmBDP8+Tyyy8/qTEcj/XErIjI0NCQnHXWWau2XXnlleI4jhw4cGDdvvbv3y+O48iLX/zi5W0vfvGLxXVd2b9//ymP8dxzz5W+vr6TEppLc/mRj3xkzT5A3vGOdyz/vvRc33777fKLv/iL0tvbK6Ojo/LXf/3XAsgDDzywpo/f+73fE8/zZGZmZnnb1772NXn+858v5XJZ8vm8XHzxxWueRYvlyYp1M7BYnqCkaUqSJMRxzMGDB/md3/kdWq0Wr371q5fbdLtdnve853H99dfztre9jS984Qu85jWv4ZprruHlL3/5cjsR4WUvexnvec97+LVf+zW+8IUv8La3vY2PfvSjPP/5zycMQwA+85nPsH37ds4//3xuueUWbrnlFj7zmc8AcM011/DOd76TX/mVX+ELX/gC//Iv/8JVV1217FLwhje8gf/xP/4HAJ/+9KeXj3/mM5+5PI477riDt7/97bz1rW/ly1/+Mr/4i78IwEMPPcSrX/1q/umf/onPf/7zXHXVVbz73e/mN3/zN9fMy+TkJK961av41V/9Vf793/+dV7ziFfzFX/wFv/3bv72m7Qc+8AG+/OUv8773vY+PfexjaK254oorjuu3ufI8v/qrv8prXvMaPve5z3HFFVdw9dVX87GPfWy5zcTEBJdddhn33XcfH/rQh7j++utpNBr89//+30/Y/xKdTodPfOIT/NRP/RTnnnsuv/7rv06j0eCTn/zkSfexHt/85jeJ45iXvexlP1Y/x6JWqzE/P8/OnTuXt6Vpyje/+U0uvPBCNm7cuO5xmzZt4oILLuAb3/gGaZqSpinf+MY3uOCCC9i0adMpjWViYoI777yTF77whRQKhVPq40S8/OUv54wzzuCTn/wk1157La95zWvwfX+NS06apnzsYx/jJS95CYODgwB87GMf44UvfCE9PT189KMf5V//9V/p7+/n8ssv5z/+4z8elfFaLKcVj7WatlgsjyxLlsKjf4IgkA9+8IOr2l577bUCyL/+67+u2v6ud71LAPnqV78qIiJf/vKXBZBrrrlmVbt/+Zd/EUA+/OEPL287lpvBi1/8YjnvvPOOO/bjuRls2bJFHMeR++6777h9pGkqcRzL9ddfL47jyPz8/PK+yy67TIA1S85vfOMbRWst+/btE5Ejlrfx8XHpdDrL7er1uvT398vP/uzPLm87lmUWkO9+97urzvPUpz51laXz7W9/uyil5K677lrV7vLLLz9py+z1118vgFx77bUiItJoNKRUKsmll166qt3Dtcz+7//9vwWQL3/5yyccw4kA5C1veYvEcSxRFMn9998vL33pS6VcLsttt9223G5yclIAedWrXnXc/n75l39ZAJmamjrpY47Hd77zHQHkD/7gD06q/alYZv/kT/5kTduXv/zlsnHjxlXW+i9+8YsCyA033CAimUtCf3+/vOQlL1l1bJqm8oxnPEOe9axnndSYLZYnMtYya7E8Qbn++uu59dZbufXWW/nSl77E6173On7rt35rVfDMN77xDYrFIq94xStWHfvf/tt/A1i2+nzjG99YtX2JV77ylRSLxZOyDj3rWc/iBz/4AW95y1v4yle+Qr1ef9jX9PSnP32VJW+JXbt28dKXvpSBgQEcx8HzPF772teSpin333//qrblcpmXvvSlq7a9+tWvxhjDTTfdtGr7y1/+cnK53KpjX/KSl3DTTTeRpulxxzo6OsqznvWsNePft2/f8u833ngj5557Lk996lNXtfuVX/mV4/a9kn/4h38gn8/zqle9CoBSqcQrX/lKvvWtb/HAAw+cdD8/LksrAUs/R2c5+OAHP4jnefi+z86dO/nSl77EJz7xCS644IKHfS4RAbIsCacLS6sIK3n961/PwYMH+frXv7687SMf+Qijo6NcccUVQBYUOT8/z+te97o18/uiF72IW2+91WZZsDzpsWLWYnmC8pSnPIULL7yQCy+8kBe96EX83d/9HS984Qv5vd/7veWl/bm5OUZHR9eIguHhYVzXZW5ubrmd67oMDQ2taqeUYnR0dLnd8bj66qt5z3vew3e+8x2uuOIKBgYGeMELXsBtt9120te0XsaA/fv3c+mll3Lo0CH+z//5P3zrW9/i1ltv5W//9m+BbBl+JSMjI2v6GB0dXb7O9bYfvS2KIprN5nHHOjAwsGZbEASrxjM3N7fueNbbth4PPvggN910E1deeSUiQrVapVqtLr+cLGU4AHBdF+CYIjxJEgA8zwNg8+bNAOzZs+ekxrJjxw48z1v++bM/+7NV+3/pl36JW2+9lZtvvpm/+7u/o1wu86pXvWqV4B4cHKRQKJzwnHv37qVQKNDf33/SxxyPh3utp8J6z+4VV1zB2NgYH/nIRwBYWFjgc5/7HK997WtxHAeAqakpIMsGsXJ+Pc/jXe96FyJy0mnHLJYnKlbMWixPIp7+9KfT6XSWrZUDAwNMTU0tW7qWmJ6eJkmSZZ+9gYEBkiRhZmZmVTsRYXJycrnd8XBdl7e97W3ccccdzM/P84lPfIIDBw5w+eWX0263T2r861niPvvZz9Jqtfj0pz/Na17zGi655BIuvPBCfN9ft48lcbCSyclJYK0AXdp+9Dbf9ymVSic15uOxNP/HGs+J+Md//EdEhE996lP09fUt/1x55ZUAfPSjH10Wr4ODgziOw6FDh9bt69ChQziOszwHz3ve8/A8j89+9rMnNZYbbrhheSXg1ltv5Td+4zdW7R8aGuLCCy/koosu4jd+4zeW79vv/u7vLrdxHIfnPe953HbbbRw8eHDd8xw8eJDbb7+d5z//+TiOg+M4vOAFL+D2228/5jEnYmxsjKc97Wl89atfPalncclav+QrvsTxXurWe3Ydx+HXfu3X+OxnP0u1WuXjH/84YRjy+te/frnN0mfrb/7mb1bN78qfk335sVieqFgxa7E8ifj+978PsGxhfcELXkCz2VwjWK6//vrl/Sv/vzJ4CeDf/u3faLVay/thrfVxPXp7e3nFK17Bb/3WbzE/P7+cqD8IAmCtNfV4LImEpWMhE9l///d/v277RqPB5z73uVXbPv7xj6O15jnPec6q7Z/+9Kfpdrurjr3hhhu49NJLly1nPw6XXXYZd955J3ffffeq7f/8z/98wmPTNOWjH/0oO3bs4Jvf/Oaan//5P/8nExMTfOlLXwIyAfbsZz+bz33uc6uuCbJAwM997nNccskly0JtdHSUN7zhDXzlK19Zfh6O5qGHHuKHP/whAE972tOWVwIuvPBCxsfHjzv+Sy+9lNe+9rV84QtfWBVQd/XVVyMivOUtb1ljRU7TlDe/+c2ICFdfffWaY974xjcSRdGac8VxfMJ8uH/8x3/MwsICb33rW9e83AE0m02++tWvApnlPJfLLV/7Ev/+7/9+3HOsx+tf/3q63S6f+MQnuO6667jooos4++yzl/c/+9nPpre3l7vvvnvV/K78OdaLm8XypOEx8tW1WCyPEksBSR/5yEfklltukVtuuUU+//nPy6//+q8LIL/wC7+w3LbT6cjTn/50KZfL8t73vle+9rWvyTve8Q7xPE9+/ud/frmdMUYuv/xy8TxP3vnOd8rXvvY1+au/+isplUpy/vnnr0rj9brXvU6CIJB//ud/lu9973vywx/+UESyALA/+IM/kE996lNy4403yvXXXy9bt26VLVu2LKfQ+uY3vymA/OZv/qbcfPPNcuutt0q9XheRI6m5juaee+4R3/fluc99rnzxi1+UT3/60/JzP/dzcuaZZ64JorrssstkYGBAxsfH5W/+5m/kK1/5ivz2b/+2APLmN795ud1SgM+mTZvkkksukU9/+tPyqU99Sn7qp35KXNddleP0eKm5juZ1r3vdcqoyEZFDhw7JwMCAbN68Wa677jr50pe+JL/2a7+2nOLsxhtvPOZ9vuGGG5bTh63HzMyMBEEgL3vZy5a33XzzzRIEgZx33nly3XXXyTe+8Q257rrrllOd3Xzzzav66HQ6cvnll4tSSl796lfLJz/5Sbnpppvk05/+tLz5zW+WXC4nn/3sZ485xiU4Rmqu/fv3Sy6Xkxe84AWrtr///e8XrbX8zM/8jHzsYx+Tm266ST72sY/JRRddJFpref/737+mrw9/+MPiuq6ce+658rd/+7fyn//5n/K1r31NrrnmGjnjjDNWzcOx+OM//mMB5NnPfrb84z/+o9x4443ypS99Sd75znfK2NiY/M7v/M5y2ze84Q2Sy+Xkr/7qr+TrX/+6/K//9b/k3HPPPWYA2Mo0W0dz0UUXyaZNm9YEUy7xT//0T6K1ll/+5V+WT37yk3LjjTfKpz71KfnjP/5jedOb3nTC67JYnuhYMWuxPMFYL5tBpVKR8847T9773veuyR87Nzcnb3rTm2RsbExc15UtW7bI1VdfvW6e2d///d+XLVu2iOd5MjY2Jm9+85tX5ZkVyZLhv/CFL5Ryubwqz+xf/dVfycUXXyyDg4Pi+75s3rxZrrrqKtm7d++q46+++moZHx8XrfW6eWbX44YbbpBnPOMZksvlZMOGDfL2t79dvvSlL60rZs855xz5z//8T7nwwgslCAIZGxuTP/zDP1yVoH9lntk//dM/lY0bN4rv+3L++eevSZz/44hZkSzP7M/+7M9KLpeT/v5+ueqqq+SjH/2oAMctSPCyl71MfN+X6enpY7Z51ateJa7ryuTk5PK22267TX7hF35BBgcHxXEcGRwclF/4hV+Q22+/fd0+kiSRj370o/L85z9f+vv7xXVdGRoakiuuuEI+/vGPr8mbux7HErMiWUaH9YT7LbfcIq94xStkZGREXNeV4eFhefnLX75GcK/k+9//vrzuda+TzZs3i+/7UiwW5fzzz5c/+ZM/Oe48reTGG2+UV7ziFTI2Niae50lPT49cdNFF8u53v3v5xUpEpFaryRve8AYZGRmRYrEoL3nJS5YLQTxcMfvhD39YAMnn81Kr1Y45riuvvFL6+/vF8zzZsGGDXHnllfLJT37ypK7LYnkio0TWWU+xWCyWJyDPfe5zmZ2d5c477zxuu71797Jt2zbe/e538//9f//fT2h0R/iN3/gNPvGJTzA3N2eXkC0Wi+UEuI/1ACwWi+XJzJ/92Z8xPj7O9u3baTabfP7zn+f//t//yx/90R9ZIWuxWCwngRWzFovF8hjieR7vfve7OXjwIEmScOaZZ/Le97533YpkFovFYlmLdTOwWCwWi8VisZy22NRcFovFYrFYLJbTFitmLRaLxWKxWCynLVbMWiwWi8VisVhOW550AWDGGA4fPky5XF63vKDFYrFYLBaL5bFFRGg0GoyPj6P18W2vTzoxe/jwYTZt2vRYD8NisVgsFovFcgIOHDjAxo0bj9vmSSdmy+UykE1OT0/PYzwai8VisVgsFsvR1Ot1Nm3atKzbjseTTswuuRb09PRYMWuxWCwWi8XyOOZkXEJtAJjFYrFYLBaL5bTFilmLxWKxWCwWy2mLFbMWi8VisVgsltMWK2YtFovFYrFYLKctVsxaLBaLxWKxWE5brJi1WCwWi8VisZy2WDFrsVgsFovFYjltsWLWYrFYLBaLxXLaYsWsxWKxWCwWi+W0xYpZi8VisVgsFstpixWzFovFYrFYLJbTFitmLRaLxWKxWCynLVbMWiwWi8VisVhOW6yYtVgsFovFYrGctjymYvamm27iJS95CePj4yil+OxnP3vCY2688UYuuOACcrkc27dv59prr330B2qxWCwWi8VieVzymIrZVqvFM57xDD7wgQ+cVPs9e/bw8z//81x66aXs2rWLP/zDP+Stb30r//Zv//Yoj9RisVgsFovF8njEfSxPfsUVV3DFFVecdPtrr72WzZs38773vQ+ApzzlKdx222285z3v4Rd/8RcfpVFaLBbL+oikj/UQHjVSI2u2Rd2EOMyuOZW1+x9t1hvTyd4DkybH2nFSfZz0eYw5qXYngxhB1rnmJVIjJGmc3QtzZHwPZwxiBHPUvZQVvy9f9zp9pun650lFaBhBAEmPjCvbAhiBdZ4fc5xrXYmKIlSnszh+g1nn3ixvO8ZUGEkhCYFTfI5PcqzA4j080v5Ed8fI2haPwcftmFz+C79Esa/vsR7GKh5TMftwueWWW3jhC1+4atvll1/OP/zDPxDHMZ7nrTkmDEPCMFz+vV6vP+rjtFgsjxzmBF/ojxW12u3ESXXVNlnxJbTO99Epc6oCSVaIjRNNoYhZ/pa9cxLq4er9JhWa1S4AB41PeBK35HhN5Dh717vahSZEK/SoQig6k2iiY4gDWWwHm9xJPKI1LYbSGXKqgVqnh5Wjy/afzAWvFi0/DibqRSe5Y+5PRFNXIT/u65SsuROabNZWblnvuhTHQi1N5zGmokgBfcoLw4IXZR2LpA9b5QmwpzxO1/FP8fw/HgKgjj13pwPu5z/NS3/tqsd6GKs4rcTs5OQkIyMjq7aNjIyQJAmzs7OMjY2tOeYv//Iv+dM//dOf1BAtlic1j7SlstuKmdxde8StEj/+OFPa0f6VPRKnexEysafrDsSPzBdWt9nCJOniWcxRAuHYIteptZA4O64j+riix3E6eCkgWfcdSqw0DSiTA9EsSavBk7k0kWOKmePsYndpkJYbrNleWNsLpIJRa0WRcgxqxRmaZhBRa8/Y0IPrDA6Mck5Nkj6SGiUHalnwHRlNctzXgNVtT2ZAJ3OdD+eyHJOiHu0Fi6WHQcwj9OpgeThoz3msh7CG00rMAqij3miWlkOO3r7E1Vdfzdve9rbl3+v1Ops2bXr0Bmh5wvFEXko+Hg/nukWEWu0OkrS57v76bIe4+/DnMYmPLdbklKyVQmz2IhKu2XOqxl/f2QFoNBsXOwKdRCdWACeh0EUESWZQQBh20bUqanHZVjlt1qiGoAvagAizUY4IZ3FIKwYjRw9MUIBKzfKYFDUAKqoFQJqWVx+iVv3v5FnsXxbHpFb0oDGZNHcLFGkfs4s1oxe19prM6n92lSCpS9wss1q+Zda5VBSSLglHReg+Nla7tWhSJ8JIvLwl0auv1RHBFQ/HGJwkXbybmeVaTuIr3ix+d6oVSwlaIFiygisNiy8CqehVs5f9tvZzLUt9Gsnuq14pyhfdVExMPZ0/cszSuE/Sapk4mk7Op+sIUc4nL84qW68A+XTxeXFcjn5y/KTLWG0aCDDqYYgzV0HJR2uNm1v70rUejuOQ6+slLYwBijzC2Wqt24sxwkONhwDYUd7O0l28fyb7HO4cKq76zDxWvOBFL32sh7CG00rMjo6OMjk5uWrb9PQ0rusyMDCw7jFBEBAEJ/fAWSxHU63eRpzUHuth/MRpNR8kNa0fq480NkSdJPPrC1d84Z2CaAwKLrnSEVthbXKeOIzXNjSyyt/vZJmMNaEsiQAodHwccxLLoK0IzX3Lv4oJkNZmWBSR84X2sh1tpT3NtGMkObll67AZZ4u8ToBiZLmvlOrRjTFJC7oxpMLBbjmTDp5LsvgFWIpy6KOFnwKWvljFXd6mEQre6qX5pNheOtXJfaXq7IscVHZfwggBojS79h4HVHrkxcIoxf4ks4puXdiPXryXRmV2VoWgj7KwprgY8TMxJhArjaARAxJ7iAgtpwUoCmnA0sj9KKY/zD7bDVVc3r5SDJbD5rouCAAeBRQnK4KOfa+X9sRKrWm1tCUmXDPf+XYDLYaixLSDHNoIK++Ka4TEZCZMV6//ctByEtLFc2h15Bwrz5XgkmghwdBhpduD4JA9NwZned4AxFHMVPJUunUcSXGibF+Sg6jooVwX11X0HzV9ytXoQo7UCLrThvQEL8ARiKdIHc3WtIJeMYYSHmeq/qzZ1h2gV3+eHSrACLX+pxP7leOfZ9WB2aDVOisCx0JpDSsEs1aKdf56YSSlXc+et7TyU+jFY3ZuzvY/7+xhHP3Yi9nHI6eVmL3ooou44YYbVm376le/yoUXXriuv6zF8uMgkj6hhOzJWjJFDHGyvoX1RDg6R6G4A4WiNtNBwhgN+It/98ueQsKHY1HNvmjdRLNoLESM4Fd9/KPatNtt0oWFE38BAqQ+Tn0DkFnuxAlWLauv9a5cO6Yk7CKto0WCBiYW+4iYY9Hy5IaZxXSJY8QiHRlAEWTxy2/pvi1+GWvHQXkeZlGUauWzLMTirI2KfPzIA60p5hXxotXNKx7rC3jRQskgMrgBFExg6OoVAlxDklvvK/jYLFnZVBItX4cgy/6KI9JEmxBREY5fQFyfpsmOqRd60WSzHR/TQq9oGcVIPEVFugjQStzlfdn5DC2t0EoY1O6y4MnPdnC8TJy1vf7MmihgFu9N4KTkOllf2nPW+Dnmo2P7s2LC9U39bkBiYsySP8ciIoJ21xcpqRLwfHLOEaOMI0KR3uxKlCLuAsZQSbo0h/oxuQDXVZhOMTug0FrjpmkwVFnIZkobnNzah1IEuu0Cc7RoB3VGTHnZMqgQcskcAHV3cNX8iFb0IwQLHqx4aXMG8wTHEWOOo+iGSSZMguPM70qUIo9PhdUGLY1itwNxIUetJ7/uoalySeQghAdP7lyPIb0FzwrZ4/CYitlms8mDDz64/PuePXv4/ve/T39/P5s3b+bqq6/m0KFDXH/99QC86U1v4gMf+ABve9vbeOMb38gtt9zCP/zDP/CJT3zisboEyxMUkRSRI3/cB/ovQanH37ufMSch3AQO3nsn0WL0L7AcUHV0FPPiThrN7EuwXHpKtsx4suNBL2lOqtMOUSfByzm4viYIXOL6UX0dw4oqCN1wEpFjycpeAApDKSIRYoTIifBSDzjxi61yNPRNAZCi6DKAAFvCGfSi8DM6ph2sXgmKux3EGJRuY3QXpRd9WYO1FrqiEvoAzLEXBkVLFsEtsmz/E1F0O2esbmjA1R4KtU7gzNpzp3Ev9VJmldrqteguDqAAaCchKFYBWZ5+EZAkh7QFFg5ijJDms3lcukMKll8oVl3Detd11NapoEGy7BKhUDr7LImqYzB08NBikNglMV38JCQXdjCRgxi1/EUVuN4qUWYAJzV4poZ2wHdjuoun7vNYNjEOAV435tyaWRazqq0g1UR9o9SK57DkMNxsZM9cueyjFr0rnL7canOlQL6Zid9WSY7ycjBQW0ccuQEURzjcOoyabUByRKA7joPksvtadHKrnxfFmqXlVUvxIoTukrW5zWDkoo7y1y6r5jpiVrHgZ1bxp3RHcNrrf84Nwm6liNxZnp4mVHLespzFzXyO54tnrPk7IUaot+aX3pNwfJdypXfdcywfg2J/mL0gbu4roIo5onN2cKJ1AH28v1GOZvS4Rz/+6AkqnD+8OgbICtnj85h+O992220873nPW/59ybf1da97Hddddx0TExPs338kyGLbtm188Ytf5Hd/93f527/9W8bHx3n/+99v03JZHlHWcy1QykU9HL+qRxkR4eA9dxJ1ju1buESr+SCJaS0bitJqiIkNc40KkhzrT0AJgHnd4VSjWqJugummuK5CO6u/bOYLESEzCGt9V9dj3TCPwEdSQ5yEJMaAByqv8DwfNdB7UsM+VA3oxA7dxUCpSbfIkldgJlD6loVZaLok7mKAl9ckdVK0TtCOxuS8E5/POJj4iIVIlJDolDBNaaV5kiW3BoEeJxMJjcJcdn4NnsmtOUXmkeiuEo+p8ak7g0RJ1t+sHJG/ZSRzWaz30olTUgFH4sWldAVkFnmDYdLpRSch43PTqGNY9WOtV/vjAo6SZeFUIsBBUcplFrzkKD/BIm1QglK55WXYPJnVbwYH16zsW0G0TrAXBlHzdGM4YMaQxXlsHvVx3XSoyqH2yo3ZM95wezHh1JoXq071yGmlsfb6E6UJtWaueezPoHELR+5MFEH7AFHawVMJjn/US9ei9VnH8cP2i9RR9jmaF8FJVs+x0kJzHbEnCN0oG8N06q5aol/dDjragO5nTg3QobJKTCdugVawY/2BLS6Pl7Y/Be16i+GRx2cpxPtnzhrG9R5/BoSfBI5+/HzXnC48pk/Kc5/73OP6t1133XVrtl122WXccccdj+KoLE90jhfYJJKsEbKeW3nUhezJpJ5amdfz4D13ErVPLGQFQxi32B06RH5AsHkDSa6LMtA3c/xr0gQE7si6+9Ybr2nHq1JBiU5Jc4LnOzgrllATTxNUnDUr7etNgYNPu9NLlCZklrOsUbfdJI0NzB1iNnKpNscRA/0LU2hHU6+Pr/GROzrLowCznSM7dBxDt2e1Ac6rg4oBId+so9M0EwvKJ5WUNCqitUs3X1oOell3vhASZ9HVQyQTjwo8k6ARPMBTS8FXCj/O/p0LzbJIdhaDgFJn9cx11BG/RxZ7KDGJEUWgIvri2eVrclWWiGkT83iSZMvy9K8Zr0kVoraDB1u93Wv8VFfP5FqWmhcoZr6uuoNSCWd3ZY1oUkAX76hlfAUovDQz68VOdg+ORWaxFkQCBI2DECSrP+flJCV0Z+kWCsiilctoh25xGr3mSgSc438mI+XS1kLVqR5jUArR63zFamgrD0e7mFyelW9BRkN6Ch5zutnAM4aoVH44CymweO873oZjWjcNhmaSAhXq+TNIe46KT1HHksEZbr6Imys+nEHRW/BsrIvlYfHkfO2xPGl5OAFdS64Fj7aQDffWMO3jO1HeFoVUF5e/xRhaD2XLmNrzyW8+k1VmQRG6rXjRRdHQ0WOQh7xzFqV7Etwo60dVfHJas31737oRxMd6z5ycPkwYhWsa56J01V+UWKWYVAj6fJxNASy9RGjDqCSEUWatC/zzuGcmoRGtlUYxinp7gU67Q1yrouIEEYg7bUDwy/PE4kFD42kX02xlPrDRxKplz9iEGAHHhKgVF7Y5KaHFYUA1USbBOzosw18S0VCIQYyH0kFmtjUacEE5mHh9IbAUPGSWbKOi6aWGu07uIkeBpxbvpDoEIuTNbpZF3OItCle9jAntla8FR90zlRqcldMqqx0ARJzl5cuSqS4HHCVKUzQtBKGHeXCPL+xWunsqERQpSrXpS0dJgQl/ApRBZHWgEGT5UruqgNFZ4NZKgk4mtsLcPMdDkQnEWTf7XLh+ssZSbroNHCNMbiiT+Cs/0yv69o8Egp2ImpOj7gWUkjy9aWedFgLrhvmA4wiFoEiwtbJKw59sJP+qs4iQHKyhAHdz38NyCwIoeAU2V7Yct81msv2Xbrz0YVsN9SlYGe2SuuXhYsWs5UnDwwno8twKWj/6lgExckIhm4gsC9mjyW8+E3XUl0WnGRF2lqyPhmQxiMcLDWc3JFvC9DSSumjXJWrJqgo6qQh7FnbTTtZ+QYsItfmZdS4EBmrZfM33hNkSvYZut400U3p/MImbrl5kdGQBEGL2cF+rd1VfK39JwpSuKPxOFzeqoMXBX/Q3dLxMjBYTRcFLcBb/pPWZJKs8ZDIHBWMyUeHK0eJinkIaMmJqyxJm2UKlhDCS7KUgdkgWU0kZAozWeMEAuFAIfBQKRymK2lnuJ5dOs5TdtUuWrujecoVD7iB60WqcpajSRM7RASqC36jhJIOEuk26KH4NEOn1nwVfyhizWgRoIOcc2RavsJynuLSSAdLFx9xPNApFKmnmttAUYqfDdKeCXk+rLRIozciKJXOJW0yqOSJHqCZZ57lkfHEexlZHgQtI1MBFrU0kL6DamWU2CI9OdSaYbgQrrqdHKc4FlBICd73Vl76sLzNKatYxfzoeuH3HvtCjqDo+De0xoEPG0pNZQD+CMuAkQm7+xKsrJ9Eb5DOxmRs5N4ucfxgc1990BZWgQs631lLL4xMrZi1PSk4U0PWT9I9dqu6U29kL61gkbq+28Bb9H5/TX0IbYX96GICtTx9fpQHiKOXQvQukBSGVlMpwQL2VNegrDiH7snRbztYe0AqlFYcnDi1XybvbpMwuJMw21hf9YhqkcSa+Hc9Z9u0TAWcxmCRNs7xNIsJc3IOpK/xkbcp7nAgwoFzwsrRKg1JFrwpqU0he4wpoL4eWFsb3s6XrFFI3IE5BAk3iQNqTnSfqLSLhkgIT0jQChOJi6qmumy17mtgQxS1aiwKxoPL4QRejE8QYmotlrkynSIwm1QGwKcv+KNmCdncxF+RKP0eFYSDvsOQB2vQzUVaKIohCjFNghv4jgUNLmbEWf3SaEMQKqNBSzgktVY7R+Gl+2a7pOeniQn3mV6uCIEvTtXjvAs/FU9noAAJfGNQpoKgvPgtag9BgJwvscEdxjrKaposvWM5RIvRwoqmmKYEuECxF/BcgUAH93lqXBpqLQrA4vNqqKEKSBdtnGvMkrZbHa2aCAHXGmWtcUBaPPKn+l1habN+MYccp1OF6pI2PTm+FwubzH9lOV/Zv/Tgtj2OsmLU8KflJB3QZk671MxU4dO/dtB6cBsDrrPV3i40w2cxEWU5rJkqZOFCLTom1+u2kpnGkfTfh1jDlnu4cThH0zJEO88md5JLsG7RbXfTFFKHRaKGAcuswThoRVcu4i1bZgnvEYhjHMak5YklyFrMGLER5YtGQCsqsXt510hgH8Bb9PDtOfnm/dkChUWhSMXg6wYnWX5ZVGBwTg4JUt3GCaUgV2ijCJE8UF/CkCQjG17RSFxMtFhfI6eWA/4gSgiZSWe5TXCDvA8PoYoFCHKC8eeI0W45PdQjiYooDdI0i1pq8UYvOoopEpTTWSX6uETqLJ52jfzlIquCmBGnKeKtNhelVxyRasZDPIwo8E1FqTWAcmB3JhlmWIRSaxJg1pXIFzXJWYG1wV1pvlcBSEYJFw5pyj4xZOSmm0OFQwUEEqov+un2+wlE5drGFluqn0izgLBYWeIgDtDnysrCaHLAV4xY4y30GDg6tQZat0asHbmBuUfAOrnaXEYF4Kus7GM1evI5G5fPkdu48aaELrOMhfOq4SrGzEFByH3uhp5zHfgwWy2OFFbMWy6OIGOHQvXfT3DOFrOMTmq5QJY6kqBXLxPe3OrRWLKPuKHokScSe2l46aRcn7yOHq6v6i8OUH7QrmeHJtIjjCASC6X68zgPIUhLN+bnl8p6lxWO9okJcRcERtnX2kR/cz0ChH1CYVky30QGdiYx94U6SxSMHlxKyO4Jqz+JRQJssJ0A1csjplJ92DhOJT8MbX5oZKB6kkxpkTxHaIVqEYrVGT24O05PLJJIcaQ5ZkFS7QGb5TTQzJiBRdepek4rUM02TKqSVBYsFjWQ5uEdQNN0hEEW68kVGKRxHg5tlNU1VSIuEMA3Ih5m1Msk7iIIQTSF1IUlJvQTlnXiJ9nDQCyjy3QJ5o1hZQ0kjuItm2QgXL/IYTgoECfidLsZxqcRZxcKSKoOC+ETFFk6UxlcrvPSoIKyOgsyFmaWEQHkvs+36SlNZdLlJWQwIclLgOFWyFGxRRTaIgBev++wvU1qsnNZ/1lqL6VD2v83nDKDXE7NWwFksFqyYtTyJOJXKUKuOP0bGAWNS0qPzvQpE++uk7YjqQ4fW6429nX10JUT7PsWto3jDmqVu6q3d3CVH/NMKKqG/mqJjBx/w0ahOAgczQVnIbQI03Silv6NRGnbW72FrGKGThE7zSBEE40S04/2kK0SRdiDopsTaZyo8B7whxDdIOI5JwGuBG4fUQwOUmW9vXHEpQk4JO/yEYkchjkPXG0WUYsTP0izN1UaRnoMo5giMny1ZN/qzEpzNQTBZPH5BVenREKWl5SXnVHyWCmcahCDMBIzGYdAoVBwyaAICtdrmpsMIJ0mXA1AMoP3MCjjYbS8HO2U+C5AqhaAwyiFRmtR4eIu+uamXlcPMxKcQGNBaoQL3uIvTiQpoOutXJ4QVdkiTEBmhqzSetMmTghiMVvS6Pp6TY8DtQQzUFv1/K/lTKxRzMi6SrtZUCplYXeVT6QhJT8JclO073z9rnby3i02VznxvFXCMNssERXDXv55cwcV5kqZoslgsJ4f9C2F50lCr3X7Kxx4r48DE/vu5d/5u2ubEgRzlHVvwRo+kqCmwgwLQ7u6ha/Yyef8wJvJBhDjRjCxGQm/U8/Q153FX5I/UyqHPy2UKTXm4bgdJhG5kGMv1g4YdSRUHEHcIxwkRncB2l9sq51D/UW2Vj2cjmSVuRNlyrUDfdB3/UMR8t44S6A9d4thwuBCjnZiZxReDp6V78QnRQAtFSpYfte5ENHWWccB0m3jtGnlmcbyAis6CbNxcl76kiurN0UwDQq+An+8wi6Je0exzdmJEE0QlIrqY5VyoWXUfBw+dhuS7U+BkojLgSDUslVeLpVQhKVUAkDhLiN8qZwUIkrAFaUJksnKiK9HSg7cYPOXmBziSul4oAKU+D39o8Jj3O17sc2VSIsdVFAbX5otlfi/tJGHeaEpK2BwkuP0pTm8JvfPZOIVMEKdGuOm+zD3h6Wc9MqUt17yIcQyXAEDpLEBs/0QmZreNX/LI+FIep4/1LLIWi8WyEitmLU8KRFKSNLNOuk7pYfnLHivjgDGGdrtxXCGrXI2uBLiFHMHGnjX7C26OswqbiVLFfVP+4idSCBdLvvbmBtnub8bjIQDmk1lu60npSEDSgjQkSxOVNukoMIEijQ8AUOkcRomLmxugrs9BG0Pf1EZ2TghzE5nV1y8WQQmNMLPwhlEHSRNyTXBXLKG3+gxRnCAFjRP45MUDgbGwsxzIogwUY03iuDQGIkrKxQsmkeY8sy1FQ/fi5n3a808B0Ux5ezjDNIn9BFcinIKHl7ZBKeaHR1hQgEnQjSxAyJSyXKNaafJOnpgU0+wSmRlKJYekGOC6BdLFqCq1+J+kVCBdDMBKG2FmUd3Yh0LROdhFxKHePlJprMd18JwiY+UzAfByRfo2HEkKr5UiV3AZPuPY3peC8O2F5poKa+v5fQIwFUESQe9GcvkiPeVFq7zrQ3DkuTHGoBfzb3q54McWs7umd1ELTy7Dx0r04kuCdt1TSr1ksVgsjyRWzFqedFQqF5zysbmdfcthyMak+O0Szlyenp1buHjjs3GOEslL4uXoL3xJI0SEGye+z3808rRTxYCXOQhu29ZDq5mJWa/nHO5EMIEgRrjHz4JdTCSEAlEIygcEptFoD0zYIpem3Bdsx1MelVwfxVqE4/h0qwu0qwmugVwcMdDnZOUypY0g9JoOqBiXGsSgezeTGAEnQTxDjxczRQ9bvQAlwtZgJ46CznzMXDWiZRSiIOiEoAWvr42pphQSj4LnUOpsQBZ6ASGsB5QcnzitsLc5TjnwKA8OopTC7z2f0dZ0FtG+GKyUbzYpi8++9o8IzRG3ib7ZJtIq0Ny8gbn+M9fcs44Y6lGWJ8DpAEqRThcyK3SwAwT2jWxGlGZjb4ENnotSmkOLy/mZH2drdaddBXeenAgMSHGO64wApXoVnca0zCjtHMwtLAXCxWvPvUhmUT11MZtKekpCdolKULER7haL5XGBFbOWJx3HSkx+zCpcK7cvprNKTYrBZCmZlEK7Dr4XHPfLfamCV+Puj2Jak6QodlcHmJIeNA5BK8JHmA0btFqTmNgwq2cIq3OkSQIizEkRlKKPgJ2NGnE3xc+75Ho8ZsJM9PXEJVSiKZFHiwbqmE62Lzbd5XKhsYmZmkmJU0PL1DFGKKYOoOl3ewGhWSrgtQ7hmS4I+MZhph1i0pQCKW3VIOmZphs2cPIKB6j7LrGbifE4FLQpsjCxk1iXKAd9KAWJpOTcPL7yMZGHNr10Qs1D04ZOMaC6ZwrdmUSlgpAlsm/lE4SQgck95KIjltRZpVHdmIV6QNqZBGAkiVFAohSdwD/qD52gA7P8UpIGBYaDLKXXxnwepaBUux+dnlyp3eNRC3dTMicWjOniT9zucCA+cbWkku9w80T5xx7fEhePX7zmRexEWCFrsVgeL1gxa3lSIHL8wgQnU4VriV3Tu6h2FxBjqM3vWezfIJKuWzXLGMOttTYLSQomplNLgSGMQJyk4DqcpVwu7lZJp2bp6MM02gdIJcXQS2cxD22Cz4AewERQ1EVqZAFCbpIS1g05AyIKCbMgJccYZDG0PYvTP7L0ni8VUarKQkdIvZCJuExHORSUwhHFtFsmdVwi3QNUaQeanryHApx0Fi8tc7ZOMKpAXMzBYrBaXOkjKeYorQiuah70KPZtIy4UiIsuCsWhIKbotYmjeVrtHqrSgyghCHKgFSWpZwW2tMpcQlzBLbgIQsV1wMuTrzxl2ddSfJ/u1p2gNa6CnM6uN1GaklIUxbAtSbLx5wv427cv35+lJPOVgseFW/rBJPDA3YBzXF/OE5GK4b9qKUfyRZwAJ4Ch0ZOK0Hok/UgrQQXfOU5mAovFYnmcY8Ws5QmDyNpAFhGhVrt92V923eNOogoXgOQVscQcnr+dJG0hRui0ZwGodIWFBYVJVudJnZho0GzH3BotFQ0Q3EbWpuucS5IqjGhUrpcwbONWY3A0cZz54er8IKkyGN/D2/lU+rWm4BbY2LOBO1tdHFfh5GA4hdZ0hJsIo35WkSqozSNJiKmQ+Y56YAYyEbTlnGew+/b/YM/BJrXCDK4pM+x49HfGiUKhpnro1udJmlPEzSyPbTfpAwWmYxiSHAdyAyRicMIF/KhOOLWJudletNNG6xRvUdA6sU+ZQ4gjbC+AcWOGClUUhsHODJtyGl81cFyfnqGe5XsSHWrga8X407ejHYc99T10ohalMHPHuPg33oDnLfmWussW9zubXaZX5KvVSnFxpUjeyUTisdI5HfE/1VltWYAzf/YU0uFnKEnRh7M8vadi+fxJYS2sFovldMeKWcsTgmr1tpMqVeu5lbXBX4tuBCLpKp/Yleya/j71uI4cTEnSzIfxgsGzmJrJxMqm/m1M3/8fpO2F5WNEYHLep9tNafhZKqundA7iIBQ7IzSiCaIkIZ8r0FRT3NOuUopnmI4PU9/YD45iqGdTlhpJafIFH4UhUSF704eYGukwPnc/25OU/IxCzVRIKjDbBceJyMXZONsywf2NXpqJB1OC47ik93+Pkdrd+GHEkIKCCz2qwNDkAjpOaesBunFnOdAnrwsEuQjcEBPEaAVxAmGrhVn072x3pnGjAKUjFMLKWRagqDrkOwal5IitUjyUiXB8j2KxzMD8zKokTkop3OmprFJW7TB5EbR2KBbLlNwUFU5lDVd6BLQSnEQY9BRlrRh0FeV29YTPxpHBHsmJumt6F7X42C9CJ4ujHCsaLRaL5VHCilnL45b1LK3rt0tOKGRdp0RPz3lo7a7qN3MviKnHPyQ1LfyF0hoxm4rh4Pzdq7aVnTwj/ZfSKf0AgFLpHCbjW8E9sqTcWujSaad02yleX4DW0KPzOKLwVT9trfHdCKckJGkXpeeJoyr4bdSwi+eVKFSyj6gXeGyUe3A7i8IqgfRQpuBUEJAmQpoa0lTQ7kPEUYSXDiEG4mgz1XYFoiZRO6Db7pKYOv2OkIpPx/i0DNQR4pbghAaHySwwDIXr5nAcD9OtZqeWLCesqndRxHgmxqQa1w0J/Jg8Bs/1cJa9c6FphEgr8Jezuy6i6GqfNDDUqeFJsqqYk/ZzeMkEAL2FLEfs2ZvOw3d9OHQba6tPAZEHRjPqxYw7J6ogcGxSEWph/RilT08eGyhlsVgsjy5WzFoel5yspfVoBvovQam1j3Wttov5hW+v3miEaOGI1U0F+khQ0ArrXGqO/PvCwbOZ2z2BiTz+c9/naMVt2tUWd959KyMzKY545EtnELZTmmFIEcgj7CcPrqBambtBJIpCe445dZBqXx+lfMqOdhuvcBaJeTp59TQcPKSaibXW/CxMt0lMlg5KBHoXq4M96DeYxUcM6L0zuJ0akGKSBZRRNPUwB70QZQybwsPkkxqOF9Kbm0YB93U3IWg6GqJ2mVK7TVhwMKTEQYfUSdnk11FdqOsGtU5W0EAFvXjakPNbRDmXek/mzzBGSu8Z51LMb16cZmH/bDbP+aHSmgB8URpnLnOrcAaLqwL0lFKrlvnLfplc33acYh5T/+HixjFWYjpgUkgDSE+trgAAab4XWvuBH89NwApZi8VieXSxYtbyuEMkPSUh67kVtA7WbDcmPGF//oYirt9DpXIBu6Z2UevUV+zVlPPnAhDPnE1tX0IwbfAaDQaSAqXUp2KqQAGNJmyk7PY9qm728QqMS10KkBhm2v7yMnqkDfNumVLVgApI5lt00wp4Ae2DbRphTGrIlr07dUqLqaLmk1FSA5EIgtBYLDtqMATtAEkHUSYLbDJBC0e10U4JmMDThyBWKBXhBAukcYGu28YRQ8WJKBUE3zekPZrEd8mpHhwgCASDh6MT8rqAJx7jcQWlHeJCBeV71Hb+NEprnu8sUB4vsBQNlwhESZb0f6PTIIqPyNO2KOZTTbmY+coO9PYdM9sEwP2tvfxo6sHVG/VqxVpPUiIxtN2AfufH+BPXOvIMWDcBi8Viefxixazlcc2xLK3rsV4hhKMtvCv7k8TQncl8XHOD/WjHZe/evRz60T7UijiupTK4vvJ5aPdN1Gb30ZtUcLxsGb3i+ngKBvCQ8hCN4hkcJqIhDbSj8VTAbFEDCZNebtmXNDBzFFDowKMPlyHXZ64VY/Jt+voOoxaLBSACKgs0i3sGuUuXqaaTpGT7e7WLwjDib2f7viZuYwjTW8DVQiIp/vAcSTePdjfz9EKeNNUUSz7jbg3X66PH3U6n3mC85KCnFmC+TqpTZKAHZ3AQlGKh2yaKu2h/E/W6ECeKyZUTncuDCkDgdlNAHTjamSCbxyhKV0XiTyYODcnkveu7yGIxhvUwYtgbdVlVGtXNQxyv2/6RCvi3bgIWi8Xy+MaKWcvjGqXch1WtayXGrPalXWm5XUrFZdJM8SQRCDGNWhO6ggDjxQ3MdKYJ0yynab3dhGqWU7WiDb5uUvdnwMsjnjCnhmhsfgaJ0jTqQhLnuGQkRzVo0NUebrrAxbkSPaWdKFHoiQYon8koITbCgXwOMyBAgDMGs4tDHw7noS9LnSR9PWytGqa6bcLhNjkNA84keQ1POXAvQU8PYTRD7OXwK3lq7ZS5uEY3KUHiUNe9DDFL4b7DNJwCiknyJR/VauHmFcWePlTfAEkaoit9+OMbEQW12cP4qo/KwGYOTJi1qfq1hjSkiKHZbBA7BcgvukSQzWfRdzBDWzDA9m1b0Voz1+jgJikjgUfRPf59TiVlfjLzEz5v+FlZIQrHh3Usub5SbMr56ONYeU8WK2QtFovl8Y0Vs5bTjpMJDBMRqtXvLf/e3/tstA6ywghGiFshjfku7XoEgYOIwaQpMxN1WvUQpRQLQcJBqWEW/WdH0t0UOcC9+TJefhh6e3ig18d3SigUslChVZ1ZPmeoO3w3aUK5hAb6gwqdmWlkYW/mOjA/hxHDwdw4ojRT83WSJEFcQ9KIAAfEMN0URHnguqTVFu7k9+iZfRDPzDAQ5nDyDZTAdLVL2RmDSpPd3QJxq0gSOzTxKXhzpMkQenAApzZN6AzjF/pI3AJhaTtxMoVXdKhs3pEVG2g0cCq9lM69BKM1d939HZCYS0Y24CyaTi/Z1oN7lPlTifDg3kOQKwOKjjE80OpigLaCH3Vi3FyOQx0DGNAeyvfYUC4w5K91cM2qXC3+W1ImG1lBgbN6+63ItFgsFgtgxazlNONhB4algswpoukWS2VBf9D4EfW0QbMeEpdclNaU9zo4kWLvwl6iRhff8TDG4E4ukEYRRaeIX5+kkTq0ci69sZCGDm020RJFK2ySCxPoTtKodDAKCiRoFRDETQLHoyAteuU+nMN3YtoR80nCQiemmZ8BFGPdNppFQ+N8NnxPg2lEpMbBLZQIowa56hydeg2JOnRTB1wFSpC4F+MHxKWUmTgHsSCuh3I9JCgxPtxHT0+AzyBKK+r959I953yaBx5Eih53AT192xCgO78bZhJy988gSvGjSQPGoMVB5zP/1qB3eDk36531FrU4RYxh1gTQjhjcvIWWCL1Dq2+JOio7QKA15XVyv+6a3vVjlVu1WCwWy5MDK2YtjztWVutaaYU9mRRcK4mnWug4T9F9GqlKaTciut2Iic4sIkIiWaS9RAmmA4kYpGVIU5BWnbST4IRN5nNFGi5Mx71EnQCVVMAdZCgcQDUVIlWS8DALXZc4dWiWhdT1aCF0GhFBJ2ZHa46mMdzebBMcilB+noZyiXWBepjDA0QFuA5sGx9CLYrEqdYBZlo+h1SBbuyBKjFEjO8aqoU+HHeEYHAe5aZg8kypPFHg09Qpre4oo26CU+pla/4htuYeyCamP3NLDUd8WLgPs5BF7CvPIbx3FhMeSdpqJmJEKcxiWgAjKUhKb8EDDKmBB/fu40ez82vmv2GSZeG6IefzlMXUWuuhlKyxwh5LyFofVovFYrGsxIpZy+OKlZbXVvNBRAxqnfKeJwoMk8TQnJzlR927aZnvgauZ62a+r61uGxMnjDTzmINt7omaJPHicrlAZKDSO0Y7COh02+iwSU8eDo+OsRAVCfODhH4PtVIv3RJ0WzXq3UHmwzy+56EKEQEwr3JESuObBKMcBlpTjNZSQu0wr/p4aPNOCl2XsSjFDzS1KEYhtOdChJRuJ2TeiYjzAXOJxtNzAASlDo4SpntGGOrdRHmrYrgQk9dDmPmsWpefF8a9Js8cUujBEs6kgGRi0ggkXoGdgw7GpOxrptybTlIc6SE6fJCm52IUaD/AK0QYIPRc0C7NskE7Hm2Bw3uzSl0LB+eZjbMXkNEgE71u4BK3s/uogJmOZq56av6rR6fFskLWYrFYLCuxYtbyuEAkXW15FZMl7V9HyB4rBdcS4d4au6Z2UU8zYeeNF3motof56RYytYBqd/C0z7zfi3GEuTQllzioQHBaLUgh8jrEEbQGAhQKx/RQlJC8LtBwewn6DS1VpZnvIslBHF8RNsv0V0Y5s9+joISWKLSkaJWVNh2bmiE3K8w6GpPzuXjjfkrzTfJhG5Mk4MO+dp7pNMQgkMuqaGnX43mHG+QCw/Z8g6ACC6TE/bDl3DLSlwfyjJV/Hl28F4D8pc/F9X3QDpiUcN9e0labW/su5PvxPjpRB1r7EZMS1qYBRZAvUis/hSoKZ3AIvdIdIAAU7A1TtFrhs2yEZFHIeqMVNvVkPq3qEUolUAkq+I7/iPRlsVgslicmVsxaHnPW84Pt778EFoXsSitsalKUckiSZE0/AGmS0G40qS72p32HnJtja2kLg57Qkj3E5TpKaUr9JVrtmHahgopcLk4FJ9yP+JpaUmOPCUjTGCfwWBgYoBTNQzfgrGqNDX6X1EtpeC32dzp0E5eLNg2zo38bl+0cxNFwx53fxI2bnFvw+VFrH7XhmNqDTcLSBuobXc5t3od/OCJsVVG0aaYuJuylH0E7MejMqulrFz9fJvBjpCx0HIXvC3o4AvcATlPhkMfr3odCoQNwPTdzvhWDJBFRq4kBZpTQoQtKES3MYqJoee4CnWdDbieFIE9hZAz/qEwA3uwUG6J18mb1bwDgqVt3sq2YP5VH4JhYK6zFYrFYToQVs5bHlPUKJGSW18waZ4zBiAKEXdO7aMUtchOgu0faGzEIwoPd3XSkCwJxAwpJga3OFuI9EZ5oKonBqTu08SkNb2TIGcb0KB6ar4EHxUhxd0Fo+C6tskej0WIkCil6Pqql8dMcg3qaQJVZMCEqBplVjBmDcgx93QaVue+jH1IkIqioTX7hQUw1wm0epBgv4KXzlKNpglbA4NQs+WYB0/BJHYi10Jt0ABhWMQVVyFJgpYLWdZycS7jFQxCShTalZIYhiTLLsc4TqFsBULpEfH8m9gVhV30PC8khBNg7cBYLyQjjvsumyrnoxeV7P1dgaNNWusaQKMX2Qo4dhSPWb2MMe8PGMe9jPp9nc7l0zP0Wi8VisTxaWDFredywZIFVysGYhN3V3bTjFnSdI+4GZrWQfaC7m5ZpHdmQGiQGiaGY5FAo6rP7iaMuyfwhQpMSOob7cyXcsItSilxXUcCjdz7GHypQKrkkeZ9Wo8Gg53JRIcfBaUWu2yVfjJntK9M7vpRD1XDXtGIiqTHaOohuK749JyCG2ShkZ2uCO5oa6XiYyKEkG8kfbpI/qGlQJjQuUXkIU3ZJvAI6cOjJac4YzON6RYJgFFAgQqM+SxzEIIZ47iAK6JrNWWlZUbQWV//vak1Tnzl4ZE5ESGpVUiegee8e2kZT94v4QSZkK8OjxEY4vG/P8iHzuQDlr//nYceOHatdEGDN7xaLxWKx/KSwYtbyE+foDAVLrCyQsFC9NROyAAaWsvQXnTxn923FiMHdXqY2daT6U893Jgjq0McAhxsTJDQoOwLdeUCg2EcnSZl0S2xQRYo4IJDEir6wSqnbgHqZfKQ5a2qGTqeO6/Uzj8O+UU2u3UIP12gMGnw3ZcdQETGGZixUdA8TapxwcoGcmUariO3d/SgT4XcM+5xtGHeMfJjQl1SRxapXjlLUOAfjpkwNnos7WOSntvcRb+4lwaELTO1+gG67QXcBZGHRLaCU5bsKhs5ArViKN2J4sPmjo+bb4DT62MJGenQJ47oMBx4btcEL8vSVC6vaO3DMAgb5fB7XtX82LBaLxfL4wX4rWR5RxByjFuki1drtJHH12McqQSQlDOtgID87wDkD56AW1axGc/9Dd9I2HfR8QLV5GICNwSjF6RxRO2GGKpHxMLjMpjUSbYgSQZeKqIKHN7KDUrHE6GA/O/MBc/trTE7cx31OhTk3RTtCvp7gJQnGCAvNBXLuAvgpG/sLfLsZU++G3DfZIDWGmYUYESjFu3lqS+jpOYQSw6ZkmqAdUlBlyqpK2pNHdVL8usEoQ3eon8Ar0tMtM6sS8CJUHNOdavCd6QOLc2KYnZliAk1EDlUq4/cOZnORC/CGR1fNoZGUwyorNDvaez5KOYgREg5zWATXUwRKsf0pO3neQCWrovUwsBZYi8VisTzesGLW8oixVCL2WIiktMOD6+5zdQ/hbA1BeGDhAcLWYYpUILcBM9OFxcCjWAxt01nsEFQqFA7NE2hBUUAQFrb1EIYh+cCn3OnFaGFCLVAsKkwas1sdJi8eGxv3sbchtOtdbvAr9PizhB2Ddg1z4zM4aULf9DiOV6HQETztIHsr9MZjjKoDHO5EdA1sNAkisDFpo5WQ15p27KImN1Kan2Mu2gyOz3xPH6QJORRGCe3CKIOehuICnl8gKGpKLswoTWNRvItANzU4GPqGx9D5PN74+JpMD7JYpSyanqI43wQgCCfRSoOBeLEymTc6Ql477CyXcN21FbcsFovFYjndsGLW8oggRo4rZI+mN/hpFEesgkvuBQ9WHyRMjzjFFpwCKlG4G7KUT6mkNOsJytcM7Z5hexVw+tlY3oiuaGp1Icq7qMICWhtCU2OPwHTvKFQn6XE9gk4X0wmZa8ygRLh7NqTRG+GYBTS9eI2IoKtw8Cm2HNK4n3zRoGWKqFXHC2fwC9MM6OKS9wNCyvYeHzBsPHszTmroO/QQpB16nAbNShEvnsJxNEMbAlTOp/+5Z7M7TDFAefyZDKAoew6tNBOm9YnDxK0WXT87S19vkbPKRVS8OhArfGg3pp25ZBgR7otnATirVUAflZEgN1ChVCqx+TgFDCwWi8ViOZ2wYtbyyLDCvSC3sw/0kmVxtX+sP59FvOcHhpYF7BKpSZk/1CU1CX63zfbeHQz1n0f0YB2DIXdmH6kyeIdLSJJids2gFHiOj1csEuzYwcEf3kcat9EBNGuG5mSDg56LcQw5AY1izt9OYCAY3U5jZj9poYtbKON0Q86dnGHer3DIDGC0T1eNEBiHPt8jSQN0yTBASMRhnG4Rp9vL0/wqU3EA3V7cYgFfReSr+0AMQT5HMJwn3rSVwlx2vWpIyG8YZrpvO83ph5avX2tFXmtaqUHEMDpziCTsQjETnqPlAvqo/K1iDLRbrFz8d7WiXHbZnuvHWWG9dXorFM4+27oKWCwWi+UJhRWzlh+bNe4FWqG0Wjd/7JLIVVqhjrIaGjHsru9GOvextTTC/dV7uS/0SGptALyJEgqFSgWSIyL5zF9+KX6hSKvR4dDt00TtGNfPUewbImnVySc1lNfkp13Y1J+n1buREE1jvMTMQy61AwcYUILONWm1I4oDCW5zmnwQsDF/No4WCiNd7pkLaScunjtA0qkz4uTx/AG0W8GXGAwUOxGTdx0m163jGBfXr+AMDFIdO4NGNE1fXqFGhJgOEz/6LlXRDGpDxZlAaU1OK+YbbTCC32mjUYwNDpIv97DhjDPWzL2kKfVDhwAoXnwRRkNt6rsA9IxfsipPq3JszlaLxWKxPPGwYtbyY3G0e4EuuCitMCZZK2QXcZxyZshdtNrKYg7ZRtSgFTcoSQQo0PlVfqG5CQgemER1uriOR2QMAhiluOMbu5jcM8ehWg0/nqHSn6cVH2S343CgMsDghhEWcoaFoEjYATAsHDqIxF3Cbpter0WStnGUQhkIOiVynSI7Bg+AVgyXa7TCzKqc8+DBTkIYanqLAbGKMMqhEE3gmwgnXsB0BKUcWmkO006zimYmQqkcKzW8SQ2+H1DSCiMp7fv3EHYTwBDPTBA4mpFcAacT0Z7+9pq5/GG4m/piarLcjEbp7Acy8aps0QGLxWKxPMGxYtbyiJHb2YdyMyFVq92ebRRDf/8lyy4Fu6a/T73dhMaNa44Xk6Iw5JyApw48lcGB5xLva2IqKWIEJULoCZPRJPfUZumaFONrvv3t7zAxWSOWBFMuklOG4YEeDvoFWtV5SAzTHfiRs4n4nvtR7d30hFX6p6YwkRAnPsOBZt7XlMwgZ/hnkps/iCSG+9oBqU554L4ckKBw2dSzh6FGF+hSciscDhJaJmLYtBhxHNKkDRKjBkaJ5xUMbIDhMcrzbQZ78my55Dlo1+OBL3yJZqtDd7bGvXu+Q2vRA3fpQzmaz2Xiep2SvgCpmGUhq4vFZRELWRlYWz3LYrFYLE8GrJi1nDIiKSKy7BcryoAIIglJ2qTVfBAhXS5La4yhvnDXMfub78zxlFwfWo2ilcZRDkkIjnJQeY3pJhgx3NwTcv/gGMRNVJiSO7QXT4TZoIApFonyZUoDJfp6NtK49wGk22V0/zxnzD1Amk5T6kzRQ5Nqu8h0WmA6GME1VRoolCrz0PQC9XZIrDUjTojWQJJF/hccTbIwi2lHKDxUcwp0h2IcUexOIZ5muugi+Ejo0920HQkD6p0CqtLDfuBQrYvQZrLdRZQmVYq20svBZMr36N2wgWIxR65UpuespyzPUWqOuFekkpKbyI569sZLcFb4IFsha7FYLJYnC1bMWk6JZX9YI0RhlgrKnyst+8QihtS0KJfPXff4s/ufkqWNWsSI4d75ewAI3ByB34cSneWeNSnBtj7uvu02OvUDTJUV+MKAk2dTX452rUpOEsbTCOjFJ6A5ExFVZ+mfqzMyPcNG10doolOf2B+mPbSNeFKTdn36i0VitUCAy4xXJXV6qYuBnCY6bwcqnWZjJSvOoJRienaIdq1Kqa2oNaeJux2UBzXHo6uEWtkFpYkbBdJqlal8mcMHJ6HbQTsG7857EYFwMZtDz3NewEAuC/J6Tl8Rz3VxFn0RVuaB3TW9i1q42nVjyRrrKMcKWIvFYrE8KbFi1vKwSdKIMFrIcpuKYBYts6lJQJbsiwal8ogo+vouRimHVFJoZ4JrsP/ZONohFVk8NsW0PcQI541fhBzsMn/7Pph7EJIWu++NeLAxAdUmDUr4nuFCbTgLw0POFop9cE/vVqrTIRf3FVhoTJEkCbsX01vRP0jggtfnoNwys4mDiBA6MWHQYcTxMQmoXA8VJUia4vZFbBqr4jk+4ANQn5mlHXVw6aL7i7SjFON6LIwMI0WXATeHVFLqnSppZxDQlLXmLPZAnkV/2T4E6IRt/MCjv1BAlNDrOgReZgFeyg2xZIlNJV0jZJewLgUWi8VieTJjxazlYbFrehfV7gKy8DUwIXibKc71AtAK9rEyR5RSGrp3QddBKU1uAnKdrEG7WeOOJKa5JGbThP1TCjFQfXA/C506iYkhboKG+XpIO84hPQE9nsZ3i2zpFX6QDnAPHl4robesMGJQAnXfMDu1n4ZJKcgUBVXlcGGS0G2AyUOqGWILvY5wuHeW4pjL3AM5imaM/kqOeCHCJaKIwjGgVBFPPxVz73/gdyKMqpEvtehqxZS/jf4d51Pc2KbXi+iTlMNTD6G8jcsuFiVleJYXofJ9sPlZGJOy9/tZgFY1fYhG3KCrFN9qnvgeXDx+sXUpsFgsFotlEStmLSdNajLroIjJhCwACrWoYJXSoI46yCkiaEwKd3cc2igCJ8dMlBVGEODw9H6iOAKg2e0wFc2ilEYp0CUXnU/BBCRORN7T9PaNM7plC5GjuXvPArX2HG6cMjVzN04z4vZGyLTXhtYMNTVFNzdLezhHzvMwoaGbOgzNj2FE0WsCTJhjqJripKM0Ak3SblNsHaJIiH9vilKg0Ii5h/72XjpKEVZ6KJR87l/oRzuG4Z4mfbU7GXIMKTDp9ILjcOlZz8J1vGW3AZaEp2gcxyEVQyNqnXTu10pQwXf8U76HFovFYrE80bBi1nJKbCxvRKHZvOmNxGR5YIOdvaijkvrfVu+yEKcgwmA5MzseKs3yQLIfgJwStpeqiECaGvY2I/r7+zEmobe9l0LYJZmPcA8L1bjDgfENhEkf++7fzRccRawVJknZ1GhS8ULySlEDdD7BVNsMdxSVwijFRkpULOPLRoaczYT5PnQpRy3psFD0mdk9S1xXFF2XzRta1EpNTCFHz6CzXEVLEkHqCsf1SM9/Knt1iXKzzIPNGZoCHeNw2DjgPRU8j9bkPAfju9BHC/xjcLTFdT2sFdZisVgsltVYMWs5adIV1bwUGq0VrvIwOnuMXMdfJWZTEeppB0dngVxKaYrAGV4VFSw1MtwzlxLWIsaGxxkY0NQe/A6FuEGneZCFTkKqfRacEUKpEMwmNMMZSOrUB0uQKFRaoB4p+lpTxGlErxg8p4FruhTjDj26SC5OqcUlXLdIJ3JI45QhP6G1YwMb7j6MikpsGArwXXCczDe1uHEjIz93FY7r0d61i2RunvncYepuxIHWFDPOAsMqoezWcJIyDGwDNJQvQESRq955QiGbK5bROrNy2yAui8VisVgePlbMWk6K9SLpzZyi26milXfC4y/rL5PMJOypPcR/mrtAw4Z4A3E3plFdQKE5MDuP1IVgOsJ1cyTxCKlJSVQZV1z6VUCqOhTyC9BVhK5B5QtsUXVy7r8zMJtHmZjetIoyAhLhOpDL9ZIf9QjGRvHYQNzopTp1iFaPohsmlGZmwBnAqfQy+jNn0GmU6foNckN9YBQSp5gHb0d1axxKZqimHvvDJnkEk4aMBx5oxbnlAjl/gErvAMak7D+UZSjYeO4z0M76bgSiYPfh2R//BlksFovF8iTFilnLCVnylV2iEvSgYoVEQCHbtlT5a/3jDUoMIimtuAUBiAhRO6Y53yRpZv6zI8Nl3FKedL6Bm7SpDIwQhYZOMIanIzpdaKQL1PU0MuTgDCnKwymD+/8Tqofx4nE8FNuHFOJ4HEpHaXslqm5K0i7i3dOh6BgUVaBI1+QoLijK9XkcJ6XQKxQnuszf8l8k8WFaE5NM3z2LoxUy9xCJEpKdFVw0rf6f4QA+bZ1yVpAifonBgQtwtQtiMjEN3NN6gH2TJ+8Ta7FYLBaL5eFhxazlhKx0L7h4/GJcBbubR0qrLlX+MsZk7ZfTSQkPzD9AO27j1CPa+6aJTIQUhc3udhZm6zTrXYxafAzFIQwNxoAT7OGBimIu1tCokdfCRF/vYm7WAE/l6JWUQruLN10n7g4hyQCV/Ajt0REaQcDs7MEsHs3pRXcF1dF0JAAx6LgLhxegfpDZhsLVNSarPjftmqMd5tmhhaZAWyCZm0VaEc5QHR0O0g1yDEoJFcaMA422Q9GNOfCD7x81b4ZG2lrS+8fFpteyWCwWi+XUsGLWclyOdi/IApTS1Y20Yv/+/XQ6HXbXdmfWVyA1wp3tLDiMZJaBhUzWaU/z0NQcjeoCiEDORxXyVAMfY1y6eKRSJKc0qV/BlwNEqVA1ZcSElF1FxfQy1pwm16qyeW6BavdMvGKF5KznsG9DH52De2moGqDoCTTaK1AcOAelNLFZQB96AG9uipmWS5gakrzPfLGA6T3EJvc+UpVQGAkIeyZJkxQok6geKI0Su2W046J0AmjOLeXx1rFKG0nxcwW01icM7rJC1mKxWCyWU8OKWcsxWetekFkP0zRZ1c4YQ6fTwRizLGRX7U8MfekQJePi4nKGu4nvhwdB5tGewyb66ZOAOPLpxG2aLYNHgXKPT8fNMZAYeoxwiwoIwjl+auJ+irKTkgKTm2M+eDra8+gUKtTiHzE/Wc2e7D6hMKzo7z2HnvkAHU8Tz1RpL9xPcc9ejCha0k+rWCQeMGwr7YE0YlsuYku+hT9Y4nuhkGqNdl2CsY1I35l0/GcwHcaUHYdyIWDHQPlI6q1FspeAFgN6E2CDuywWi8ViebSwYtYCHHENWLXtKPcCT2UVuqrV24+UqDqK/g39KKW4aPwiUiPsv/9WWvWQn/HPot4+QJzGJF3wcj2QeJw70KD3YINoQZju+IgYhhf205fsIW9yTOthYmmjvRjjjuGSUlIaX+eIEebiDTT8fnKBTycFr1BjRDkEnUkCN2XEH2H7gb1093UhNcQzM5j2FCYModLL7vKZdIMCzx2apXdzG41PudpLMX8Btz/9l2nfczcAhac8HeV5oBxUnKBUCkrR53t4jrtqDlNJacTNZT9Z60JgsVgsFsujhxWzlnUzFRxNur9F2jGIJHTCSaSj0CqHOmrpXCkFCI7ShAfq+DOCaQhIFaNjuu0pkoaiPrOHgJh0do4o6ueBUh8P9o6RxAljvianekhKLl3JkyqHkmvoVAbx24aIDaTBuaRdw3R+mtQNyHnbSRb2UGpsZftwDxt6z4I4Jv7RARr79pB2HSSOUQVBeX0E2zbQKI3jj59PvPebNHoP4ZXG0ZKSC7dTdTRT994D2iXQiucND+A42bVOhDEVt02/5/Ks3tJx5/Di8YttkQOLxWKxWB5FrJh9ErLSCptKekIhW/F6oJEFd9XjHy5vL+gz0PnVWQyaew+RdkL2TOX4+n33MT2/D4lSvhaGKA1iBNfvUACUApcicbVDNb8RegLa9Q6p7tAhwIyM0SkMofyATrkXmlCZjtg4Pk4zzVOfr9GVXlDg9Q8wWL0H3awxvmknjvaI6zVMbhjjN0hrM3gbN6JLCl0o4G/dhslvwdRilGqAgsLCHnyjwdmAWWF5fsbwEL7rHpk3SVEYFIbUpMecQ1uty2KxWCyWRx8rZp9kHM8Ke6wgJY2mOz+PSIozBpoSUTvAKWq8gdJyFgMxhqTdpVULOVirMt2oY1oaxNDo+sSiMElCSoWoUMHDJY76EdPhgBkgCVOe2Zjnws4UOsjRcMbxTYONqU93/zS1VpW+zgxJO09+rELdd1CRUCv30BotED/Qwe1GTO85ABOHkW4MbglyReJBn2pxGEZH0Y4DDc2dM7dRad3DRplB6i1qYy9Ce1lu2DjopTx2AQAbhnpXzdt8nLCvE1J2HNqN3DHn0LoWWCwWi8Xy6GPF7JOIowO6VnI8K6IkZulfoBRKQal0BpOTNebnH0SpIzlUk9SwrwMPjowxldZxQ83GdoNu7qfooCgTo7QmHyi0VjQF3NYM2lWY3l56OpM4jCJ+jp5aVoxhVmYAcJGlISBAojRNtlNOOmzu7meuvoA3OUVa3YDSHuJ4IAYcB1PK0UXheR5GKRIT0UyaDNGirVPQOXB9Yr9EdewCakZRD0PKjuauep07qzPL1xgaw3pYS6zFYrFYLD95rJh9knK0FfZYVsRwbw3TzrIX1OMf4mSZWzEGut0Ef0Xxr+9Nz7L3wAJRO6Yb3ktRJhADmpRuMaWROpzbn+PCEY+tz70Q7WgkTanfdBPfdgJme4qc0Q7xOi6zoU/Y9ghaD+GYDmhQeRd6ckzmYN/CDNMLbXSzilYdpicnCCcmkGaXyJ8jNIY4CGiNjREXPcRzidMf4Kp7mMvHtCXiQBzQNDP0F3rY17OTC4b7cB0PL7yLyWaH2AgNlaWjXeKswWehF+dq2Pd4RvlIFllribVYLBaL5SePFbNPUk4mVZQYWRayIinG6+DoIo4uYmQxl2xi2LJxK6kYuP92gnaVNIRB7zAmnSDoVqj4Hr0bfXTToHqhvLmHgqdBhPb374D77iUt9dEMfKjVAY0xUBxzGXcGUErRnJ9jptZkaqbDFE3mPQ9nZgq3XkZMwqyZob8dYWJo5HK0RkeJKxUMS1bUBJWLSfHoSARotALBBeWSLxTx3dVWVa1g0PNwFl2CS36FM0vl5X2jgWcFrMVisVgsjzFWzD6BOTrd1spUWw+X3M4+vFoRUkNP5RnMzX4bk6TMHqgTxFXSOOKHC/fgJiEF0yZXSkmAvOSRuJfORJVhpTirdYD8vYeY+VR3ue9Wq83kyHZ0pUQcCaAQR2O0AqXYtGMje4fPIf7OXRC2kLBIr3HA2YrXX6JsmlSShKQ7S1x2iIaGOKuU54FgknCkF1CkYkjE42ADSr0Xo5Xmis3nMTJ5C+du6ME/+wpYIUyT+TqJCBdXShRd6wNrsVgsFsvjFStmn4CICLdN3bZuAYNT7lNB+NBDmFYLV4S23El3OsTMd5m+8w7CtI2fTKJNjjjyeWiujO/GVJoFers9+DKDVkLJn6fpHiLtjRFAMDRKKfHGzSRuQrdVxtEuB+cN5mCHjlNnJp1nd0NoH4iJipso+C4a6IlCTNRkuMdlWzjP/HgBGRrGHR3GPWM7SfsuHGB/PaUdpyQmwHFdXKUpuBXyOqC3EJD3/EzIrhCrWjloBEfbYgcWi8VisTyesWL2CciJhOypJPGvLtyKabWYa7WZ6c4xV5sjiSJmZqrQnsfLO+i8QgmM+VvwzDbK0ws43RImbhN2Q8aHS8AIC/0tFvw+2qNjtLod7lclmnGEEkU1UCyEDjP5Dhih6GiiJGW2ExJI5qDb2LQDN+eQj+YptSYYi2ZwEhelXNToIDt+8ZXgwKHDEcYY3GkNacjAQoqftOiLI84eiIAf4QyXl68xNsK+bkhshFSOURXCYrFYLBbL4worZp9gpCZdFrJ5N88FIxegWF1q9WSFrKQpYgwiKUlcRwSSxKVbKtOsOUSJw3yQ4vcOIp5DmBPacYFSuIP+nlGkqdjSY0iTHBW/zljZJ6osgDtI5ARE/rOpNWvUXIjjOl6S0kh8jN9lzNxEuZRn4zln4jywD5k3VIsuTm+Ol/3SUykELs1/+zCO0+HBjYqpyQ3ML8zRHO8wM/lfaKVRGB6cqjEgOVzgGQNdcMrofJl6uuhLm4Lk+4hjw4Ful/l4daneo8vUWiwWi8VieXxhxewTmAtGLsDVp3aL23fcQbJQI5lRCIZw6B4AnHgzsY4oBcBcG4k8JnVATo/SEzcJI4VfreF0NSYxdHRC79OGGOhLOeOp51L1hklF+MHhkJnUZbSYILNNcm7Apuo8AT0MdMGPmnSrMeHd96H2LSD0U3Eg6C2RyweQxpB0iRCqWuNrjdOdwVvoYoIm3XCSNO2Sr3mMuUPkXEVp2znc3YqZHfppRK2YF+1Ao73q+rflA8quQ87RWCwWi8ViefxixewThKVgr5VBXkdbZE8WSVPS6pF8tILBiCAI5PNU63XiluBTIC4WaBf66HECoIW4EMc5Njsdak5IPXDZOO5QUh6e76Adh+8emGDvwg6EWcLqLJK4xMkC1PfghH3EzYhmZxbxAiaTUUyxgq7GNMc3Udrex7fvuQ9JUsKuhxHDRKdEsT3LRunBczZR0SNo1cQ4JWKjmI5itvQVuLsVE+d6ESeg5Di460yPoxRnFAIqnv1oWCwWi8VyOmC/sZ8AHK+q14+DIBwYdemamNagIMDUnjlmF6YJwhq5VkRR2vi9BZTTz3C7TcNX7B0fZ3Z0kk2H+8mZFhcMRETpNHPNLmFhhOZCl3wdgsYMhandFMu9JMaws7pALoZGroAfu7i+S3Ggh8JCjXZkSOpzFH+0H7kTwBA0pkklpeh2AIMGNDC/6RJUJ8/9E9DdcBYoTWHbIFor0A79nsuFleIjPl8Wi8VisVh+8lgxe5pzrKpepxLktbLPVFLueOB7qOI2JNhLK64h0SzdfT3QMuBDiTYDacREuUReAva1ElKnBzes4aQzDLsDBAo8iWmZNnfu6zKXNvlhOMyC22aElGrvAKU0hzGCHw9QKPaTFIsk/hCjT93EUy//JWqf/xIH4zbK04z3FNAKQHigO02o5hhTFYyJGRvO4fIQBX0nUi7SmDX0lCuUcj4/M9K/fH3K+sFaLBaLxfKEwYrZJxArq3qdqpDdNb2LWnsBb/Yu2p02haLBcSI2FsfpKEUYa9DQweXevu20g36qOialQV+QR9KIDVoo1DzEJAzlB0kl4U5/M3ek88zxdOaNj0ONJJ/iKE3R6yVotvHGxpBwjrTUxdmykXRuns53v4tadJjIPfUpDFxxPhpDFDbo7pqGmqabdyg7vXj1mNTLoxwXQeE6JZRy+Kmt/VbAWiwWi8XyBMWK2ScQJ1PV62gkPeJjm5qUWnsBVmwznZT+4VHiMKE1O0i+P8HsqxOiiTYMYeKELiFOpGnEiq7p5+LBHr6rYmbSAgulPvaFFW6r3k0Y9lFPXDbkCnhxzJa0RuH+vWwqdimaBpE+QFAIyA0NEaaCqwNmF1za8z4ql6K1gzpwC99/6IvUoioKEOBZxTFk8zOpHyqC8hkYuABBU5ydA6wl1mKxWCyWJzJWzD6Jad9xx6pAr8TE+PP3AnBW31kcbOQJwwTVnEJocGjKZV+U4sQO2k+Z7lYZK7bZqvfjxjmKejtxT4MfFu/Fr7j4bYPO5Wh0Z0lTAwhbEsOZKbTbCRKFBEmIi6BMyHzOozEygOgcXPxSyvfeR3dS8M/YRjI7h998ENMJqIYLy2PuCXpwi71MTk7gqaeilEYph8QcfbUWi8VisVieiFgx+yTl6IwFu2sP0Yqz9FSCQSmFa0p0knnmwyadwiy70wGMhsAPEMeFbduJK4piElOfr9GjhKAQ0y7kCIqKdF7YVt3H/MgCO5KYxDc8Z2E3A1Mldk/NsyAt/GIvQ74HG0aZGyhT87eDdhlwffK1KrPTh9BJD0OlGTxnipluD+10HoqDPOPsF+K7OUIUyd6H8Fzw8wXu2F+j2o4fq6m1WCwWi8XyE8SK2dOcLMfAj0fu4p9hYTLrR7oPUtDC/rmbmXTm6Zom8UzMrAK37pAA2wd72DG+lf/atJNGlOI0ZiiLZkHtIFY1euOASvJURusLdDsHOJivEDeFPjemcOheKCSkSYLyHAY8B7enROx1aE7NkhQrbDAxw4HHzK5baSYKHbUJnHswfS6pE9KKNMQLzO3fj17Mo6tVCaU0gzvO5r6H5pevrbfg4WjrZmCxWCwWyxMVK2ZPc3ZN7/rxO3E0OBoRw1m9m9Bi2HfoXlJjwEBXteimg/ToIkpKpH6OO9N57tx/NwJs7iSYpk+Sc+kPfJSC0oH9qD1TJNEMleYCQTjM2PwsMzrCqQu1s/JIOaVYHqStF5jfu0DUTEjCSZqeR3poDyZVKATpyXPAKVMvOkgSEDhjAOTc83B0VuJWKc39TY89K4TspTsHCdxTC4SzWCwWi8VyemDF7GnMytK1Ra94yhkMvj/9fcQYapMLTHTuIa12md/bR7ee4iQevjNJeOZz2LL5TDboPA/5P8Qv+cy1PGKl6e/tJ60HjBjQrmJnOSQ8XGO+6NNwFEGhiC8Fev1+/IJHEniU3UmIAzzXJ41jWs0EBeg4JVeu0Gc6RKoLQHlYmAgicgD9o6A0FbfA9vN+OqveBSRG2PPgaousFbIWi8VisTzxsWL2CcL5w+ef0nGpSZm8716SbpduPWamuwfVzdFuDAKargnJ5T2cIIc3VEHPJyilmVV76a+ci1KKc3o85hc6GLWfbds2gSQkSYzgUt28AbUjxwXOWVTu2kPV6dIzNky7EKCUYmPlOUxMHSaOvkNhQSDfZnihTsvsoeslALT7+9CdzFXg4t6zcRyXB2oeNz5YXfearEXWYrFYLJYnD1bMPkF42KVrJfORnZg4iK93k0tDeswgYWrodxx0rkS9UKeUQt4ZI6cCVCp49QfA201sDqPyG/G04qendrOn0SQWRdisMXN3jXpUpNDt4AQ7EIHKdMykez9tt8bh0gCJ5zIXRuzecztEIYERcp0uubFB0qkDdPwUpTRmfCeqVIFcQMUt4J91BSmag/fPrXtZ1iJrsVgsFsuTCytmn2SkJsUYQ/u224iTiB9N74FCjHZdxkvgOXl62h5upchhBw5MdBEV0eulzM3ew7DTJXFSwrgBdPHTHmbmCngzm9A6hztdoDH7AIVuRD4M8KqaQi5HZ2Y/ErRouYqqSWkfmqKyt04uboAI/kJMTXeIanfQ3JRS6hnE37iRiy98C86eGwFwchVS7ZGYI3m3Lt05iKv18u822MtisVgslicXVsw+wUlNVgBBEHZN7+LwwcPEnQj3/n0gQuQofAV9Qz2Ezjb8Royjm8wldfZHLWqlAWbIkRqDo4W7UsWcqZDq7YhxmU9yfL8xQI9WdIKE8+8/SBimdDoRUXmI0YZiuO9BOu4kDoqa7pBObKLQyVFsHaLgVCh6BYqDdfZUGyRpTNWpsNAyFFsl/mt3Ew4vitWxHXDv9Krrc7W2AtZisVgslicxVsyexpwoLdeu6V3UwiyXrBhBRIjDGJaOE0iHegnas1yy42z2tXqpVvdQVSEtHWFKZbpmkNE2SCVPoxNT14qGm4d4Ac8FY1zuyee5sHSAim5T7c5TKEGu4hHKPSTaZSHsgkpJSRmcPUiwME2v4+HGCbmeYeoll1q1y3ypQzxS4bxkhGrxfHIbnglypBoZR1Xysmm3LBaLxWKxPOZi9oMf/CDvfve7mZiY4JxzzuF973sfl1566THb/7//9/+45ppreOCBB6hUKrzoRS/iPe95DwMDAz/BUT8+OF5arsQky0K2NlVbFLGQc3JsmEvZvPkZTE0cQm/fhjd9FyhNKpCYlHqquNM1qFwPg84GnCRhLFbE4uD1jXNvZx9tM0EuGSJhM+WyR785iOcXIYoQo5CeXlS7S9v16OQhl06C6adczeO0ugwPVMjnF6h2Zuh0FtA8QBLMkcy7BF6BS3L3UVYa5SjYuHhRZw4tZy8A61JgsVgsFovlMRaz//Iv/8Lv/M7v8MEPfpBnP/vZ/N3f/R1XXHEFd999N5s3b17T/tvf/javfe1r+eu//mte8pKXcOjQId70pjfxhje8gc985jOPwRU8dhwvLZeIcPvU7dm/jXBG8QxUPtunADXxAK7SiOfgzu/mfpXnvtBnMjb0qoSGW+JAcRivciZbGxAh+O2YqXKAe2gfg3GORJ9JjwaY5cx6g/HyAkHBJQouoCmKmdFt3Ll/itQTNg4r+udvpzI0SDo5j0eOoe07cBr30WjnmZuEUJXp9eeQoIedlSH8ngKud8QXlnwfuI/5u5fFYrFYLJbHGY+pOnjve9/LVVddxRve8AYA3ve+9/GVr3yFD33oQ/zlX/7lmvbf+c532Lp1K29961sB2LZtG7/5m7/JNddc8xMd9+OBdMXy+9FpuW6buo1O0gEyoZvu2YdptdjS149WCl2pYIwh2LaNH+75Fs3+DjJ3P1GiMcqABDjViIHOXhxnjP2pZk4ZvKhKf3eORGfn1toh703iVubpRA5JpAmKHnvawsHaQZLkMCRC+qM5ehb+i2IhR6NaJu0kTC3MUXAS7mzPcZ8qEBZTnrLhDDZsGKY0+izcbZesdis4xRy6FovFYrFYntjoEzd5dIiiiNtvv50XvvCFq7a/8IUv5Oabb173mIsvvpiDBw/yxS9+ERFhamqKT33qU1x55ZXHPE8YhtTr9VU/pzu7pndx8+Ejc7QyLddKi23ezfPMwfMwrex3rRR6USA6vRWMhnYaI6aLVjm2tuoMRw36O+n/z96dx+lV1vf/f11nudfZ16xkj2FRlkSW8KUUyk5B6deChSogoAiKQIVC6Y/FVqm2Im7gHqoPNiti/VZAo2XHFglBlkS27MlMkpnJbPd+zrl+f9zJJMNMQiZMZjKT99PHPJz73Oec+3PfZ6LvueY6n4tZPRlmda7nkGwXFREUopAeLF1hwKz2zUzwe5g0vZuK9yVpm9REfmIjhclzyM89kM1TJmOKWSq6tzCx9XUa29/GRBEGsDh4votxDJt7m8gnKyFWAclaYpMOonb2iXiz/xxcrxxgt32JiIiIDGLURmbb2toIw5Dm5uZ+25ubm2ltbR30mIULF3Lvvfdy3nnnkc/nCYKAs88+m29+85s7fZ3bb7+d2267bVhrH01hFPbNhQWojlfvdOWv+c3zWbtqTd/j9LELcf3y8q9BGBAu+V9sZMkXIqZmXfzNFcS6IWerKKQ3EXktbGooEitNprvYw+TgbSbnApLuJApuDdMqJ/J2rgDFiBb/g6Saa3Anx0n9zzNUdXfS2N1KnV/CLWapImJCXS2T/s/p4HjEZs5iw/LXSfesJRnBwbVH85dH/gXxeHzvfoAiIiIyrozayOw25h13qFtrB2zbZtmyZVx11VXcfPPNLFmyhMcee4yVK1dy+eWX7/T8N954I11dXX1fa9euHdb6R9PCSQt3ufKXjSyFQgGAmOvh+j4WWPPkS6x55A+8tfQNKjenqOr08DoKJLMOeKW+n4rQ98B1iLCUCPCMT63n4wfVNIb1EDTh5y0lJ6CzN8OmTBvZtavxW9fhZntIGkO6uJkJ8V5SjQfgVE+lvTPO2haXtS0QYokw2OoMnnH3eDleERER2X+N2shsQ0MDrusOGIXdtGnTgNHabW6//XaOPfZYrrvuOgA+8IEPkE6nOe644/jnf/5nJk6cOOCYeDw+Lkb7tvWL3XGurGt2P/xNrq5m7bJXaHnzDbzNhigbUSCg1F3ATeaBDhKmHt8JqaqvwTRU0l19JN3mQNbk36Y5P5HppVk0W+itWUe2MsNLxXXYMCQbRcQbfBJ1SQ4KcrxFhLUG99D3E2/fgp+IY+qnkDhwAc++WqLTzWHXvgY9rYSFDqiLDffHJSIiIvuJUQuzsViM+fPns3jxYs4555y+7YsXL+ZDH/rQoMdks1m8d9zR7rrlQGftrnuujmU79ovdUxta1tC2aQ0GQ7HTUEqtprt6E7l4J1OiEhsScdY6HkmvgrpJzSQ8l3VbXLoLBQqZHF4+TpCN6CqUiNk2gs5KvFpLWCrhFQ3pqI3qNRuxuW6cQh4LuFEJG5QwsRS5yUfR3R1nc+trAIS13RjTAklImZnU1VTg+epWICIiIkMzqunh2muv5WMf+xgLFizgmGOO4Xvf+x5r1qzpmzZw4403sn79en784x8DcNZZZ3HZZZdx9913c+qpp9LS0sLVV1/NkUceyaRJk0bzrew175wju82u5spus3bNWrCWTLSBTK6VYsqHCGKJySSbQoKKJGEsgyl049QdRGV8GlWmgVc2bKHDqaIl4VK9cR11uVaaShU0ZWJ00kZtZjMTwlaS9gAm5CzrN7aQM38kERTpCUMagMgx1GS3Lzsbr6gkamkHwJS6udDLE6+qBcCZ9gEqjzpm+D40ERER2W+Mapg977zzaG9v5wtf+AItLS0ccsghPPLII0ybNg2AlpYW1qzZfgPTRRddRE9PD9/61rf4u7/7O2pqajjxxBP58pe/PFpvYUQtnLSwb2rBzoLstmkI2+bLFt96i2JmI2F3BybVTP0BDYRU05t9Hbeyl2JQx4aeKupr63CCgGMmQ097lihZTXeUIGW7aejZzAGlEolYA1WpCL+QIh3vxW2so6InxGtbS8LJ4kY5jO8QTyaJ1ySpThQhUU3T9Bk4sw/kidU/ARzcyhRVB88m4TuQrMFMXzhSH6GIiIiMM6P+d90rrriCK664YtDn7rnnngHbPvvZz/LZz352L1e1b3Lf5Sapd05HsFFEmMtR7Rfo8Hzi7gyqK99PV/sqArdAe9JjbWkiB2d7CHun4eGzJIC1sQY290b4k+pIbW5nYlcPxveJ+ZWY6m56utN4NkMmXUkhtYBNHQ75eC+HTKrAdz2mzpyK7zisens1ANmeSgrPPE2mVACS+E4Mz3Uxc/4CvLE/n1lERERGz6iHWRkeg7XscrIOPR2bqaoAU19H4/Q5dKx5kYA87SmfUhSRTCapbaokZn3eX215LD+BjZkVtKcMza3r8HGoLYZUuDC5tIpS73o2Ziylmjpm9lg6K10wDp7vkYkdRhh4eHYW7avXEUS12ChieccacnY9LbkUxveY4DeWi3T04yciIiLvjdLEOLRw0kI84/F6+3LCUgkAx/Nx2iPsJrBA5Lg4vmWKbeK0CZVs2eyyvjVBniLgMCnj4HSXSHZtYVIhTtxZS6liMl0VlRRqY+RLs5jcPJFJtTW8tM4jivuUig6Oa4iAoFQEY1iTh/WZAmDx0oYUhqq0Qfd6iYiIyHBQpBhnoijCWIhsSBRtvwGrqq4RkwGsJRcGFKmmohhwqE3StsXQm3XIFVy8mKXSJqkODKXiKtLFduKxdnxrieIOJRtjXfp9FN0j2dLoUcquglSB3rYu4hXl15o6rxYCl9cyb9FSnyQqroSoyJzJx1Ib9zl6ooVknVb2EhERkfdMYXaciMKQtrWrKBUKrNycxGDY3LqRUqwdG4ZgI7pb3iYqdtLubGCLX4dnLAkHXq+cQnu1YWOmyMpSkalvrCdWCqCyQBhBkM5SmuxTrO0mm5xELB5imksUCwHGmL4ADeD6MYzjEBlLr82AmwBb5KiKiIVTPbx0FUw9urxcrYiIiMh7pEQxDqz/0zIyvV2Utq72BeWbv6y1FDpbyUddVMRTrC3NpjtexxonSdJsIe4ZDpwd8XApBVsKVFXGadj0ItOjF2mOu7zuTYekT7vfSK6mkUTDRHp7e4jHKjGuS2RDejdtxAQBuZ4Una0t1EyazJqXX8RGEYQR1omYa6dyuJvFnX0CxFOj90GJiIjIuKMwO8ZFUUg+09P32I/H8eqaKOTyNE6NkfuTRzyRwvcnUPRjGFOiwq+k5OXwvXx57mp5Wi0VvQUSXa8Rhj30OD49DRFu1qEuNNAY0dl4BBmnjbr6BmqqqolsiWywHqzFRuUfJd+H4soVBL29hP5GAieHw9YVvnTDl4iIiAwzpYtxpGn6LIxx6HltOTabIxOtxXe2zpudcxxuIoJNb3F4Zj2tTgE/1UkUlXvSWmvJFIqsjjtkGqaT8yYR87tJ2l6CbC9Ob4oeswnHuBxBgG9CwNCzeSNB2xaqamdRNWECh554KPnfZ3meKlpLvZjCZmAybjqNcTVHVkRERIaXwuw+KozKix9sWwRhZ6IwIrKWKIro2tRNVAypyVgwERNrQlauDtlsK5hqPKCIY8AFDBD0xlm7xiEsZMm39+K//Tq1TTFcN8K1MZycQ7o3pCaoIJNroMctYIyhM+HSXFdP29tvUplKQkUMN+gh3rsOd2U3r7Y9wUsZl1hjA1TW0VQ1jdT0Wt3wJSIiIsNOYXYf9M7FD3ZmzZo1rH1jOaVCgQhLWBVisORoIeYWic+dR/hWK4l4E6EFOrtIxx3CqAWiFFFgsBay3d0UezLEMp0QhVhjOWjzFmL1G6jo3EKQOBSYQUV9efnZukkN2CjCiUL8zFrc4kbSxCHXQ2bZGropAkkwhmOa0xzVXAvTjt2bH5mIiIjspxRm9zHvXPxgm+p4db/Vv6IoIpPJ9N305cdiGKdEfE0LE/wEbrES5+VNVBSn0BHW4nYnqfQ8srkiBbooFV2ypQQtUZbOeILq7tdoT7yCmzZEtT41VRBrLVJfU0tVVTNMnUZXnUcsEed975uJWfU/rCquYUvXaiprqgjbS5h0nGLd4UT5JMRizJtxJgsOnAyefsxERERk71DK2IctnLQQ15QD7DuXsbXW9n0/qbGBLZMc6osxVrR245UqMZ5Ligra3Jbyn/eNwRLhkcPGfShBNjOdsLaetdbQVpMmXV2LSfQQS1VT3ZskSvgkK6shnsQaw8RJk3AdA6UCG15/Fez2PrZRejqr43HWz/SIO4fgt/TiOL6mFoiIiMhepTC7D3ONOyDEbrN27dq+7wNCMmEejCEbz2FKleT8NGs7V5JLdhDGK3DqV3Bg5mUyZgVvZhK8lW4mXzURr7kJp6sLxwHfhhRsJQcUa3H9aawobOH1A+aSqq0BA5Ur36Ru4xI2mhxu50r8EKieTFjTSJCZRCbcgA+8tTlLyq3EMQqyIiIisncpzI5BURRR2Dq9oCXYSEvvepqa5oANqUlUEPXC9KhIrGsDryU9sok4615vZ31bBVu8aWR9l0wY0pldz8Z1W9jsBcyKv87RLX+gZ1OaxulHk+8pkrOWIF1JynHwXIco043duIF1PW38qVhNwcRITZhGsLGKhIUNNmL9+m7m1X0Qz4lRkfDKI7kiIiIie4nC7BgWhgFexRocm4fePEk3hUsSgHismTAKcaii2amntCWB012i0LweGwuICkkmORuoKWaY4hR4f+YVnDDExyWK1+D1VlOsqSVZdDhr+kR8DC29nTyfTWP9JE5tEyk/ia2cgmtimJ5erBuBA45xqUh4HDWjbpQ/IRERERnvFGbHIGstbWtXUcjnqMwn8YNq5iUPZkUhRl3bZrA+Bqe8mIGfxUu2c0SxB/xWlnkryHkhUa6ByrCeePUsTCyi3qwgZy2lnvexpW0G1Y3TyJksNZUuMePgJgxkoDfySDtFmic1UzXrSCYWDUE+IrvsNSpqciQnV3Pc1CZiuulLRERERoASxxi0bvlr5S4G1uKVfNyYT0XlIURd3XjdJeKRpT2zkVxXD1EtFAs5/Mk+Nirhxl2s8ajIHkZVNJWU302VW8R01dLbDe2lKTT1BNgGcD2wdYa2aD1RV4F4x/K+Gv5ssiHsXMOaN3oBiMcMrguOYzS1QEREREaMwuwYE0UhxXwWANdzSdbW4ToO/qwauvMlCt0hs9at4O1CAa+yA4dKcMC4MRw/TjZoopj3qLQOJWtwUwU6ciHJoqVgY/ieS9wrkQ3eIhUWKK3wKEydiGcsppTBcf3yqgtBRNDZQ3n5BWish1V+GuM4o/fhiIiIyH5HYXaMsTYkiEoUwjVU1tbh9BhsFPF8Zy+ZYAV5bw09VWtwgx5sKcSLe8QaPBorchTowWa7sblGCtajkxgVbXl6o4D23BQS+bdoSq3A5ktUdrtMApwel0xPD57vk6x5H37URaGtl7ee3IjbUAEGEgceSMUhdcQ3qXuBiIiIjCyF2TGkfcv/8vrmJWzoWUlPwSXdm2XiegjyhuXZ/yUIVpOIiqxpa8OrKJFMJQgrLVtSU1jd8xJO3rK2s4lcMIkmW0NdxyZyhS7ijqUnqKbSTCCM6ssttRxDMpYg3thMdTqBaxyCIATjYYOIbSOyTjpNsjqJ6+tHSUREREaeEsgY8eLGF+jq+D3RDoslYD1K3RVsTtRiTDlcvi/fxp8KDVSkOzHWw2Mm2d6ITIdHuP4ArBejYNJE+Ur8TAbfWJxSQC4qEUYlHJuh0zTRVjmB9LQU5sBDmdJYQ+GPS8l3dBI5OZxEFxNrDTX/9xicRBLHMRTD4ih9MiIiIrI/U5gdA4IooKvQ3ffYc+cxLVlH44SZRKtW0hlLUn9gmljndKbaBlYGHXjFXurr6jDNk9iQz1NNN4V8HTW2AtckSfgBiUKJpmgNXY6Pl4zTFXbjGpdMlUdbZQonk6CmJYvfGZJf0U1kDcYABvzKFF4iTkDIktalZEqZ0fuAREREZL+lMDsGLN20tO/7A+vm0ZupZkOmrbxErTGAxVLicD/ARFVUZF8FsrzmzsHv6qWnmGP56lq6i9X0JnvpcSwNnQWc3lY820nPhCQ9fppYKcXkpjqaj/s/ZPAwjmFuKgHWAhasxZ8yiareIpUHTWTppqV0lXr71Vodr97pqmUiIiIiw01hdh8XRmHfqGfcjeFQ7hawKjSs782T8OJETicRzQRhyK9KU+mqqCMf+SRzJboyvVSYXuoCn1LJoeQ5YDKENiBmtmBdl2SVh19VR6axgrBhIvHp9XzALf9onFBfhbPqOXqLLxNFEZsTabxqQ2DD8mjx1u4FaT/N4U2H4zn6kRIREZGRo+QxRnSsW8tsE7G542085zByGNwoojdqxxLR+dbbPBD0kC+uJZ5swRQsxANSUZFpnRl8r47pdHBgfBmtJkZ1T4IJyS10NE6kc0oVz9kpHNKzmY2FEtXW4jqGCtclZiyZl5biGtjY2Y1bnQbgpWIHVFYBsHDSQmJubDQ/HhEREdlPKcyOAVEUlXvLJss3edkwpLOjk+7OXuaH7TihZYOtpehUYsNOklGWObn1JOJ11NQ30tE9hVhlBVXOerpLEaYiRmW2m0R1mlx1BVknRSEqn7vCC3G2BtljatLYoESULRBZS9A4G2/K+3ATCbI1XUB5RFZBVkREREaLwuwYUx0ZEplsefECG+EQEYUBfiGFH3SQrujkqMxa1ntT6Fn/QSoTB5LZsImVPYYphdXkS/BGbz2dUR2VQSWhncPatEu908G8oJNjGmuYWF+J78cB2KF3AvFZs8FxmDzvYFa1PgfA4U2Hj8KnICIiIlKmMDuGWGshlyPYnCPKBVjPI52upZDtgZ4SJC0H2jfx/BhRGIcoRRS55De2k89DYF7DI8RxuwndBL3JAltmeqR8S1VbB65rcDA4UYQNQ4hCbKmw7cVha/svdlit1qCla0VERGT0KMyOMdZa8oWQUtNEWjyPF/MdFKyHDSypiirS1ZVs7HAhN4NCLsbKFb1MDpZQk+8Akyfl5khNDmmYOhnrx2huhkSlR7Y7jin1Em3eTPaZZ6HtLSj29r1mS0dX3w+L7TdeKyIiIjJ6FGbHCJ91wEQeaffpLOWInDqyJqCDGNnIkgu7mdS5krbSRsJCPSGGKAJTyhPr3kivcchUpempqGDqrDOpbaokXtnAtFglyZo4b8VKhB2rqJ5YDzbqC7IALR1dROlKjOcRS6b4Y9vLo/dBiIiIiOxAYXYfFm5d7SuyIVAkF1i6Ap/y3/ktcdchjBwOyvXS1bUer34zmyrS9GZTeHmHjqKlJ9tNpRdBGPFyxTyq5kzlgOppRHVVtPxpFeu715JIRgQ9myGMAHCSSRKHzwUM0fQ/w33tVTzPw48naJo7l7dbfg+Ub/5ST1kREREZTQqz+5htf8J/PeeSa+/BGMuy7hy206XDlrDZWgA+UV/LY2EnLVsKJAmpTJcIUgEVrkeUqGNLTQMt3S5hlAUiIs+nVN/EjFiaQxNJmqtTPJ7PYGIQ8yOwFs9YTCxOe0WK0tuvlAvKLcN45R+TzfUlVmwNsqCbv0RERGT0KczuY5ZuWkpkoXdrqyxrLTaMiEoGPAsRxFyHzMpn+VPUQKpkoZSjkOsldLpxI0tdoRuntwfHTRLzAyZQIBU55BJx/LhDZV2MYnYNTs8qAObMmUsmH+L3erSaGO66lwbU5afS9ARtfY+r49VaIEFERERGndLIPmTH1b4SbgLXcSit/V+m9BbIOJZmIsJEkpqMR3uul1QiiQm78XMZbG4ztjaPJQFYilURtb0b8AsdeECMGAZD2NNF7rXXCEurASj2dJB5/Rnqcj3lbgWRhVKeWCLO5DlzYcaRQLlF14r1TwNaJEFERET2HQqz+6iZ1TMJwxLZTA8GSHXmiOU3U+O9D9duglgbMd/DT0RMq+1lZWsFgemk4EesTvn8YXmGA3I9OEGJnJOjEMXIJzziZlurrfKob7yukcnNPYQFHyeWYMYHDsMtdOM4DkxfCFvnxIZR2FebazRPVkRERPYNCrP7gG1BMbThDlt36N8aWuYkXKLQsiW04IekkpZSOkPkBYTxdggbsHRQLDSTbZ9NsVgEwCVkC3XgNoJxSNkk1jqsqZ+KXx3gGHCcXpJTZ9Ax8wScuiqcFY9vLcHspDYRERGRfYPC7ChbumkpXYWud91veayRLr9IUxSACemtWEYuOhMyRfK5Sow3mzDYDKFPvhCAjZPwUtTX15BI1VHsqqK2ey4l08trXokwux4bBsyuy2MSYFwH2/Y2bOnsy9FLNy2lq9S7y7pERERERpPC7CgKo3DQIFsVr6bDcQiCACjPV22NXHBKWHpI5XpwC51Epge8GI5NYWIuvVERv8shtTELvgsExP00QbYTmytR2LKCwMkSOBa3LiLuO0yttLTiEfkVEORg6wyCMFE9aJCtjlerHZeIiIjsMxRm9xELJy3cPhfVOPyuvZtVW16lESCyRNbiYJnBZioyGbK2idBNEa+oIpfPkaivxMn5OGG5tZeDQzzmU8qWoCuHDRyibI6pjQbXM/j1SeLJOE0zJrE5V6Rj4gIqNr2Ma4BZJ4LjwQ43fG2rTUFWRERE9iUKs/sI17h9QTG0lsiG5MMMQVcRv2CgZDCOocIpkYz5lDbXEs6owdY3QSnEtORJl1wgwgsdkiRg0wawhljJp2igMjWNiZNcnFQSf5rBNQbjtANgMRwZK8+z5R0tt3asTURERGRfojC7D7MR2FLIAfED6N7YSbwQIx/bjO21YBxwPNzsMioaeunq2EIiD37PenKbi6RNPTgOFosB0okUZloD8YMnkml7m4TxoN9NXXbHW85ERERExgSF2VESRuFudQjwN2yi111HjAZwi+CCdQpQNRHjORibJV9oIYwiYr29dPb65IppmuOACXBqa0gmK1mfjxEUV2FbX6EqzMIGiMVjOFWTyql583Lw9/77FhERERlOCrOjYHc7GIRbcpDP05UsljsMOB65unU4vQFNEz5IMlWNt7GboHs9VS0LaflTgly0mURVQCYWx034NE2uxQ19vPaIAIspZcAxeHGfidMmEm1+g1LJh3hD+UXjleXespFacYmIiMi+T2F2hA3WwWCwDgE2Ki9juy6WJlGspLIuheNWYBzIFwq0trUTVlbglAIolSi9vZqQCsBgEyFhTRa/opJpc07EbllHWxDhTJzA9Nk+K/NFVkw5jtcxUIjBthvP4pUw7dgR+iRERERE3juF2VG0rUvAzm6uiqyl27qkLGAM1ZU+rrG8mphI6FdAPosblKArS951aCfBuuRkKhvXkTYO6/z3YSOgu4Wo4OF25aDlZbJRDOvXlEPs1iBbM+Vw3PraEXvvIiIiIsNBYXYU7SrItq9fR7ajHWM6gRpm2W6mHTqF1a9CNusR622jOl1LTZAlV6ihy6bpjseorOoC11AshoTFgA3teUznCipML16uih0nDxwfL5R/AJK1CrIiIiIyJinM7oOiKKRUyAERdaUkVUE3E8IEiQ0vU7N+JclinPZinrnr3iJZvQ6LJVGRo9qHnkSBimSeIKphuvEpduWJF8s3jrXXNrKsupYwUQsTF+DVV+IaU54jKyIiIjIGKczuw4yFGB4xr0DNpFkEwR+JwojIGvKRT8aPESVTYBzyeZ94soOOmg6y8RTrC7OZEFiaamPEekKqYiU2vO8k2qfUguNS47m47s4v/+50WhAREREZbQqz+7LyYl5kSxHPb3iOVelKgvAwXo8mEFFDzMZJVJQwhS1sjDeSqTqA9bG3aU5Vkewud401JqI3DVsqXGomlDsVHF9XSdxx+l4m3KFzgcWydNNSMqXMiL5VERERkT2hMLuPym/ZApkiEQ6hhTAIsMaB0ELggIHIQkXCUF3KUO2WWJ/K0lPRQ649oMptor70NolcB92Og9m6IkKN5/YLsu/WJmywTgsiIiIi+wqF2X1QGIRExRLkQ8DBw2CMZUFTGt7upI1p9DgwxQuYXeOweUuIH5ZYV8zjF0OSboz6WJx0WMQ4QAhFN8Xx9VUk4ontrzNIm7Bt0n6aw5sOx3P0IyIiIiL7LiWVfUxhVRe5riz0RhBZkrEYaSJC2wMWnMiWR1kdFxyHyEZ0mxyh6SIIffIhTI0m4yQ8JjVPhUyRjvhBdKVKeGbnC9ZuaxO2jUZjRUREZCxQmN2H2Miy+c2V9GZ7KeV6yhsNOAbCoERX5xbqIg+DwcY8wihPb1crnQmPRLcFXBy3lgNSGeorwS2VpxNYXKA08PW2Tcpl123CRERERPZVCrP7kDAMWLt5PfmgRJdpx0m6+KGBgiUKi7g99cSzWyAO1lqCQkSQjdNgPXoxVNo66myJaVUhVdVJos0F1ruVgDPo6y3dtHRk36CIiIjIMFOY3YesWbWCoNRLFEX4SYf6fBeTi+30Wg8nlyGx7mUqahrxrU8pKlKKAqJiHseFhM2SClfg5TKkJ32Q9UGJ12oWUGcjErk3qIiCck/ZrcIo7OtYkPbTGpUVERGRMUlhdh8RFXMU1izBz62jVMriVeap6Q7IBkmsiShEMZbXz2JFdQOtHR2UwiSEBmuhK1pPu5sn7cUxQYr85hydjsHGOiEXkbAhBxc7d/rahzcdPmLvU0RERGQ4KczuK0o5sBEBkPa2znONHELrsMKvJh5MJ0w3si45g5xfIJnJYaKQWBZqUkkcJ8lriRkkY7XUzjuNFW1vY3oiDowCqsIMJlax05W+DDu/MUxERERkX6Ywuw95hRStFc3k/SZWmhZqOjuZaHIsqY1xdHIKfqGakjV84I3XCIIqPD+NxeD4LhQdnOoUlfEq6oINVPSuIcqlSVIPdTOhUYFVRERExp/B7wySERdaSw8u+VIRvI0ko3Yo5imFAb4T4JkIZ/IBpMKARDaHa0y5RZcfJ1WVINVQQ8axrPFCns0UcKD8vDFgHNzqKoyrebEiIiIyvuxRmA2CgN/+9rd897vfpaen3EJqw4YN9Pb2Dmtx+5WggMUS2ZDZW5Yxb3MvqShPbZTlUHcVpTDBYVE9FX9aRVTIYcOQiAjrlLC9bUS5PEEhD7ntiyA0NteSOOAAkgcfROqII/q93I5tuURERETGqiFPM1i9ejWnnXYaa9asoVAocPLJJ1NZWclXvvIV8vk83/nOd/ZGneNbFMGGl7BbI6YpFYmbasIIjBeSiFXRm4X1Ly8h6GrDcWshCkg2tOKakBLl5WpLJk6F53IcJZJeDs9ElDDgDPydRW25REREZDwY8sjs5z73ORYsWMCWLVtIJpN928855xx+97vfDWtx+w0b0llcQcAGovQOo9uJOGFVL0GQJdPdxoYNK8iGOSIskWvwE5ZUOkGxeiaFisk4E2czqbmZWOOBEMyh1D745VVbLhERERkvhjwy+8wzz/Dss88Si8X6bZ82bRrr168ftsL2J9aGtHS2AY2EJo4FrPXKc15tRLEUEdqIKAipzVlM1AEuNFZVEU+ALdWB4+JgIISorYgTlM9t4i5u2sc4g98AprZcIiIiMpYNOcxGUUQYhgO2r1u3jsrKymEpan8TRRGlKCo/KE6ka1UrsXgIfpGw2EtUUQGAF/k4joMXS5BIJqmLJahKB/TaGN358uHGAqUIvz7C8SH+fyZj/J1fZrXlEhERkbFsyNMMTj75ZO68886+x8YYent7ueWWWzjjjDOGs7b9UtJNQKEE9L84xnHwElUAlHwf21CLMeDX1gx+IgPxiSHGVVgVERGR8WvII7Nf+9rXOOGEEzjooIPI5/Ocf/75vPnmmzQ0NHD//ffvjRr3C+Egv1d4lSnceAUkY1D0yzeHWZfQpHbYqxxWs1F3+dE7mhSE0cBR9NAO3CYiIiIyFg05zE6aNImXXnqJBx54gCVLlhBFEZdccgkXXHBBvxvCZPf9oTvHSzQBFmyJJreFyA/IU0fJ9GBMPQC2aMthNSxPSfCcCGPA2ojIhtT2eBwQxnEqy8F4ac8qutc/M2g3AxEREZHxYMhh9qmnnmLhwoVcfPHFXHzxxX3bgyDgqaee4s/+7M+GtcDxLrSWLR1rsRGkO/5EvPs1IrOZrJ0EQMZNYXEg8okKPThRHmxErCpHOm3I95YodTskcPBCQ2PiAABsLKQ7yu7ytavj1epkICIiImPakMPsCSecQEtLC01NTf22d3V1ccIJJwx6c5gM5ARFaH0VopBVb71BPuxlzsblZLpriaWzLK1qpqdyGjacSc2Wdgo9caKeFWBjOHQTsyFuoo5S90YimsACTkToWszEBJ4XQHk9CxZOWohrBoZWBVkREREZ64YcZq21GDPwpqL29nbS6fSwFLU/iGXbIV8iCC2FUlDuHWt8ej3oCSbQ7tUSDxzq/AIbu32ctiw2jDAUsSmfqkkVrCptpssr8YZrafEMndEbLElmKPXESDhvY7bOLnCNq+AqIiIi49Juh9m/+qu/AsrdCy666CLi8Xjfc2EY8vLLL7Nw4cLhr3CcMrZ8p9aaHugteFjHpSJVokQ33f4UXNfDIc5B3W3EN7yJ7anFhF0EXkiyuRIa6tnS0Ushgrb4dDabEv7Wczq+23cjWHW8SkFWRERExq3dDrPV1dVAeWS2srKy381esViMo48+mssuu2z4KxxnduwkEEWWfOjSFjgc2vYGlHpIFeN0Jx084+LHE1Q5FfjGko8i4n4NfnwThSBizaa1pIKAKLBMMfOIKOJ7Kd5X8z7+/OCJeCvKw7KuFkUQERGRcWy3w+yiRYsAmD59Op///Oc1pWAPLN20lK5CF05QINW1DmoOIgKmZV8nGRUhHqPoprBdE3CSCYIwYGNXD4F1sU6A66axBERETHZSdFHE2hg9qTwRFTjGId6UxjPgGnUwEBERkfFvyHNmb7nllr1Rx7gXRiFdhS4AvEIvKT/N+o4MxJpIRHmwEHc8Wqa+j4YJLlE+oJDN0ZJLbD2DgwVc1+I6Fs811FVXkNkykRm5brqTLm7RpWrTK7i9xVF7nyIiIiIjaY+G7372s59x7rnncvTRR3PEEUf0+xqqu+66ixkzZpBIJJg/fz5PP/30LvcvFArcdNNNTJs2jXg8zqxZs/jRj360J29j1CyY8EFmVM6gQAyTqKYU5ShFBToTNRgXcAsAWAtRoYBnILIReTdPMugiQYGqVBxjDMZaOrfOXKiK1XBkfIcgm6wFzZcVERGRcWzIYfYb3/gGF198MU1NTSxdupQjjzyS+vp6VqxYwemnnz6kcz344INcffXV3HTTTSxdupTjjjuO008/nTVr1uz0mHPPPZff/e53/PCHP+T111/n/vvvZ968eUN9G6Nq2xSAeNfbJFp/T+SWF0GwGBIkMBhygYsxPibwmYCD7zqAwbEhqepeQi+59RhLX3ydMAFv7skw55Ty1wFHj/ybExERERlBQ55mcNddd/G9732Pv/mbv+Hf//3fuf7665k5cyY333wzHR0dQzrXHXfcwSWXXMKll14KwJ133smvf/1r7r77bm6//fYB+z/22GM8+eSTrFixgrq6OqA8h3fMsZY3Mhm6erawzJSDbNaJU+un8dwJtBQ2E5QsXrFEmIsIOnqocCMCU0kx4ZBPFenyIiYXYuz4+8gc3y+PxDoDW6eJiIiIjEdDHplds2ZNXwuuZDJJT0+5M//HPvYx7r///t0+T7FYZMmSJZxyyin9tp9yyik899xzgx7zy1/+kgULFvCVr3yFyZMnM3fuXD7/+c+Ty+V2+jqFQoHu7u5+X6PJRCFRyx/JFkvlUVVreS01l3annphxaO8NaGlN4wYuWEgTYotFDIATkakwbGvzG/Y0UJXzcfZstoiIiIjImDfkFDRhwgTa29sBmDZtGv/zP/8DwMqVK7Fb+5zujra2NsIwpLm5ud/25uZmWltbBz1mxYoVPPPMM7z66qs8/PDD3HnnnfzsZz/jyiuv3Onr3H777VRXV/d9TZ06dbdr3BucYhazaTlm9YsEXpo6A42xbhYUN2MtvNnt0Zqr3LY3Ca8bNxbh1qQoHV2FO7v8GU+Oz+DoaA4HReX3U3KiQRezEBERERnPhhxmTzzxRP7f//t/AFxyySVcc801nHzyyZx33nmcc845Qy7gnQFsZyuMAURRObDde++9HHnkkZxxxhnccccd3HPPPTsdnb3xxhvp6urq+1q7du2QaxwuVRuXU7f+JWwxSxA5FMIkpc0FUus7sfmApekaXk6lWF1dR7wYEY9y2FIrGbcABiorgr5zGVNFdwnao4jWRJbuVH7U3peIiIjIaBnynNnvfe97RFF5nufll19OXV0dzzzzDGeddRaXX375bp+noaEB13UHjMJu2rRpwGjtNhMnTmTy5Ml9CzgAHHjggVhrWbduHXPmzBlwTDwe77da2aiJQvxCT9/DwEmwLnU4a71XIcwSAdl4HWQNESViOFQEJRwigjCO63q4TpzQGDJdtUTePIr2NXJBN9ZCAosXczGaLysiIiL7kSGPzDqOg+dtz8Dnnnsu3/jGN7jqqqvYvHnzbp8nFosxf/58Fi9e3G/74sWLd7os7rHHHsuGDRvo7e3t2/bGG2/gOA5TpkwZ4jsZPVHz++momkN+cwuFnm7wHcL5B+BNasS6MK2jh4M2ZZjZ1U0skSRu4sSSldQkGzBhEVvMQOtybK6DKOhlZqnEDDxizRWj/dZERERERtSw3DnU2trKZz/7WWbPnj2k46699lp+8IMf8KMf/Yjly5dzzTXXsGbNmr4R3htvvJGPf/zjffuff/751NfXc/HFF7Ns2TKeeuoprrvuOj7xiU/0W153n+e4xFespb1te/ifWDcFYxzA4tjyhXGJ44ZVODYGQOhkwJZHxU0UEgIZ16PDSzI9eYB6yoqIiMh+Z7fDbGdnJxdccAGNjY1MmjSJb3zjG0RRxM0338zMmTP5n//5nyEvXnDeeedx55138oUvfIHDDjuMp556ikceeYRp06YB0NLS0q/nbEVFBYsXL6azs5MFCxZwwQUXcNZZZ/GNb3xjSK872mwYQTZH3vMBSDcUSdVlKPR2ExZ3XL3LYLq3z4WNwhIAybCXKT3tdJgK8l6SropmqJqMrxvAREREZD+z23Nm/+Ef/oGnnnqKCy+8kMcee4xrrrmGxx57jHw+z6OPPsrxxx+/RwVcccUVXHHFFYM+d8899wzYNm/evAFTE8auiExTFYc2vUUUNRAGAZAkCAJsFBEaB69YDrBe0IkteDihSyI0OL0pQmvJeQmqPcMMz2Na5RganRYREREZBrsdZn/1q1+xaNEiTjrpJK644gpmz57N3LlzufPOO/dieeNUFGEr2vDiPrGkYdt4qmcasVEvbszFybtEocWJDCERHVMCJhofrAHHpRC5rK58Hyuczcypipjl+aQ9TTMQERGR/ctuTzPYsGEDBx10EAAzZ84kkUj0rdwlu89du5HMS3+iVOzqv92kiCIgV8Bku6AU4JQKBHTjUART7i/reD64cVqShmzKZ011ibSJcBLqZCAiIiL7n90emY2iCN/3+x67rks6nd4rRY1HNgyhFGJyBawfYaOIyPUpBnUkuxKUOhrJtvVQka+hKnABB4xLZEKMcYgbnwl+hs0WSraOgHK4bYhKpJwYsQOqd12AiIiIyDi022HWWstFF13U17M1n89z+eWXDwi0P//5z4e3wnEg++KLlDra8FZvX7Ah11RPIVmJG6/EzeQolIr0FH1CayjhQbKGYpAhlUgARSZHNaRKyzGUpxIUnBT5mMfkaOvgugZlRUREZD+022H2wgsv7Pf4b//2b4e9mPHIhiFhZ/8pBU5FiihT/t5b3Um+B3rThja3m4xXQ3U6hV+VJdmZxQE6/W5aC+vpzXXiRTFy1PJK7QxMrc+U9pF/TyIiIiL7it0Os4sWLdqbdewXgllTcaISibppsHQFWItX6AJT7kJQiiIgJB3mmFxdTyqXoQtL0YT4+Y202ypqiIhMHVvCdYTdlumes9Plf0VERETGuyEvZyvvgevQfz6AxfEtlGDywRNw1/VAtwUsmwqthKUM9Y4lXpchWR2RDg9mUtGhYKfzfHWI78RJe1CdTPdblU1ERERkf6EEtI+oqJzJlvAPOKaWbq+HLWzAramk0NZJpR8ADp4xxPypJFMJ6oyh0vU4tGIeh79/7CzlKyIiIjKchmU5W9kzhSjX9313R5ZCVCICwsASWUNXaLFRFYlCkXhngfoVMfzeGTiADcvdDLyEj3E1zUBERET2TxqZHSURltCGADg45HqDrc9YqmkgFTh0xQ5gqvGpyLyNbxyMdYi5DoVEEusUAPAnVozSOxAREREZfQqzo+QNr5EwCrB4rKppYkV+9dZnDDHPUJFyiKdbiU9oIbE5wnFcphw6j8r4IawqhMCb23YXERER2W/t0TSDn/zkJxx77LFMmjSJ1avLIezOO+/kP//zP4e1uPGqFFnyTvn3iM2pGvKuiw2KACSCIp5jcJ0I380CEKOAKbh4mZCwo0DYUxi12kVERET2JUMOs3fffTfXXnstZ5xxBp2dnYRh+U/lNTU13HnnncNd37hmgSrPwfdjxG1Ec9dKmrs7y0/mtkC+E6wltsbHbUthoxSY7ZfM+GrLJSIiIvu3IYfZb37zm3z/+9/npptuwnXdvu0LFizglVdeGdbi9gflLGqZ1tlJhMFu/Y8xllwppBCEffvmKg6hJYxwKnzcqjhudXzU6hYRERHZFww5zK5cuZLDDz98wPZ4PE4mkxmWovYXxkJXwWNLHtblywsnRIT02l4SjdVYCyU3gTEx4hFYA5tLm2jPthB3HRwNyoqIiMh+bshhdsaMGbz00ksDtj/66KMcdNBBw1HTuGeBCZkqZnVMpLJU2e85x4S4Noabq6NQ8imWIjxj8D0HCwSmhDEwLREj5adxHHfQ1xARERHZHwy5m8F1113HlVdeST6fx1rL888/z/3338/tt9/OD37wg71R47izeEOGeOCTLbeKxRhoTPYwyW3D5utwQodZ8Ums72kH04EB0o5HaWIakylfskObD2VTpKFZERER2b8NOcxefPHFBEHA9ddfTzab5fzzz2fy5Ml8/etf56Mf/ejeqHFcCQottNs4hgo8IjrdXqgJ6bFdmKA8agvg9W6g0Xub+vwafM8hEXMo7XCzl1teOmFU3oOIiIjIvmKP+sxedtllXHbZZbS1tRFFEU1NTcNd17hkbQR2e1utmqCEjXmD94oNCkCEiSLAwcZTGDc2UqWKiIiIjAlDnjN722238fbbbwPQ0NCgILuHSoVKcoX6vsdRbxYbBrgEeFH5RjonLJGJKig4NTDj0FGqVERERGTfNeQw+9BDDzF37lyOPvpovvWtb7F58+a9Ude45thBhmLDrcvZWosxhk05iHIWYy2uMTha6ktERERkgCGH2ZdffpmXX36ZE088kTvuuIPJkydzxhlncN9995HNZvdGjeOK19VEw5YaYPDZBcZxwPfpCqfhFBzS5Kh0HUwyAZRnyW42Di3FYMRqFhEREdlX7dFytgcffDBf+tKXWLFiBY8//jgzZszg6quvZsKECcNd3/hiwZS2z3s1XieDDdICOJFDLMjjAE46ia1oxBqPApA1DqWofPNX0t2jSygiIiIyLrznJJROp0kmk8RiMUql0nDUNM4ZCmHE6mQPHcktWze5DBynDQGLdcBOmE5+zv/hlajY92zcMRxVnWZqQjeFiYiIyP5rj8LsypUr+eIXv8hBBx3EggULePHFF7n11ltpbW0d7vrGl8jQHiawFiIs2wJszKthxzZbqYoNuFV/6nvsT51GaC0ZGwHgAr5jqPb3qBmFiIiIyLgx5DR0zDHH8Pzzz/P+97+fiy++uK/PrOxa0OngRbWU6AIgHpUwMXdrhjWs97eO0lqL5+TAVpUfFzwM/Vf5qvC06peIiIgI7EGYPeGEE/jBD37AwQcfvDfqGZesBUqwLZMWvYCp7e30EkF1PdZGFEz5hi4XiEJLLpvDtlTDIM0i1NdAREREpGzIYfZLX/rS3qhjv9FVs4m2sIF0awRRCIDxfTAGLzuFVOjhZXtwoxw2l8NxwHXK8TXaOs1ARERERMp2K8xee+21/NM//RPpdJprr712l/vecccdw1LYeGXNwEDq1zURvmUwUaw8imsDMB5+wsePDE5VFX/qfY01xS3UUzPiNYuIiIjsq3YrzC5durSvU8HSpUv3akHjWXs48H67HD205Few4zpqDjlqYml6J9dRbC9gYzF6w+6+533HxzFqySUiIiKyW2H28ccfH/R72X0hUNraVDZpSziUOxoEbF/8IBY5mG0zYnecGGu3dzqoS00kiquLgYiIiAjsQWuuT3ziE/T09AzYnslk+MQnPjEsRY13c0obB2ybXqynIYzhRNuDaqHkUShC2/qBn7eIiIiI7EGY/fd//3dyudyA7blcjh//+MfDUtR4Z4CwN9NvW2XYTWGHx44B+47L43kOjqNeBiIiIiLb7Pbfq7u7u7HWYq2lp6eHRCLR91wYhjzyyCM0NTXt4gyyjbUWwnInA+s64BicMCDaOg3B4hAvbAHqAGiYXEnjAXFaewrQMVpVi4iIiOx7djvM1tTUYIzBGMPcuXMHPG+M4bbbbhvW4vYHxYpEeU6sKc+LDYwHoU822jpyawzGdXkzW9jFWURERET2T7sdZh9//HGstZx44ok89NBD1NXV9T0Xi8WYNm0akyZN2itFjlfrKxsB6O5Yj1O9BdpqwRos29t3xVIprIF8FAEOvjEEWjZBREREBBhCmD3++OMBWLlyJQcccADGKFDtqQhDYByKrk8YhphiFjd0cDGEkQcYipFPjROSivus7F4Jk6YAMCHmszLS4gkiIiIisJth9uWXX+aQQw7BcRy6urp45ZVXdrrvBz7wgWErbvyxvO02kvFgS315bVvH5GjIbAQDQb6CYpSEGPTilZdHMFAM8wAkvDSO44DCrIiIiAiwm2H2sMMOo7W1laamJg477DCMMeWbmN7BGEO49cYmGSgKe8kQJ7TlcGqwxKMcDhZCDxuWsJGPDUtEWz/e6po4nVs7GEyvPRjWqk2XiIiIyDa7FWZXrlxJY2Nj3/eyJywQ4pQcgqJD9aYtRHEfYm24xRTd3U0Ya4nY/kuC8Twm1iTp3PZYUztERERE+tmtMDtt2rRBv5chskAEpXw1btSDZ8rb4pkU2WwKCCF0sI4HvoNbnQAD0dZRcBMNHA0XERER2Z/t0aIJv/rVr/oeX3/99dTU1LBw4UJWr149rMWNV2EuDy4YzzAh0U6aEtYa4kUPGwKOIeY7uC60FAJW54rUb3apWJN513OLiIiI7E+GHGa/9KUvkUwmAfj973/Pt771Lb7yla/Q0NDANddcM+wFjh+277/DgoMtJYhcF8zWm7msIeasI0iUA6sfg1RlSC4MwUKsYEg7Dg7g+A5GK4GJiIiI7H5rrm3Wrl3L7NmzAfjFL37BRz7yET75yU9y7LHH8ud//ufDXd+4kaN163/ncePgJ7qwVZUQAJEBDBk3IO/liZyAjM3wcuRTU3AgMYNpyRjTM5bihDRuoYj6GYiIiIjswchsRUUF7e3tAPzmN7/hpJNOAiCRSJDL5Ya3unHCEhFRBGzf+KwB3GQeJ14gCizdlOiI5TGAN8hVqfBSmJIFxxDFykvgioiIiOzvhjwye/LJJ3PppZdy+OGH88Ybb3DmmWcC8NprrzF9+vThrm8cKYfPwCaAPBSqKEUJKNVgSh6RE2GIiDyXpFdBlYkziwbcRJye6rlMr5xOtHVJ2+zkNKlRfCciIiIi+4ohj8x++9vf5phjjmHz5s089NBD1NfXA7BkyRL+5m/+ZtgLHC9WkqIn65DNenSUUhhriHVXEt9QgaGHkBCbCHGSM6jMQXzLFrwVm3FwSPTGCFqyo/0WRERERPY5Qx6Zramp4Vvf+taA7bfddtuwFDQehUDeOoShg9k629WELlV5Q9ENgBiRUyI0Dh4xgkIR3K0HW3D8FDjl3ztM0tMUAxEREZGthhxmATo7O/nhD3/I8uXLMcZw4IEHcskll1BdXT3c9Y07aUok/RJTgjyVYRerbEjgbCCMmskVJ2PCGrYtrubPbcZWHYwtTSg/npQmPKASejRKKyIiIgJ7MM3ghRdeYNasWXzta1+jo6ODtrY2vva1rzFr1ixefPHFvVHjuGDZ3pzLwRKFEVHPZnJ5S2TC8nOuixcVAXANzKoxOMH23zectK+WXCIiIiI7GPLI7DXXXMPZZ5/N97//fTyvfHgQBFx66aVcffXVPPXUU8Ne5Fj3ZiZHZyki2qGfVilKQJDBphwCNwbEqcwXeN/GpcSnO1TGDNEOy9f6kyqIT68u950VEREREWAPwuwLL7zQL8gCeJ7H9ddfz4IFC4a1uPEgtJZsGFGeO7B1bNaa8hdg3AK2ugI/EyPW3UusmKUYFGmrTfMnmyCx7URGI7IiIiIi7zTkaQZVVVWsWbNmwPa1a9dSWVk5LEWNN72bW6G9k1h3Fr+70HdvVxCElNyV7Lg6GDYkm6qkZ/ZMcMsrrcUdR/d8iYiIiAxiyGH2vPPO45JLLuHBBx9k7dq1rFu3jgceeIBLL71UrbkGEUUhQbGALRWwQUhYKgHQHcuz2S+xxQ3pMTmMA5aQgAgnMPhhDbN5H9NScSbH/VF+FyIiIiL7piFPM/i3f/s3jDF8/OMfJwgCAHzf59Of/jT/8i//MuwFjgvWUgqKeBVxYhUlHCfG+rpe0mF5EYT6miwNiTZi4RbivkOBRjw3husYHGuI4i5G0wxEREREBhhymI3FYnz961/n9ttv5+2338Zay+zZs0mltCbVzkTWlheyNRBLJjDECJ0AQqgJIpqDBIlcklgxCRTwXJeKiskkGi0OIQWt9yUiIiIyqN2eZpDNZrnyyiuZPHkyTU1NXHrppUycOJEPfOADCrLvYr27fZpA3Ilt/a48T/agfJJJth4DZFubKa5pJNg0Ddf7ABgwQ54IIiIiIrL/2O2odMstt3DPPfdw5pln8tGPfpTFixfz6U9/em/WNi6E1lLcOkXAJcIxhmwuC1unaDhODGIp8OIUXUPoBrhpH2PVgktERETk3ez2NIOf//zn/PCHP+SjH/0oAH/7t3/LscceSxiGuK77LkcLQKUtENk0YRj0bXPcbcOvW5vQGvALnVRuXgb1scFPJCIiIiLAEEZm165dy3HHHdf3+Mgjj8TzPDZs2LBXCtsfGBfctIe125tzYcFEpe07JWs010BERERkJ3Z7ZDYMQ2Kx/iOFnuf1dTSQoSrH1y2kMbjksPT6PmljSG/bZdYJ4CfgTx2jVqWIiIjIvmy3w6y1losuuoh4PN63LZ/Pc/nll5NO98Uvfv7znw9vheOMzeUwUR7jhlgLJVwGm0wQdx1cV/1lRURERHZlt8PshRdeOGDb3/7t3w5rMeOZicApgY1CMHaHJxzAJUEJWyqRtJYq12GSFkoQEREReVe7HWYXLVq0N+sY3yw7TIoFTPnLWo8IB8ekKIS5HZ7XAgkiIiIiu0N3Fo0w4zvlMLsDS3kahwFcx2i1LxEREZHdNOQVwGTPZWyJHmvpiuXemWcBSGZ7SPj6/UJERERkdyk5jRALFKOQUhT1bfMwOBiCYp4wLOFG5YUSbCyGcXRpRERERN6NRmZHkI0MUehQHSSJih5JJyQiwgTbVvuyuI5LftIB2w+KLMXI0lYKKPbmKIxK5SIiIiL7JoXZERDkHaz12DZZ1gMCYylZQ6Y7wvNKVFIgbYrEjEO4db/C6m5swbKpVGJzMaA3XwRn6zk0r1ZERERkz6YZ/OQnP+HYY49l0qRJrF69GoA777yT//zP/xzW4saDKLLYaIcNBnw/B16RCAPWlG/8IsR1t7Y5AGwsTZQvHxhZCBMutXGfGck4M1NxDq5Ijvh7EREREdnXDDnM3n333Vx77bWcccYZdHZ2EoblP5HX1NRw5513Dnd944sT4TrR9m4GNoUt1ZB0I2K+SyyZgEQ11EyFuvf1HRbMrCI3OU297zEnnWB2KkGl547OexARERHZhww5zH7zm9/k+9//PjfddBOuuz1QLViwgFdeeWVYixsvbGn70Gy55aylpqqD+vqNVNdvBMBxtraXNQ4Denc5mlIgIiIiMpghh9mVK1dy+OGHD9gej8fJZDLDUtR4YiMLkcUCoYVcVCLvg2t2WOEr5ZLeYYqBiIiIiOyeIYfZGTNm8NJLLw3Y/uijj3LQQQcNuYC77rqLGTNmkEgkmD9/Pk8//fRuHffss8/ieR6HHXbYkF9zpHU6XWScItbYcvcCyvNkw9BjS3sD69qmE2ab+h9k7aDnEhEREZHthtzN4LrrruPKK68kn89jreX555/n/vvv5/bbb+cHP/jBkM714IMPcvXVV3PXXXdx7LHH8t3vfpfTTz+dZcuWccABB+z0uK6uLj7+8Y/zF3/xF2zcuHGob2FEhVFEYAKgPCXDwcF1DHFcOrpqcNwc236ncI2DsZDqKRG0ZHCnVo5e4SIiIiJjwJDD7MUXX0wQBFx//fVks1nOP/98Jk+ezNe//nU++tGPDulcd9xxB5dccgmXXnopUO6I8Otf/5q7776b22+/fafHfepTn+L888/HdV1+8YtfDPUtjJokPl6hmsjPYOgGa/pmFtSkfdyYS6kAbrh9VNZJeZozKyIiIrITe9Sa67LLLmP16tVs2rSJ1tZW1q5dyyWXXDKkcxSLRZYsWcIpp5zSb/spp5zCc889t9PjFi1axNtvv80tt9yyW69TKBTo7u7u9zXytoZRa7DR9rmykQnA2K17bNtn+1GJObXEp1ePVJEiIiIiY857WjO1oaGBpqamd99xEG1tbYRhSHNzc7/tzc3NtLa2DnrMm2++yQ033MC9996L5+3eoPLtt99OdXV139fUqVP3qN73YnJYNWBb4G8h8Nr7bbNFQ5QPtm/QiKyIiIjILg15msGMGTMwu1h9asWKFUM63zvPZa0d9PxhGHL++edz2223MXfu3N0+/4033si1117b97i7u3tEA62NLDHrEQGBKe34TN93rlPuZLDjPV8m7mIUZkVERER2achh9uqrr+73uFQqsXTpUh577DGuu+663T5PQ0MDrusOGIXdtGnTgNFagJ6eHl544QWWLl3KZz7zGQCiKMJai+d5/OY3v+HEE08ccFw8Hicej+92XXvTFm8jsXRqwPa4KbElH1G79bFbHcdvGrifiIiIiPQ35DD7uc99btDt3/72t3nhhRd2+zyxWIz58+ezePFizjnnnL7tixcv5kMf+tCA/auqqgYsynDXXXfx3//93/zsZz9jxowZu/3ao8VxcxinANYlDD3Kc2ktO6536xhnlyPfIiIiIrLdkMPszpx++unceOONLFq0aLePufbaa/nYxz7GggULOOaYY/je977HmjVruPzyy4HyFIH169fz4x//GMdxOOSQQ/od39TURCKRGLB9X+WYsO/7rq5qrAn6PV/h+5RscqTLEhERERmzhi3M/uxnP6Ourm5Ix5x33nm0t7fzhS98gZaWFg455BAeeeQRpk2bBkBLSwtr1qwZrhJHjQ2CcpvZbZ0LrIOJ0mC68CJLuLWTgaMRWREREZEhGXKYPfzww/v9GdxaS2trK5s3b+auu+4acgFXXHEFV1xxxaDP3XPPPbs89tZbb+XWW28d8muOpMiGYC2pyo0kK3owQIRDETA2wtjyYgquAxiIhT7hrk4oIiIiIn2GHGY//OEP93vsOA6NjY38+Z//OfPmzRuuusaZCNcvgOthARt6OFs/+igKMcahJu6ABccaQsDEPXUzEBEREXkXQwqzQRAwffp0Tj31VCZMmLC3ahrXCpkqCNMk6QQcAmOIJ1L48Qx9iysAsWkDe9OKiIiISH9DWjTB8zw+/elPUygU9lY945bZ1lfWvuMjt0Vq6+upaWp85wEiIiIi8i6GvALYUUcdxdKlS/dGLeNWbdRFdZjZ6fO+phOIiIiI7JEhz5m94oor+Lu/+zvWrVvH/PnzSafT/Z7/wAc+MGzFjQtRSIztK3+VjIOvYVcRERGRYbHbYfYTn/gEd955J+eddx4AV111Vd9zxpi+ZWjDUPfi70xLrJ6uQor6MHr3nUVERETkXe12mP33f/93/uVf/oWVK1fuzXrGpSgCa9k2a3YAEwSEyzZCViO2IiIiIkOx22HW2nIU27aggeyeMLL9QqwxA+/t8jIZ6Mr0LWsbViTVlktERERkNwxpzqzRClXvSdwH1wwcoTVbf1GwfpzepmZKM5pHvjgRERGRMWhIYXbu3LnvGmg7OjreU0HjmQEKkSHAIY9DYtsT29Kt4xDFE4MfLCIiIiIDDCnM3nbbbVRXV++tWsY3C+SKRJEBLHbrZINm20B975A7pImIiIgIQwyzH/3oR2lqatpbtYxjFrBEYflOsACocKAqyjHZyVGdXwuAMZEWSxAREREZgt0Os5ovu+ds338bHGMwxuLZAi6FvuzqpEPIhmC2j9IGkeXlniydgdqdiYiIiAxmyN0MZGjCKARriTA4xeqt3QwsxinhRT2EOKwwU6lmMzbqILXDsVuCgLZS0Pc46eoXChEREZEd7XaYjSI1+t8TURSxsrqBoMqn209geoGt0wlyppIeJ00hNOU2B1vVpHzcHVpzpVyHD1SmqPLcUXgHIiIiIvuuIS9nK0MTWksu7uEDDuUmsynTjoMFDKnAxylAVCoxMeUztT5N47S6fufwjFGQFRERERmEwuxeZm2Il+oGYHZmLfEtJZrcjXRsHeh2MeXlwaJyuHUTrhZMEBEREdlNCrN7mbUhxt16A1exEnfbR17OrviZPFVhC26yDXdiPX5TmvX5ImuKIYHmKYuIiIjsksLsSLE+3d1V4Bax0bYb6ixOFNE3G9kY3Jpq1hRDesPtHQwSjvrQioiIiAxGYXakWIO1FhuVcPwItrY6M6a8vm2+cQLFAybTc9AhBLkiAHNSCao8l1pf82VFREREBqMwO8JKfg++kweT2tpz1mCB9jCCUkBnTxazdSS22nep83WJRERERHZGSWmUeK7LtvkFOzY9q/FcjOOQcB1q1MFAREREZJcUZkdIZAfOe/Wj/h+/awwfrKnA0RxZERERkd2i1DRCrC3PkfVMCceUuxRsa8Bl1YlLREREZI8ozI4gCzTEugZsD/yRr0VERERkPFCYHUFhFBFFmgcrIiIiMlwUZkdJVMpg0PwCERERkfdCYXaEOU4IFPCj8qIIrlGgFREREdlTCrOjYMf4mlD7LREREZE9pjA7Eky0syeA8o1hIiIiIjJ06jO7l9mguP17Z/vHnTQVJIzFAnkcFGlFREREhk4jsyPIetV93ztm+/SCggnAGGo15UBERERkSBRmR8GOXQyy0XraTRaAaoVZERERkSFRmB0FlVT2fW81vUBERERkjynMjjRr8LZOVbY2RHNlRURERPacwuwoytOFVZtZERERkT2mbgYjyOwwCFsyLr2+yxbPh3D0ahIREREZyzQyO4LcMNP3fWQc7A7hNuYYrQYmIiIiMkQKsyPJWgz9Z8kmwoh6x1Dna5BcREREZKgUZkeQCQq4toQ1LlhLySk36TIVle96rIiIiIgMpDA7QvpNILDlaQYRBmMg6Tvv3ENEREREdoPC7AgLvRQ541HYeu+d48CEVGyUqxIREREZmxRmR4jB4EQJ0mGKaIdZs65xcHTjl4iIiMgeUZgdAYNF1cCGOMaQMHEtmyAiIiKyh3QL/QjrdbMUbIlumyKGQ5vj4+ez+H58tEsTERERGXM0MjuCrFdgW2Muu22ygWMwW6cZxONxHEeXRERERGR3aWR2JJkIMISBDxFgwYnFqEkkMZW1NE2YMNoVioiIiIwpGgYcYbFuh2BdPeQLmEyOnmKIYfvorIiIiIjsPoXZkWSByCGyLtHWTQ4QpipIJ2O4yrMiIiIiQ6JpBiMosmbbN3RWxEm4AXUTJzP/xIWwYsXoFiciIiIyBmlkdiRZC9bg4FJDV7n3rHFwHQ3JioiIiOwJhdkRYiyYMCRmIEaITwBA5MTB6DKIiIiI7AmlqBGy49hrMe6AMcQKRcLuGKWWllGrS0RERGQsU5gdUYZiKsaqqomEjkttZx6vtxvb3V1+2vdHtzwRERGRMUY3gI0Qi8FajwhDgAuAg8GrjhObPAmvogKvqWmUqxQREREZWxRmR0B5zS9DhCEb+pRMCEAamJjw8Jub8evqRrFCERERkbFJ0wz2sjCy2783Dt0J6EhmcYxFPQxERERE3huF2RFksFigKtlD0kTvur+IiIiI7JqmGYwkayhFW4gX24lH+j1CRERE5L1SohpBFkvgGszWRRJioYfRJRARERHZY0pSIyxpszS57UzP1NBcrBztckRERETGNE0zGEEWwIWS7+KGFkIDRreBiYiIiOwphdm9LYq29ebaqhxeCz1pSo67dZMCrYiIiMie0DSDvS3q37XAByrDPOlivrzBcXCqqka+LhEREZFxQCOzI8rgRoZEWLF905QpGI3MioiIiOwRjcyOoIGR1fZ1NhARERGRoVOYHUEWi7URPX4P3U4vgWvf/SARERER2SmF2RESmJCM1wuUQ22Eo+VsRURERN4jhdkRYGHrQrZl8TCFCeKjV5CIiIjIOKEbwEZYY5DAc5MEo12IiIiIyDigkdkRZrZOLjBb/yMiIiIie05hdgSEuH3fOw5Uxj08T0FWRERE5L1SmN3LwsiCLX/MDpaIiEKXuhiIiIiIDIdRD7N33XUXM2bMIJFIMH/+fJ5++umd7vvzn/+ck08+mcbGRqqqqjjmmGP49a9/PYLVDp2NbN9ytimnBFhsYPGti3E8jBn1SyAiIiIyZo1qknrwwQe5+uqruemmm1i6dCnHHXccp59+OmvWrBl0/6eeeoqTTz6ZRx55hCVLlnDCCSdw1llnsXTp0hGufE+Vl7atcaqojFL48Yp32V9EREREdsVYa0ftb95HHXUURxxxBHfffXfftgMPPJAPf/jD3H777bt1joMPPpjzzjuPm2++ebf27+7uprq6mq6uLqqqqvao7qF4ffkr/OTpX2CtS3xDN43Vm2noLuKubSJeVcWMDx3PvD/7MxxHI7QiIiIiMLS8NmoJqlgssmTJEk455ZR+20855RSee+653TpHFEX09PRQV1e3030KhQLd3d39vkZDYLb+zmAjCoUMAI6rACsiIiLyXoxammprayMMQ5qbm/ttb25uprW1dbfO8dWvfpVMJsO55567031uv/12qqur+76mTp36nureE8aC3dq8wJgQA8TjEE/GNWdWRERE5D0Y9SRlTP8WVdbaAdsGc//993Prrbfy4IMP0tTUtNP9brzxRrq6uvq+1q5d+55rHgobhgRb3441kPBzAKSSaZJVlSNai4iIiMh4M2orgDU0NOC67oBR2E2bNg0YrX2nBx98kEsuuYT/+I//4KSTTtrlvvF4nHh89JaOjaLt35dcF9M3Qjs69YiIiIiMJ6M2MhuLxZg/fz6LFy/ut33x4sUsXLhwp8fdf//9XHTRRdx3332ceeaZe7vM4aUAKyIiIjKsRm1kFuDaa6/lYx/7GAsWLOCYY47he9/7HmvWrOHyyy8HylME1q9fz49//GOgHGQ//vGP8/Wvf52jjz66b1Q3mUxSXV09au9DREREREbHqIbZ8847j/b2dr7whS/Q0tLCIYccwiOPPMK0adMAaGlp6ddz9rvf/S5BEHDllVdy5ZVX9m2/8MILueeee0a6/PdEa4CJiIiIvHejGmYBrrjiCq644opBn3tnQH3iiSf2fkEjIGdS9EQBidEuRERERGSMG/VuBvsDs8NkWWshNG7f43g8rgUTRERERPaQUtTetsMCaxGUm85uVVfVwOTJk0e+JhEREZFxQmF2BGVN2O+xcdTeQEREROS9UJgdQbrpS0RERGR4KcyKiIiIyJilMLuXWbt9aoFl281gml4gIiIiMhwUZkeci+P073AgIiIiIntGYXakGXDdd99NRERERN6dwuxelo8sVl0LRERERPYKhdm9rDPc3sPAxRJEGpYVERERGS4KsyMoHgU4Wxt0uWjerIiIiMh7pTA7gpytq4FVkKHC9Ue5GhEREZGxzxvtAsY9G/V9G2FIbsqQ7ijiOLlRLEpERERkfNDI7AhyQoj3lnCLEY7nguNg4vHRLktERERkzNLI7IgqTzMwqSTR+z+AM/cDeA0No1yTiIiIyNilkdm9bYdpBn2MwVZUYioqR74eERERkXFEYXYvM/mu0S5BREREZNxSmN3bbIRRb1kRERGRvUJhdi+LdphlEJkAjN35ziIiIiIyJAqzI6g3uZ7ABKNdhoiIiMi4oW4Ge5ktljCRxcVS31EsbxvlmkRERETGC43M7mVOVxfGRhhrSeUCsA6lQMvYioiIiAwHjcyOEGsM7XVxmn1LWKqgBoinPBxHwVZERERkTynM7mVRtHVSgYFMRYxCIqKy4NI4tZKJs6tHtzgRERGRMU7TDPYyyw7tDByDg8VxDMZoRFZERETkvdLI7Ajy8PSBi4iIiAwjjcyKiIiIyJilMCsiIiIiY5bCrIiIiIiMWQqzIiIiIjJmKcyOAKs1v0RERET2CoXZvSyyti/M+tbFQS25RERERIaLwuwIaixVjXYJIiIiIuOKwuyI0qisiIiIyHBSmBURERGRMUthdi+zffd+WZwgD8WSxmdFREREhonC7F5mre2bXZCwAV5kAEOiogLHcUe1NhEREZGxTmF2BOU6Gyl21VDVlGTS3HmjXY6IiIjImKcwO4JsVB6iNfrURURERIaFYtXeZqP+j40BRx+7iIiIyHBQqhpJvofx/dGuQkRERGTcUJjdy+wOK9k6amMgIiIiMqwUZkeQq+kFIiIiIsNK6UpERERExiyFWREREREZsxRmR5hLhNHcWREREZFhoTC7l+1w/xcOkDaF0SpFREREZNxRmN3L7A59ZuMY/JiD0dCsiIiIyLBQmB1BycpmKmoSo12GiIiIyLihMDuSNCIrIiIiMqwUZkVERERkzFKY3cuKxXC0SxAREREZtxRm9zIbbr8BzPUdHFcfuYiIiMhwUbIaQfEKT9NmRURERIaRwqyIiIiIjFkKsyIiIiIyZinMioiIiMiYpTArIiIiImOWwqyIiIiIjFkKsyIiIiIyZinMjiAb2dEuQURERGRcUZgdQdnOrtEuQURERGRcUZjdywYbjfX8GI7jjkI1IiIiIuOLN9oF7E9SNdWka+vw61OjXYqIiIjIuKCR2ZHkWIzWsxUREREZNhqZHUFriuuYo98fRET2W9ZagiAgDMPRLkVk1Pm+j+u+92mXCrN7mWX7nNltY7JpP42rObMiIvuVYrFIS0sL2Wx2tEsR2ScYY5gyZQoVFRXv6TwKs3ub3R5mj4gKHJg+jER19SgWJCIiIy2KIlauXInrukyaNIlYLKZpZ7Jfs9ayefNm1q1bx5w5c97TCK3C7F63PcwmEnG8hI9J14FGZkVE9hvFYpEoipg6dSqplG4CFgFobGxk1apVlEolhdmxIj/tCPxjz1KQFRHZTzmO7psQ2Wa4/jqhf1UjyBpHQVZERERkGCnMioiIiMiYpTArIiIiImPWqIfZu+66ixkzZpBIJJg/fz5PP/30Lvd/8sknmT9/PolEgpkzZ/Kd73xnhCoVERHZ/1x00UUYY/q+6uvrOe2003j55ZeH9XVWrVqFMYaXXnppt4+59dZbOeyww4a1jqF64oknBnw+J554Is8+++yAfTs6Orj66quZPn06sViMiRMncvHFF7NmzZoB+7a2tvLZz36WmTNnEo/HmTp1KmeddRa/+93vdllPd3c3N910E/PmzSORSDBhwgROOukkfv7zn2N36LA0noxqmH3wwQe5+uqruemmm1i6dCnHHXccp59++qAXFWDlypWcccYZHHfccSxdupR/+Id/4KqrruKhhx4a4cpFRET2H6eddhotLS20tLTwu9/9Ds/z+Mu//MvRLmu3lUqlvf4ar7/+Oi0tLTzxxBM0NjZy5plnsmnTpr7nOzo6OProo/ntb3/LXXfdxVtvvcWDDz7I22+/zQc/+EFWrFjRt++qVauYP38+//3f/81XvvIVXnnlFR577DFOOOEErrzyyp3W0NnZycKFC/nxj3/MjTfeyIsvvshTTz3Feeedx/XXX09XV9cev7+R+Az3mB1FRx55pL388sv7bZs3b5694YYbBt3/+uuvt/Pmzeu37VOf+pQ9+uijd/s1u7q6LGC7urqGXvAeePBbd9gb7/6CveE7X7C/ffQ/R+Q1RURk35LL5eyyZctsLpfrtz0Io1H5GooLL7zQfuhDH+q37amnnrKA3bRpU9+2l19+2Z5wwgk2kUjYuro6e9lll9menp6+58MwtLfddpudPHmyjcVi9tBDD7WPPvpo3/OUe1n2fR1//PHWWmsff/xx+8EPftCmUilbXV1tFy5caFetWmUXLVo04JhFixb1nevuu++2Z599tk2lUvbmm2+2QRDYT3ziE3b69Ok2kUjYuXPn2jvvvHPQ93rrrbfaxsZGW1lZaT/5yU/aQqGw08/n8ccft4DdsmVLv88CsL/85S/7tl1++eU2nU7blpaWfsdns1k7efJke9ppp/VtO/300+3kyZNtb2/vgNfb8XXe6dOf/rRNp9N2/fr1A57r6emxpVKp7/N5+OGH+z1fXV3d9/mtXLnSAvbBBx+0xx9/vI3H4/bOO++0iUSi3zWz1tqHHnrIplKpvmu9bt06e+6559qamhpbV1dnzz77bLty5cpB693Zvwtrh5bXRq01V7FYZMmSJdxwww39tp9yyik899xzgx7z+9//nlNOOaXftlNPPZUf/vCHlEolfN8fcEyhUKBQKPQ97u7uHobqRURE3pswsjz+p03vvuNecMK8Jlxnz9oi9fb2cu+99zJ79mzq6+sByGaznHbaaRx99NH84Q9/YNOmTVx66aV85jOf4Z577gHg61//Ol/96lf57ne/y+GHH86PfvQjzj77bF577TXmzJnD888/z5FHHslvf/tbDj74YGKxGEEQ8OEPf5jLLruM+++/n2KxyPPPP48xhvPOO49XX32Vxx57jN/+9rcAVO+wKNEtt9zC7bffzte+9jVc1yWKIqZMmcJPf/pTGhoaeO655/jkJz/JxIkTOffcc/uO+93vfkcikeDxxx9n1apVXHzxxTQ0NPDFL35xtz6fbDbLokWLAPpySRRFPPDAA1xwwQVMmDCh3/7JZJIrrriCf/zHf6SjowOAxx57jC9+8Yuk0+kB56+pqRn0dXd8jUmTJg14fk9W2fr7v/97vvrVr7Jo0SLi8ThPP/009957L6eddlrfPvfddx8f+tCHqKioIJvNcsIJJ3Dcccfx1FNP4Xke//zP/9w3LSUWiw25ht0xamG2ra2NMAxpbm7ut725uZnW1tZBj2ltbR10/yAIaGtrY+LEiQOOuf3227ntttuGr/Ah8hIJbKl3+1q2IiIiY8x//dd/9YWhTCbDxIkT+a//+q++vrn33nsvuVyOH//4x30B7Fvf+hZnnXUWX/7yl2lububf/u3f+Pu//3s++tGPAvDlL3+Zxx9/nDvvvJNvf/vbNDY2AlBfX98X+Do6Oujq6uIv//IvmTVrFgAHHnhgX10VFRV4njcgIAKcf/75fOITn+i3bcc8MGPGDJ577jl++tOf9guzsViMH/3oR6RSKQ4++GC+8IUvcN111/FP//RPu+wTPGXKFKAcZq21zJ8/n7/4i78AYPPmzXR2dvarfUcHHngg1lreeustoLw61rx583b6WoNpa2tjy5YtQz5uV66++mr+6q/+qu/xBRdcwMc//nGy2SypVIru7m5+9atf9U33fOCBB3Achx/84Ad9PWQXLVpETU0NTzzxxIAByeEy6osmvLNhrrV2l010B9t/sO3b3HjjjVx77bV9j7u7u5k6deqeljtkf3XJp6l+7JcA/MVpZ4/Y64qIyL7NdQwnzGsatdceihNOOIG7774bKAfMu+66i9NPP53nn3+eadOmsXz5cg499NB+I4nHHnssURTx+uuvk0wm2bBhA8cee2y/8x577LH88Y9/3Onr1tXVcdFFF3Hqqady8sknc9JJJ3HuuecOOnj1TgsWLBiw7Tvf+Q4/+MEPWL16NblcjmKxOOAGskMPPbTfKm3HHHMMvb29rF27lmnTpu309Z5++mnS6TRLly7l7//+77nnnnsG/YvxYHbMMlEU9X0/FO+Wh/bEOz/DM888E8/z+OUvf8lHP/pRHnroISorK/tC6pIlS3jrrbeorKzsd1w+n+ftt98etrreadTCbENDA67rDhiF3bRp04DR120mTJgw6P6e5/X9qeOd4vE48Xh8eIreQwqxIiIymD39U/9IS6fTzJ49u+/x/Pnzqa6u5vvf/z7//M//vMuBqB23D3UAC8oje1dddRWPPfYYDz74IP/4j//I4sWLOfroo9+15h399Kc/5ZprruGrX/0qxxxzDJWVlfzrv/4r//u//7vL8+ys9neaMWMGNTU1zJ07l3w+zznnnMOrr75KPB6nsbGRmpoali1bNuixf/rTnzDG9I0+G2NYvnw5H/7wh3erNigvDVtbW8vy5ct3673Yd3Q2GOwGr3d+hrFYjI985CPcd999fPSjH+W+++7jvPPOw/PKcTKKIubPn8+99947aH17y6h1M4jFYsyfP5/Fixf327548WIWLlw46DHHHHPMgP1/85vfsGDBgt3+7UdERETeG2MMjuOQy+UAOOigg3jppZfIZDJ9+zz77LM4jsPcuXOpqqpi0qRJPPPMM/3O89xzz/X96X3bfMowDAe83uGHH86NN97Ic889xyGHHMJ9993Xd8xg+w/m6aefZuHChVxxxRUcfvjhzJ49e9DRwj/+8Y997wvgf/7nf6ioqOibRrA7PvaxjxFFEXfddRdQXsb43HPP5b777hswKJfL5bjrrrs49dRTqauro66ujlNPPZVvf/vb/T7PbTo7Owd9TcdxOO+887j33nvZsGHDgOczmQxBEADlYNnS0tL33Jtvvkk2m92t93bBBRfw2GOP8dprr/H4449zwQUX9D13xBFH8Oabb9LU1MTs2bP7fe04n3m4jWprrmuvvZYf/OAH/OhHP2L58uVcc801rFmzhssvvxwoTxH4+Mc/3rf/5ZdfzurVq7n22mtZvnw5P/rRj/jhD3/I5z//+dF6CyIiIuNeoVCgtbWV1tZWli9fzmc/+1l6e3s566yzgHLASSQSXHjhhbz66qs8/vjjfPazn+VjH/tY319br7vuOr785S/z4IMP8vrrr3PDDTfw0ksv8bnPfQ6ApqYmkskkjz32GBs3bqSrq4uVK1dy44038vvf/57Vq1fzm9/8hjfeeKMvAE+fPp2VK1fy0ksv0dbW1u+G73eaPXs2L7zwAr/+9a954403+P/+v/+PP/zhDwP2KxaLXHLJJSxbtoxHH32UW265hc985jO7nC/7To7jcPXVV/Mv//IvfSHxi1/8IhMmTODkk0/m0UcfZe3atTz11FOceuqplEolvv3tb/cdf9dddxGGIUceeSQPPfQQb775JsuXL+cb3/gGxxxzzE5f90tf+hJTp07lqKOO4sc//jHLli3jzTff5Ec/+hGHHXYYvb29AJx44ol861vf4sUXX+SFF17g8ssv3+1BweOPP57m5mYuuOACpk+f3m+E/IILLqChoYEPfehDPP3006xcuZInn3ySz33uc6xbt263P78he9d+B3vZt7/9bTtt2jQbi8XsEUccYZ988sm+5y688MK+1hzbPPHEE/bwww+3sVjMTp8+3d59991Der2Rbs0lIiKyqxZE+7oLL7ywX/uryspK+8EPftD+7Gc/67ffUFpz+b4/oDWXtdZ+//vft1OnTrWO49jjjz/etra22g9/+MN24sSJNhaL2WnTptmbb77ZhmForbU2n8/b//t//6+tqakZ0Jrrna2n8vm8veiii2x1dbWtqamxn/70p+0NN9xgDz300H7v9UMf+pC9+eabbX19va2oqLCXXnqpzefzO/18BmvNZa21vb29tra21n75y1/u27Z582b72c9+1k6dOtV6nmebm5vthRdeaFevXj3gvBs2bLBXXnllX0aaPHmyPfvss+3jjz++01qstbazs9PecMMNds6cOTYWi9nm5mZ70kkn2YcffthGUbkt2/r16+0pp5xi0+m0nTNnjn3kkUcGbc21dOnSQV/juuuus4C9+eabBzzX0tJiP/7xj9uGhgYbj8ftzJkz7WWXXTZo7hqu1lzG2nG6HMROdHd3U11dTVdXF1VVVaNdjoiI7Afy+TwrV67sW/FS9k0XXXQRnZ2d/OIXvxjtUvYLu/p3MZS8NurL2YqIiIiI7CmFWREREREZs0a9z6yIiIjIvmDbamUytmhkVkRERETGLIVZERGREbKf3XMtskvD9e9BYVZERGQv29bDc3cb04vsD4rFIgCu676n82jOrIiIyF7mui41NTVs2rQJgFQq9a7Lo4qMZ1EUsXnzZlKpVN9yuHtKYVZERGQETJgwAaAv0Irs7xzH4YADDnjPv9gpzIqIiIwAYwwTJ06kqamJUqk02uWIjLpYLDakZYJ3RmFWRERkBLmu+57nCIrIdroBTERERETGLIVZERERERmzFGZFREREZMza7+bMbmvQ293dPcqViIiIiMhgtuW03VlYYb8Lsz09PQBMnTp1lCsRERERkV3p6emhurp6l/sYu5+trRdFERs2bKCysnLEGlZ3d3czdepU1q5dS1VV1Yi8pgwfXb+xT9dw7NM1HNt0/ca+kb6G1lp6enqYNGnSu7bv2u9GZh3HYcqUKaPy2lVVVfpHPIbp+o19uoZjn67h2KbrN/aN5DV8txHZbXQDmIiIiIiMWQqzIiIiIjJmKcyOgHg8zi233EI8Hh/tUmQP6PqNfbqGY5+u4dim6zf27cvXcL+7AUxERERExg+NzIqIiIjImKUwKyIiIiJjlsKsiIiIiIxZCrMiIiIiMmYpzA6Du+66ixkzZpBIJJg/fz5PP/30Lvd/8sknmT9/PolEgpkzZ/Kd73xnhCqVnRnKNfz5z3/OySefTGNjI1VVVRxzzDH8+te/HsFqZTBD/Xe4zbPPPovneRx22GF7t0B5V0O9hoVCgZtuuolp06YRj8eZNWsWP/rRj0aoWnmnoV6/e++9l0MPPZRUKsXEiRO5+OKLaW9vH6Fq5Z2eeuopzjrrLCZNmoQxhl/84hfvesw+k2esvCcPPPCA9X3ffv/737fLli2zn/vc52w6nbarV68edP8VK1bYVCplP/e5z9lly5bZ73//+9b3ffuzn/1shCuXbYZ6DT/3uc/ZL3/5y/b555+3b7zxhr3xxhut7/v2xRdfHOHKZZuhXsNtOjs77cyZM+0pp5xiDz300JEpVga1J9fw7LPPtkcddZRdvHixXblypf3f//1f++yzz45g1bLNUK/f008/bR3HsV//+tftihUr7NNPP20PPvhg++EPf3iEK5dtHnnkEXvTTTfZhx56yAL24Ycf3uX++1KeUZh9j4488kh7+eWX99s2b948e8MNNwy6//XXX2/nzZvXb9unPvUpe/TRR++1GmXXhnoNB3PQQQfZ2267bbhLk920p9fwvPPOs//4j/9ob7nlFoXZUTbUa/joo4/a6upq297ePhLlybsY6vX713/9Vztz5sx+277xjW/YKVOm7LUaZfftTpjdl/KMphm8B8VikSVLlnDKKaf0237KKafw3HPPDXrM73//+wH7n3rqqbzwwguUSqW9VqsMbk+u4TtFUURPTw91dXV7o0R5F3t6DRctWsTbb7/NLbfcsrdLlHexJ9fwl7/8JQsWLOArX/kKkydPZu7cuXz+858nl8uNRMmygz25fgsXLmTdunU88sgjWGvZuHEjP/vZzzjzzDNHomQZBvtSnvFG9NXGmba2NsIwpLm5ud/25uZmWltbBz2mtbV10P2DIKCtrY2JEyfutXploD25hu/01a9+lUwmw7nnnrs3SpR3sSfX8M033+SGG27g6aefxvP0P4OjbU+u4YoVK3jmmWdIJBI8/PDDtLW1ccUVV9DR0aF5syNsT67fwoULuffeeznvvPPI5/MEQcDZZ5/NN7/5zZEoWYbBvpRnNDI7DIwx/R5bawdse7f9B9suI2eo13Cb+++/n1tvvZUHH3yQpqamvVWe7IbdvYZhGHL++edz2223MXfu3JEqT3bDUP4dRlGEMYZ7772XI488kjPOOIM77riDe+65R6Ozo2Qo12/ZsmVcddVV3HzzzSxZsoTHHnuMlStXcvnll49EqTJM9pU8oyGJ96ChoQHXdQf85rlp06YBv61sM2HChEH39zyP+vr6vVarDG5PruE2Dz74IJdccgn/8R//wUknnbQ3y5RdGOo17Onp4YUXXmDp0qV85jOfAcrByFqL53n85je/4cQTTxyR2qVsT/4dTpw4kcmTJ1NdXd237cADD8Ray7p165gzZ85erVm225Prd/vtt3Psscdy3XXXAfCBD3yAdDrNcccdxz//8z/rr5RjwL6UZzQy+x7EYjHmz5/P4sWL+21fvHgxCxcuHPSYY445ZsD+v/nNb1iwYAG+7++1WmVwe3INoTwie9FFF3HfffdpjtcoG+o1rKqq4pVXXuGll17q+7r88st53/vex0svvcRRRx01UqXLVnvy7/DYY49lw4YN9Pb29m174403cByHKVOm7NV6pb89uX7ZbBbH6R9BXNcFto/uyb5tn8ozI37L2TizrR3JD3/4Q7ts2TJ79dVX23Q6bVetWmWttfaGG26wH/vYx/r239bK4pprrrHLli2zP/zhD9Waa5QN9Rred9991vM8++1vf9u2tLT0fXV2do7WW9jvDfUavpO6GYy+oV7Dnp4eO2XKFPuRj3zEvvbaa/bJJ5+0c+bMsZdeeulovYX92lCv36JFi6znefauu+6yb7/9tn3mmWfsggUL7JFHHjlab2G/19PTY5cuXWqXLl1qAXvHHXfYpUuX9rVX25fzjMLsMPj2t79tp02bZmOxmD3iiCPsk08+2ffchRdeaI8//vh++z/xxBP28MMPt7FYzE6fPt3efffdI1yxvNNQruHxxx9vgQFfF1544cgXLn2G+u9wRwqz+4ahXsPly5fbk046ySaTSTtlyhR77bXX2mw2O8JVyzZDvX7f+MY37EEHHWSTyaSdOHGiveCCC+y6detGuGrZ5vHHH9/l/7fty3nGWKvxfBEREREZmzRnVkRERETGLIVZERERERmzFGZFREREZMxSmBURERGRMUthVkRERETGLIVZERERERmzFGZFREREZMxSmBURERGRMUthVkQEuOeee6ipqRntMvbY9OnTufPOO3e5z6233sphhx02IvWIiIwUhVkRGTcuuugijDEDvt56663RLo177rmnX00TJ07k3HPPZeXKlcNy/j/84Q988pOf7HtsjOEXv/hFv30+//nP87vf/W5YXm9n3vk+m5ubOeuss3jttdeGfJ6x/MuFiIwchVkRGVdOO+00Wlpa+n3NmDFjtMsCoKqqipaWFjZs2MB9993HSy+9xNlnn00Yhu/53I2NjaRSqV3uU1FRQX19/Xt+rXez4/v81a9+RSaT4cwzz6RYLO711xaR/Y/CrIiMK/F4nAkTJvT7cl2XO+64g/e///2k02mmTp3KFVdcQW9v707P88c//pETTjiByspKqqqqmD9/Pi+88ELf88899xx/9md/RjKZZOrUqVx11VVkMpld1maMYcKECUycOJETTjiBW265hVdffbVv5Pjuu+9m1qxZxGIx3ve+9/GTn/yk3/G33norBxxwAPF4nEmTJnHVVVf1PbfjNIPp06cDcM4552CM6Xu84zSDX//61yQSCTo7O/u9xlVXXcXxxx8/bO9zwYIFXHPNNaxevZrXX3+9b59dXY8nnniCiy++mK6urr4R3ltvvRWAYrHI9ddfz+TJk0mn0xx11FE88cQTu6xHRMY3hVkR2S84jsM3vvENXn31Vf793/+d//7v/+b666/f6f4XXHABU6ZM4Q9/+ANLlizhhhtuwPd9AF555RVOPfVU/uqv/oqXX36ZBx98kGeeeYbPfOYzQ6opmUwCUCqVePjhh/nc5z7H3/3d3/Hqq6/yqU99iosvvpjHH38cgJ/97Gd87Wtf47vf/S5vvvkmv/jFL3j/+98/6Hn/8Ic/ALBo0SJaWlr6Hu/opJNOoqamhoceeqhvWxiG/PSnP+WCCy4YtvfZ2dnJfffdB9D3+cGur8fChQu58847+0Z4W1pa+PznPw/AxRdfzLPPPssDDzzAyy+/zF//9V9z2mmn8eabb+52TSIyzlgRkXHiwgsvtK7r2nQ63ff1kY98ZNB9f/rTn9r6+vq+x4sWLbLV1dV9jysrK+0999wz6LEf+9jH7Cc/+cl+255++mnrOI7N5XKDHvPO869du9YeffTRdsqUKbZQKNiFCxfayy67rN8xf/3Xf23POOMMa621X/3qV+3cuXNtsVgc9PzTpk2zX/va1/oeA/bhhx/ut88tt9xiDz300L7HV111lT3xxBP7Hv/617+2sVjMdnR0vKf3Cdh0Om1TqZQFLGDPPvvsQfff5t2uh7XWvvXWW9YYY9evX99v+1/8xV/YG2+8cZfnF5HxyxvdKC0iMrxOOOEE7r777r7H6XQagMcff5wvfelLLFu2jO7uboIgIJ/Pk8lk+vbZ0bXXXsull17KT37yE0466ST++q//mlmzZgGwZMkS3nrrLe69996+/a21RFHEypUrOfDAAwetrauri4qKCqy1ZLNZjjjiCH7+858Ti8VYvnx5vxu4AI499li+/vWvA/DXf/3X3HnnncycOZPTTjuNM844g7POOgvP2/P/Gb/gggs45phj2LBhA5MmTeLee+/ljDPOoLa29j29z8rKSl588UWCIODJJ5/kX//1X/nOd77Tb5+hXg+AF198EWstc+fO7be9UCiMyFxgEdk3KcyKyLiSTqeZPXt2v22rV6/mjDPO4PLLL+ef/umfqKur45lnnuGSSy6hVCoNep5bb72V888/n1/96lc8+uij3HLLLTzwwAOcc845RFHEpz71qX5zVrc54IADdlrbtpDnOA7Nzc0DQpsxpt9ja23ftqlTp/L666+zePFifvvb33LFFVfwr//6rzz55JP9/nw/FEceeSSzZs3igQce4NOf/jQPP/wwixYt6nt+T9+n4zh912DevHm0trZy3nnn8dRTTwF7dj221eO6LkuWLMF13X7PVVRUDOm9i8j4oTArIuPeCy+8QBAEfPWrX8VxyrcK/PSnP33X4+bOncvcuXO55ppr+Ju/+RsWLVrEOeecwxFHHMFrr702IDS/mx1D3jsdeOCBPPPMM3z84x/v2/bcc8/1G/1MJpOcffbZnH322Vx55ZXMmzePV155hSOOOGLA+Xzf360uCeeffz733nsvU6ZMwXEczjzzzL7n9vR9vtM111zDHXfcwcMPP8w555yzW9cjFosNqP/www8nDEM2bdrEcccd955qEpHxQzeAici4N2vWLIIg4Jvf/CYrVqzgJz/5yYA/e+8ol8vxmc98hieeeILVq1fz7LPP8oc//KEvWP793/89v//977nyyit56aWXePPNN/nlL3/JZz/72T2u8brrruOee+7hO9/5Dm+++SZ33HEHP//5z/tufLrnnnv44Q9/yKuvvtr3HpLJJNOmTRv0fNOnT+d3v/sdra2tbNmyZaeve8EFF/Diiy/yxS9+kY985CMkEom+54brfVZVVXHppZdyyy23YP//9u1XRbUoDMP4d2BvQbZYLCqIG5EdbaI3IEaxCYJWg9egyWAxegG7WRQMJvUCtHkDYhcsImh5J83A/GPOOQwMe3h+9StrscoT1if91Xv4vm/X69U2m42dz2e73W4WBIG1223rdDo2n8/teDzafr+38Xhsq9Xqn84E4Bf5yQ+7APCdut2uGo3Gh7PJZKJMJqN4PK56va4wDGVmulwukl4vHN3vd7VaLeVyOcViMWWzWfX7/VdLT7vdTrVaTYlEQp7nqVQqaTQafXq2jxaa3ppOpyoUCnJdV0EQKAzDl9lisVClUlEymZTneapWq1qv1y/ztwtgy+VSxWJRjuMon89Ler8A9qxcLsvMtN1u382+656n00mO42g2m0n6+j0kqdfrKZVKycw0HA4lSY/HQ4PBQL7vy3VdpdNpNZtNHQ6HT88E4Hf7I0k/m9MAAADA/+GbAQAAACKLmAUAAEBkEbMAAACILGIWAAAAkUXMAgAAILKIWQAAAEQWMQsAAIDIImYBAAAQWcQsAAAAIouYBQAAQGQRswAAAIisJ4oWQhTlUJ91AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAHFCAYAAAD1+1APAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLNElEQVR4nO3deVwU9f8H8Ndy7HIIq4CCKCoinuCFhlgKhWB4YVbmkaFhaZpFXv3Kr4rfEtTKI00sMyFvOzRTUzGPMrEQNc8sCxUTRAkBkZvP7w+/TK6A7rK7rOy8nj7m8XBnPjPz3ov3vj/zmRmFEEKAiIiIzJaFqQMgIiIi42KyJyIiMnNM9kRERGaOyZ6IiMjMMdkTERGZOSZ7IiIiM8dkT0REZOaY7ImIiMwckz0REZGZM9tkf/LkSYwZMwaenp6wsbFBvXr10LVrVyxYsAD//POPUfd9/PhxBAYGQq1WQ6FQYPHixQbfh0KhQHR0tMG3+yDx8fFQKBRQKBQ4cOBApeVCCLRq1QoKhQJBQUE12sfy5csRHx+v0zoHDhyoNqaa2rRpEzp06ABbW1soFAqcOHHCYNu+V0X8X375pdH2cbfbt28jOjpa69fr4sWL0vteMTk6OqJTp05YvHgxysrKjBrvzp07a/x5v3r1KqKjo436/ulr9+7dCA0Nhbu7O1QqFdzd3REUFIR58+aZOrQHCgoKqvF3nWqPWSb7lStXws/PD8nJyZg2bRp27dqFLVu24Nlnn8WKFSsQGRlp1P2/+OKLSE9Px8aNG5GUlIRhw4YZfB9JSUkYO3aswberLQcHB6xatarS/IMHD+LPP/+Eg4NDjbddk2TftWtXJCUloWvXrjXe792uX7+OUaNGwcvLC7t27UJSUhJat25tkG0/DG7fvo05c+bo/ONo0qRJSEpKQlJSEjZv3oxHH30Ub7zxBqZPn26cQP9n586dmDNnTo3WvXr1KubMmfPQJvsVK1bgySefhKOjI5YtW4bdu3dj/vz5aNeuXa39+CPzZ2XqAAwtKSkJr7zyCkJCQrB161aoVCppWUhICKZMmYJdu3YZNYbTp0/jpZdeQlhYmNH20aNHD6NtWxvPPfcc1q1bh48++giOjo7S/FWrViEgIAC5ubm1EkdJSYlUZRryNfn9999RUlKC559/HoGBgQbZ5u3bt2FnZ2eQbZlKs2bNNF7nJ598EqdPn8aGDRvwwQcfmDAyw6nt9yk2Nha9e/eulNhHjRqF8vLyWouDzJvZVfYxMTFQKBT45JNPNBJ9BaVSiUGDBkmPy8vLsWDBArRt2xYqlQqNGjXCCy+8gCtXrmisFxQUBB8fHyQnJ6NXr16ws7NDy5YtMW/ePOkLWdHFXVpairi4OKm7EwCio6Ol/9+tYp2LFy9K8/bt24egoCA4OzvD1tYWzZo1w9NPP43bt29Lbarqxj99+jTCw8PRoEED2NjYoHPnzkhISNBoU9FdvGHDBsyYMQPu7u5wdHREnz59cP78ee1eZADDhw8HAGzYsEGal5OTg6+++govvvhilevMmTMH/v7+cHJygqOjI7p27YpVq1bh7nsxtWjRAmfOnMHBgwel169FixYasa9ZswZTpkxBkyZNoFKpcOHChUrd+Ddu3ICHhwd69uyJkpISaftnz56Fvb09Ro0aVe1zGz16NB577DEAd37U3HtIYtu2bQgICICdnR0cHBwQEhKCpKQkjW1UvN/Hjh3DM888gwYNGsDLy+vBL+wDaPMaAvf/DF28eBENGzaUtlfxOo8ePbpGManValhbW2vM0/Z7BQCfffYZOnXqBBsbGzg5OeGpp57CuXPnpOWjR4/GRx99BAAahxEqvjNffPEF/P39oVarpe9lxWfwwIED6N69OwBgzJgx0roV353Ro0ejXr16OHXqFEJDQ+Hg4IDg4GAAQGJiIsLDw9G0aVPY2NigVatWGDduHG7cuKERf8V7ffz4cQwZMgSOjo5Qq9V4/vnncf369Qe+fllZWWjcuHGVyywsNP9Ef/TRR+jduzcaNWoEe3t7+Pr6YsGCBRqfceDfv1dJSUno2bMnbG1t0aJFC6xevRoAsGPHDnTt2hV2dnbw9fWtVADp+5yKi4vx7rvvSu9/w4YNMWbMGK3WJSMRZqS0tFTY2dkJf39/rdd5+eWXBQDx6quvil27dokVK1aIhg0bCg8PD3H9+nWpXWBgoHB2dhbe3t5ixYoVIjExUUyYMEEAEAkJCUIIITIzM0VSUpIAIJ555hmRlJQkkpKShBBCzJ49W1T1cq9evVoAEKmpqUIIIVJTU4WNjY0ICQkRW7duFQcOHBDr1q0To0aNEtnZ2dJ6AMTs2bOlx7/99ptwcHAQXl5e4vPPPxc7duwQw4cPFwDE/PnzpXb79+8XAESLFi3EyJEjxY4dO8SGDRtEs2bNhLe3tygtLb3v61URb3Jyshg1apR45JFHpGVxcXHC3t5e5Obmig4dOojAwECNdUePHi1WrVolEhMTRWJionjnnXeEra2tmDNnjtTm2LFjomXLlqJLly7S63fs2DGN2Js0aSKeeeYZsW3bNrF9+3aRlZUlLdu/f7+0rUOHDgkrKyvxxhtvCCGEyM/PF+3btxdt27YVt27dqvY5XrhwQXz00UcCgIiJiRFJSUnizJkzQggh1q1bJwCI0NBQsXXrVrFp0ybh5+cnlEql+PHHH6VtVLzfzZs3F2+++aZITEwUW7durXafFfF/8cUX9339tXkNH/QZKiwsFLt27RIARGRkpPQ6X7hwodr9pqamSp+lkpISUVJSIm7cuCFWrVolrKysxIwZMzTaa/u9iomJEQDE8OHDxY4dO8Tnn38uWrZsKdRqtfj999+l9+OZZ54RAKRYk5KSRGFhoTh8+LBQKBRi2LBhYufOnWLfvn1i9erVYtSoUUIIIXJycqTP7H/+8x9p3bS0NCGEEBEREcLa2lq0aNFCxMbGiu+//17s3r1bCHHn8xwbGyu2bdsmDh48KBISEkSnTp1EmzZtRHFxcZXv9bRp08Tu3bvFwoULhb29vejSpYtG26r06dNHWFlZidmzZ4sTJ07c9zv4xhtviLi4OLFr1y6xb98+sWjRIuHi4iLGjBmj0a7i71WbNm3EqlWrxO7du8WAAQMEADFnzhzh6+srNmzYIHbu3Cl69OghVCqV+Pvvv2v0nAIDAzW+62VlZeLJJ58U9vb2Ys6cOSIxMVF8+umnokmTJqJ9+/bi9u3b9309yDjMKtlnZGQIAGLYsGFatT937pwAICZMmKAx/+effxYAxNtvvy3NCwwMFADEzz//rNG2ffv2om/fvhrzAIiJEydqzNM22X/55ZcCgDhx4sR9Y7832Q8bNkyoVCpx+fJljXZhYWHCzs5O3Lx5Uwjxb1Lp16+fRrvNmzdLf0zv5+5kX7Gt06dPCyGE6N69uxg9erQQQlSZ7O9WVlYmSkpKxH//+1/h7OwsysvLpWXVrVuxv969e1e77O5kL4QQ8+fPFwDEli1bREREhLC1tRUnT56873O8e3t3J9+ysjLh7u4ufH19RVlZmTQ/Ly9PNGrUSPTs2VOaV/F+z5o164H7qm5/D1Lda6jNZ+j69euVPkP3U5Hsq5pGjx6tkaC0/V5lZ2cLW1vbSp/Fy5cvC5VKJUaMGCHNmzhxYpXfn/fff18AkD7fVUlOThYAxOrVqysti4iIEADEZ599dt/nX15eLkpKSsSlS5cEAPHNN99Iyyre64oflRUqfhiuXbv2vtu+cOGC8PHxkV5PW1tbERwcLJYtW3bfHwoV7//nn38uLC0txT///CMtq/h7dfToUWleVlaWsLS0FLa2thqJ/cSJEwKA+PDDD2v0nO5N9hs2bBAAxFdffaWxbsX7sHz58vu+HmQcZteNr4v9+/cDQKXuy0ceeQTt2rXD999/rzHfzc0NjzzyiMa8jh074tKlSwaLqXPnzlAqlXj55ZeRkJCAv/76S6v19u3bh+DgYHh4eGjMHz16NG7fvl2pm/nuQxnAnecBQKfnEhgYCC8vL3z22Wc4deoUkpOTq+3Cr4ixT58+UKvVsLS0hLW1NWbNmoWsrCxkZmZqvd+nn35a67bTpk1D//79MXz4cCQkJGDp0qXw9fXVev27nT9/HlevXsWoUaM0ulfr1auHp59+GkeOHNE41KJrrNrQ5jWs6WdIG6+//jqSk5ORnJyM/fv3IyYmBps3b5YO6wDaf6+SkpJQUFBQqZ2HhweeeOKJSt+/qlR00Q8dOhSbN2/G33//XaPnVdX7lJmZifHjx8PDwwNWVlawtrZG8+bNAUDjMEOFkSNHajweOnQorKyspNejOl5eXvj1119x8OBBzJkzB3369EFycjJeffVVBAQEoLCwUGp7/PhxDBo0CM7OztL7/8ILL6CsrAy///67xnYbN24MPz8/6bGTkxMaNWqEzp07w93dXZrfrl07AFV/92vynLZv34769etj4MCBKC0tlabOnTvDzc3NoGfMkPbMKtm7uLjAzs4OqampWrXPysoCgCqPl7m7u0vLKzg7O1dqp1KpUFBQUINoq+bl5YW9e/eiUaNGmDhxIry8vODl5YUlS5bcd73qjvtVfKkf9Fwqxjfo8lwUCgXGjBmDtWvXYsWKFWjdujV69epVZdtffvkFoaGhAO6cLfHTTz8hOTkZM2bM0Hm/1R3frC7G0aNHo7CwEG5ubvc9Vv8gD/q8lJeXIzs7u8axPoi2r2FNP0PaaNq0Kbp164Zu3bohKCgIb731FmbOnIkvvvgCu3fvBqD990rX719Vevfuja1bt6K0tBQvvPACmjZtCh8fH42xJA9iZ2enMcgUuDPmIDQ0FF9//TWmT5+O77//Hr/88guOHDkCoOrPq5ubm8ZjKysrODs7a/U8LCws0Lt3b8yaNQvbtm3D1atX8dxzzyElJQWfffYZAODy5cvo1asX/v77byxZsgQ//vgjkpOTpfEM98bk5ORUaT9KpbLSfKVSCQAaPyr0eU7Xrl3DzZs3oVQqYW1trTFlZGRUGvNAtcOsRuNbWloiODgY3333Ha5cuYKmTZvet31FwktPT6/U9urVq3BxcTFYbDY2NgCAoqIijYGDVX3we/XqhV69eqGsrAxHjx7F0qVLERUVBVdX12pP43N2dkZ6enql+VevXgUAgz6Xu40ePRqzZs3CihUrMHfu3Grbbdy4EdbW1ti+fbv0WgDA1q1bdd5nVQMdq5Oeno6JEyeic+fOOHPmDKZOnYoPP/xQ530Cmp+Xe129ehUWFhZo0KBBjWN9EF1ew5p8hmqqolfo119/Rd++fbX+Xj3o9dT2MxseHo7w8HAUFRXhyJEjiI2NxYgRI9CiRQsEBAQ8cP2q3qPTp0/j119/RXx8PCIiIqT5Fy5cqHY7GRkZaNKkifS4tLQUWVlZVRYJD2Jvb4+33noLmzZtwunTpwHceZ/z8/Px9ddfSz0MAIx6SmFNnpOLiwucnZ2rPetJn9NyqebMqrIHgLfeegtCCLz00ksoLi6utLykpATffvstAOCJJ54AAKxdu1ajTXJyMs6dOyeNyjWEihHlJ0+e1JhfEUtVLC0t4e/vL/1yP3bsWLVtg4ODsW/fPim5V/j8889hZ2dntFP1mjRpgmnTpmHgwIEafxTvpVAoYGVlBUtLS2leQUEB1qxZU6mtoXpLysrKMHz4cCgUCnz33XeIjY3F0qVL8fXXX9doe23atEGTJk2wfv16jdHv+fn5+Oqrr6QR+saiy2tYobrPUE16cqpTkWwaNWoEQPvvVUBAAGxtbSu1u3LlinRYqoI28apUKgQGBmL+/PkA7nR5a7vuvSp+ANx7Rs/HH39c7Trr1q3TeLx582aUlpY+8IIzVf3YAf49VFDRO1dVTEIIrFy58r7b10dNntOAAQOQlZWFsrIyqRfo7qlNmzZGi5eqZ1aVPXDnD0hcXBwmTJgAPz8/vPLKK+jQoQNKSkpw/PhxfPLJJ/Dx8cHAgQPRpk0bvPzyy1i6dCksLCwQFhaGixcvYubMmfDw8MAbb7xhsLj69esHJycnREZG4r///S+srKwQHx+PtLQ0jXYrVqzAvn370L9/fzRr1gyFhYVSN16fPn2q3f7s2bOxfft2PP7445g1axacnJywbt067NixAwsWLIBarTbYc7mXNlf56t+/PxYuXIgRI0bg5ZdfRlZWFt5///0qT4/09fXFxo0bsWnTJrRs2RI2NjY1Os4+e/Zs/Pjjj9izZw/c3NwwZcoUHDx4EJGRkejSpQs8PT112p6FhQUWLFiAkSNHYsCAARg3bhyKiorw3nvv4ebNmwa52llFN/G9AgMDtX4NtfkMOTg4oHnz5vjmm28QHBwMJycnuLi4SD9Kq3P58mUpxvz8fCQlJSE2NhbNmzfHkCFDAEDr71X9+vUxc+ZMvP3223jhhRcwfPhwZGVlYc6cObCxscHs2bOl/Va8//Pnz0dYWBgsLS3RsWNHvPvuu7hy5QqCg4PRtGlT3Lx5E0uWLIG1tbV0fQQvLy/Y2tpi3bp1aNeuHerVqwd3d3eN49b3atu2Lby8vPB///d/EELAyckJ3377LRITE6td5+uvv4aVlRVCQkJw5swZzJw5E506dcLQoUPv+5p26NABwcHBCAsLg5eXFwoLC/Hzzz/jgw8+gKurq3QRsJCQECiVSgwfPhzTp09HYWEh4uLiKh06MqSaPKdhw4Zh3bp16NevH15//XU88sgjsLa2xpUrV7B//36Eh4fjqaeeMlrMVA3Tjg80nhMnToiIiAjRrFkzoVQqpVNGZs2aJTIzM6V2ZWVlYv78+aJ169bC2tpauLi4iOeff146NadCYGCg6NChQ6X9REREiObNm2vMQxWj8YUQ4pdffhE9e/YU9vb2okmTJmL27Nni008/1RiNn5SUJJ566inRvHlzoVKphLOzswgMDBTbtm2rtI97R1KfOnVKDBw4UKjVaqFUKkWnTp0qjUCubtR3xWjrqkYs3+3u0fj3U9WI+s8++0y0adNGqFQq0bJlSxEbGytWrVql8fyFEOLixYsiNDRUODg4SKf/3C/2u5dVjMbfs2ePsLCwqPQaZWVliWbNmonu3buLoqKiauO/3762bt0q/P39hY2NjbC3txfBwcHip59+0mhTMZr57tPM7qdif9VNFc9Lm9dQ28/Q3r17RZcuXYRKpRIARERERLXxVTUa38bGRrRu3VpERUWJ9PR0jfbafq+EEOLTTz8VHTt2FEqlUqjVahEeHi6d6lihqKhIjB07VjRs2FAoFArp+W7fvl2EhYWJJk2aCKVSKRo1aiT69euncRqkEHdGiLdt21ZYW1trfHciIiKEvb19lc/57NmzIiQkRDg4OIgGDRqIZ599Vly+fLnSd6/ivU5JSREDBw4U9erVEw4ODmL48OHi2rVr1b6mFT7++GMxZMgQ0bJlS2FnZyeUSqXw8vIS48ePr/R6ffvtt6JTp07CxsZGNGnSREybNk189913lc5Eqe7vVfPmzUX//v0rzb/3b5Yuz+ne0fhCCFFSUiLef/99KdZ69eqJtm3binHjxok//vjjga8JGZ5CiHuuxkFERFqLjo7GnDlzcP36daONjalt5vic5M7sjtkTERGRJiZ7IiIiM8dufCIiIjPHyp6IiMjMMdkTERGZOSZ7IiIiM1enL6pTXl6Oq1evwsHBwaCXJSUiotohhEBeXh7c3d01bjBlaIWFhVVeVVVXSqVS43LVdUWdTvZXr16tdJc3IiKqe9LS0h54P5OaKiwshK2DM1B6+8GNH8DNzQ2pqal1LuHX6WRfcUMFZfsIKCyVJo6GyDguH3jf1CEQGU1ebi5aeXoY9QY5xcXFQOltqNpHAPrkirJiZJxNQHFxMZN9barouldYKpnsyWzde/tVInNUK4dirWz0yhVCUXeHudXpZE9ERKQ1BQB9flTU4aFhTPZERCQPCos7kz7r11F1N3IiIiLSCit7IiKSB4VCz278utuPz2RPRETywG58IiIiMles7ImISB7YjU9ERGTu9OzGr8Od4XU3ciIiItIKK3siIpIHduMTERGZOY7GJyIiInPFyp6IiOSB3fhERERmTsbd+Ez2REQkDzKu7OvuzxQiIiLSCit7IiKSB3bjExERmTmFQs9kz258IiIiekixsiciInmwUNyZ9Fm/jmKyJyIieZDxMfu6GzkRERFphZU9ERHJg4zPs2eyJyIieWA3PhEREZkrVvZERCQP7MYnIiIyczLuxmeyJyIieZBxZV93f6YQERGRVljZExGRPLAbn4iIyMyxG5+IiIjMFSt7IiKSCT278etwfcxkT0RE8sBufCIiIjJXrOyJiEgeFAo9R+PX3cqeyZ6IiORBxqfe1d3IiYiISCus7ImISB5kPECPyZ6IiORBxt34TPZERCQPMq7s6+7PFCIiItIKK3siIpIHduMTERGZOXbjExERkbliZU9ERLKgUCigkGllz2RPRESyIOdkz258IiIiM8fKnoiI5EHxv0mf9esoJnsiIpIFduMTERGR2WJlT0REsiDnyp7JnoiIZIHJnoiIyMzJOdnzmD0REZGZY2VPRETywFPviIiIzBu78YmIiMigoqOjpR8YFZObm5u0XAiB6OhouLu7w9bWFkFBQThz5ozGNoqKijBp0iS4uLjA3t4egwYNwpUrV3SOhcmeiIhk4c4dbhV6TLrvs0OHDkhPT5emU6dOScsWLFiAhQsXYtmyZUhOToabmxtCQkKQl5cntYmKisKWLVuwceNGHDp0CLdu3cKAAQNQVlamUxzsxiciIllQQM9u/BoctLeystKo5isIIbB48WLMmDEDQ4YMAQAkJCTA1dUV69evx7hx45CTk4NVq1ZhzZo16NOnDwBg7dq18PDwwN69e9G3b1+t42BlT0REpIPc3FyNqaioqNq2f/zxB9zd3eHp6Ylhw4bhr7/+AgCkpqYiIyMDoaGhUluVSoXAwEAcPnwYAJCSkoKSkhKNNu7u7vDx8ZHaaIvJnoiIZEG/Lvx/ewU8PDygVqulKTY2tsr9+fv74/PPP8fu3buxcuVKZGRkoGfPnsjKykJGRgYAwNXVVWMdV1dXaVlGRgaUSiUaNGhQbRttsRufiIjkwUCn3qWlpcHR0VGarVKpqmweFhYm/d/X1xcBAQHw8vJCQkICevTocWeT9xxWEEI88FCDNm3uxcqeiIhIB46OjhpTdcn+Xvb29vD19cUff/whHce/t0LPzMyUqn03NzcUFxcjOzu72jbaYrInIiJ50LcLX8/z7IuKinDu3Dk0btwYnp6ecHNzQ2JiorS8uLgYBw8eRM+ePQEAfn5+sLa21miTnp6O06dPS220xW58IiKSBX0vqqPrulOnTsXAgQPRrFkzZGZm4t1330Vubi4iIiKgUCgQFRWFmJgYeHt7w9vbGzExMbCzs8OIESMAAGq1GpGRkZgyZQqcnZ3h5OSEqVOnwtfXVxqdry0meyIikoXaTvZXrlzB8OHDcePGDTRs2BA9evTAkSNH0Lx5cwDA9OnTUVBQgAkTJiA7Oxv+/v7Ys2cPHBwcpG0sWrQIVlZWGDp0KAoKChAcHIz4+HhYWlrqFrsQQui0xkMkNzcXarUaKt+XoLBUmjocIqPITl5m6hCIjCY3Nxeuzmrk5ORoDHoz9D7UajWcR66GhdKuxtspL76NrHVjjBqrsbCyJyIieeCNcIiIiMxbbXfjP0w4Gp+IiMjMsbInIiJZkHNlz2RPRESyIOdkz258IiIiM8fKnoiIZEHOlT2TPRERyYOMT71jNz4REZGZY2VPRESywG58IiIiM8dkT0REZObknOx5zJ6IiMjMsbInIiJ5kPFofCZ7IiKSBXbjExERkdliZS9zb77UD//3cj+NedeyctH2ybcBAA2dHBA9KRyP+7eD2sEWh49fwJvvfYG/0q5Xub0vlryCPj07YOTUT7Dz4Emjx09UE/M+2YH5K7/TmNfIyQHnd8dKy7/ecwx/X8uGtbUlOrdthv9MGIhuPi1MEC0Zipwre5Mn++XLl+O9995Deno6OnTogMWLF6NXr16mDktWzv15FYMnLpUel5UJ6f9r33sZpaVlGDn1Y+TlF2LiiCew9aNJ6DH0XdwuLNbYzivDH4cQIKoT2rZsjK0fTZIeW1r++4fcq1kjLJj2LFo0cUFBUQniNuzDkFeX4diW2XBp4GCKcMkAFNAz2dfhg/Ym7cbftGkToqKiMGPGDBw/fhy9evVCWFgYLl++bMqwZKe0rByZWXnSlHXzFoA7f/Ae6eiJKfM34vjZy7hwKRNT5m+Cva0KT/f109iGj3cTTBz5BF59Z60pngKRzqwsLeDq4ihNdyfxZ5/sjiD/tmjR1AXtvBrj3aghyMsvxJk/rpowYqKaM2myX7hwISIjIzF27Fi0a9cOixcvhoeHB+Li4kwZluy09GiIszvn4sTWaKyaOwbNmzgDAFTWdzp+CotKpbbl5QLFpaXo0dlLmmerssbKd0dj2oLNyMzKq93giWror7TraBf2NjqFz8aLb3+Gi1duVNmuuKQUCVt+gmM9W/i0blLLUZIhVXTj6zPVVSZL9sXFxUhJSUFoaKjG/NDQUBw+fNhEUclPypmLeGX2Gjwz6SO8HrMBjZwdsXvVFDRQ2+P3ixm4fDULsyYOgtrBFtZWloiKCIGbixquzmppGzGTn8YvJ1Px3Q+nTPhMiLTn16EF4uaMwpdLJ2LJ28ORmZWLvpEf4J//9WoBwK4fT6Fp78lwe/QNxG3Yjy3LXoVz/XomjJr0pjDAVEeZ7Jj9jRs3UFZWBldXV435rq6uyMjIqHKdoqIiFBUVSY9zc3ONGqMc7D189t8HfwLJJ1NxbGs0hvf3x/L1+/DCm59i6cyRuLjvPZSWluFA8nkk/nRGWiWsty96dWuNwOfnmSB6opoJebTDvw9aAd07eqLr4Ghs2PEzJo4MBgD06tYaP6x7C1k3b+HzrYcx5u3PsHf1VDR04jF7qntMPkDv3m4RIUS1XSWxsbGYM2dObYQlW7cLi3H2wlV4eTQEAPz6Wxp6j5wHR3sbWFtbIevmLSSunooT5+6Mq+jVrTU8m7rg4r73NLbz+fyxSDrxJwaOX1Lrz4FIV/a2KrRv5Y4/7zrLxN5WhZYeDdHSoyG6+3rCb8gcrPnmMCaP6WvCSEkfHI1vAi4uLrC0tKxUxWdmZlaq9iu89dZbmDx5svQ4NzcXHh4eRo1TbpTWVmjdwhVJJy5ozM/NLwRw5/h+l3bNELNiOwBgccIerPlG87DL4Y0z8Pair7Drx9O1EzSRnoqKS/D7xWsI6Nyq2jZCCBSXlFa7nB5+TPYmoFQq4efnh8TERDz11FPS/MTERISHh1e5jkqlgkqlqq0QZeG/rz+FXT+ewpWMbDRsUA9TI5+Eg70NNm7/GQAQHtwFN7Jv4cq1f9Deyx3zpjyDHQdPYv/PvwGANIL/XlcysnH5alatPhcibc1c/DWe7OWLpm4NcD37Ft5ftQt5+YUYNsAf+QVF+OCz3Qjr7QtXFzWyc/Kx6ssfcDXzJsKDu5o6dNKDQnFn0mf9usqk3fiTJ0/GqFGj0K1bNwQEBOCTTz7B5cuXMX78eFOGJStNGtXHp++OgXN9e9zIvoWjpy8i9MUPkJaRDQBwdXHE3DeGoKGTA67dyMXGnT/jvU93mThqIv38nXkTY/+zGlk38+HSoB66+bTAns+moFljJxQWleCPi9ewccfPyLqZDye1Hbq0b46dn7yBdl6NTR06UY0ohDDtZVCWL1+OBQsWID09HT4+Pli0aBF69+6t1bq5ublQq9VQ+b4EhaXSyJESmUZ28jJTh0BkNLm5uXB1ViMnJweOjo5G24darUbLSV/CQmVf4+2UF+Xjr6XPGDVWYzH5AL0JEyZgwoQJpg6DiIjMnZ7d+HX51DveCIeIiMjMmbyyJyIiqg0cjU9ERGTm5Dwan934REREZo6VPRERyYKFhQIWFjUvz4Ue65oakz0REckCu/GJiIjIbLGyJyIiWeBofCIiIjMn5258JnsiIpIFOVf2PGZPRERk5ljZExGRLMi5smeyJyIiWZDzMXt24xMREZk5VvZERCQLCujZjV+H73HLZE9ERLLAbnwiIiIyW6zsiYhIFjgan4iIyMyxG5+IiIjMFit7IiKSBXbjExERmTk5d+Mz2RMRkSzIubLnMXsiIiIzx8qeiIjkQc9u/Dp8AT0meyIikgd24xMREZHZYmVPRESywNH4REREZo7d+ERERGQ0sbGxUCgUiIqKkuYJIRAdHQ13d3fY2toiKCgIZ86c0VivqKgIkyZNgouLC+zt7TFo0CBcuXJF5/0z2RMRkSxUdOPrM9VEcnIyPvnkE3Ts2FFj/oIFC7Bw4UIsW7YMycnJcHNzQ0hICPLy8qQ2UVFR2LJlCzZu3IhDhw7h1q1bGDBgAMrKynSKgcmeiIhkoaIbX59JV7du3cLIkSOxcuVKNGjQQJovhMDixYsxY8YMDBkyBD4+PkhISMDt27exfv16AEBOTg5WrVqFDz74AH369EGXLl2wdu1anDp1Cnv37tUpDiZ7IiIiI5k4cSL69++PPn36aMxPTU1FRkYGQkNDpXkqlQqBgYE4fPgwACAlJQUlJSUabdzd3eHj4yO10RYH6BERkSwYaoBebm6uxnyVSgWVSlWp/caNG3Hs2DEkJydXWpaRkQEAcHV11Zjv6uqKS5cuSW2USqVGj0BFm4r1tcXKnoiIZMFQx+w9PDygVqulKTY2ttK+0tLS8Prrr2Pt2rWwsbG5T0yaPz6EEA/8QaJNm3uxsiciIlkwVGWflpYGR0dHaX5VVX1KSgoyMzPh5+cnzSsrK8MPP/yAZcuW4fz58wDuVO+NGzeW2mRmZkrVvpubG4qLi5Gdna1R3WdmZqJnz546xc7KnoiISAeOjo4aU1XJPjg4GKdOncKJEyekqVu3bhg5ciROnDiBli1bws3NDYmJidI6xcXFOHjwoJTI/fz8YG1trdEmPT0dp0+f1jnZs7InIiJZqM0r6Dk4OMDHx0djnr29PZydnaX5UVFRiImJgbe3N7y9vRETEwM7OzuMGDECAKBWqxEZGYkpU6bA2dkZTk5OmDp1Knx9fSsN+HsQJnsiIpKFh+0KetOnT0dBQQEmTJiA7Oxs+Pv7Y8+ePXBwcJDaLFq0CFZWVhg6dCgKCgoQHByM+Ph4WFpa6ha7EEIYNPpalJubC7VaDZXvS1BYKk0dDpFRZCcvM3UIREaTm5sLV2c1cnJyNI6DG3ofarUaveYnwsrGvsbbKS3Mx49vhhg1VmNhZU9ERLKggJ7d+AaLpPYx2RMRkSxYKBSw0CPb67OuqXE0PhERkZljZU9ERLLA+9kTERGZuYdtNH5tYrInIiJZsFDcmfRZv67iMXsiIiIzx8qeiIjkQaFnV3wdruyZ7ImISBbkPECP3fhERERmjpU9ERHJguJ///RZv65isiciIlngaHwiIiIyW6zsiYhIFnhRnQf48MMPtd7ga6+9VuNgiIiIjEXOo/G1SvaLFi3SamMKhYLJnoiI6CGjVbJPTU01dhxERERGxVvc1kBxcTHOnz+P0tJSQ8ZDRERkFBXd+PpMdZXOyf727duIjIyEnZ0dOnTogMuXLwO4c6x+3rx5Bg+QiIjIECoG6Okz1VU6J/u33noLv/76Kw4cOAAbGxtpfp8+fbBp0yaDBkdERET60/nUu61bt2LTpk3o0aOHxq+c9u3b488//zRocERERIbC0fg6uH79Oho1alRpfn5+fp3u4iAiIvPGAXo66N69O3bs2CE9rkjwK1euREBAgOEiIyIiIoPQubKPjY3Fk08+ibNnz6K0tBRLlizBmTNnkJSUhIMHDxojRiIiIr0poN8t6etuXV+Dyr5nz5746aefcPv2bXh5eWHPnj1wdXVFUlIS/Pz8jBEjERGR3uQ8Gr9G18b39fVFQkKCoWMhIiIiI6hRsi8rK8OWLVtw7tw5KBQKtGvXDuHh4bCy4n11iIjo4STnW9zqnJ1Pnz6N8PBwZGRkoE2bNgCA33//HQ0bNsS2bdvg6+tr8CCJiIj0Jee73ul8zH7s2LHo0KEDrly5gmPHjuHYsWNIS0tDx44d8fLLLxsjRiIiItKDzpX9r7/+iqNHj6JBgwbSvAYNGmDu3Lno3r27QYMjIiIypDpcnOtF58q+TZs2uHbtWqX5mZmZaNWqlUGCIiIiMjSOxn+A3Nxc6f8xMTF47bXXEB0djR49egAAjhw5gv/+97+YP3++caIkIiLSEwfoPUD9+vU1ftEIITB06FBpnhACADBw4ECUlZUZIUwiIiKqKa2S/f79+40dBxERkVHJeTS+Vsk+MDDQ2HEQEREZlZwvl1vjq+Dcvn0bly9fRnFxscb8jh076h0UERERGU6NbnE7ZswYfPfdd1Uu5zF7IiJ6GPEWtzqIiopCdnY2jhw5AltbW+zatQsJCQnw9vbGtm3bjBEjERGR3hQK/ae6SufKft++ffjmm2/QvXt3WFhYoHnz5ggJCYGjoyNiY2PRv39/Y8RJRERENaRzZZ+fn49GjRoBAJycnHD9+nUAd+6Ed+zYMcNGR0REZCByvqhOja6gd/78eQBA586d8fHHH+Pvv//GihUr0LhxY4MHSEREZAjsxtdBVFQU0tPTAQCzZ89G3759sW7dOiiVSsTHxxs6PiIiItKTzsl+5MiR0v+7dOmCixcv4rfffkOzZs3g4uJi0OCIiIgMRc6j8Wt8nn0FOzs7dO3a1RCxEBERGY2+XfF1ONdrl+wnT56s9QYXLlxY42CIiIiMhZfLfYDjx49rtbG6/EIQERGZK7O4Ec65XfPg4Oho6jCIjGLZT3+ZOgQioynMz6u1fVmgBqeg3bN+XaX3MXsiIqK6QM7d+HX5hwoRERFpgZU9ERHJgkIBWHA0PhERkfmy0DPZ67OuqbEbn4iIyMzVKNmvWbMGjz76KNzd3XHp0iUAwOLFi/HNN98YNDgiIiJD4Y1wdBAXF4fJkyejX79+uHnzJsrKygAA9evXx+LFiw0dHxERkUFUdOPrM9VVOif7pUuXYuXKlZgxYwYsLS2l+d26dcOpU6cMGhwRERHpT+cBeqmpqejSpUul+SqVCvn5+QYJioiIyNDkfG18nSt7T09PnDhxotL87777Du3btzdETERERAZXcdc7faa6SufKftq0aZg4cSIKCwshhMAvv/yCDRs2IDY2Fp9++qkxYiQiItKbnC+Xq3PsY8aMwezZszF9+nTcvn0bI0aMwIoVK7BkyRIMGzbMGDESERHVOXFxcejYsSMcHR3h6OiIgIAAfPfdd9JyIQSio6Ph7u4OW1tbBAUF4cyZMxrbKCoqwqRJk+Di4gJ7e3sMGjQIV65c0TmWGv1Qeemll3Dp0iVkZmYiIyMDaWlpiIyMrMmmiIiIakXFMXt9Jl00bdoU8+bNw9GjR3H06FE88cQTCA8PlxL6ggULsHDhQixbtgzJyclwc3NDSEgI8vL+vTlQVFQUtmzZgo0bN+LQoUO4desWBgwYIJ0Jpy29rqDn4uKiz+pERES1xgL6HXe3gG7rDhw4UOPx3LlzERcXhyNHjqB9+/ZYvHgxZsyYgSFDhgAAEhIS4OrqivXr12PcuHHIycnBqlWrsGbNGvTp0wcAsHbtWnh4eGDv3r3o27ev1rHonOw9PT3ve2GBv/7i7TiJiMh85ebmajxWqVRQqVT3XaesrAxffPEF8vPzERAQgNTUVGRkZCA0NFRjO4GBgTh8+DDGjRuHlJQUlJSUaLRxd3eHj48PDh8+bNxkHxUVpfG4pKQEx48fx65duzBt2jRdN0dERFQrDHXqnYeHh8b82bNnIzo6usp1Tp06hYCAABQWFqJevXrYsmUL2rdvj8OHDwMAXF1dNdq7urpKV6bNyMiAUqlEgwYNKrXJyMjQKXadk/3rr79e5fyPPvoIR48e1XVzREREtcJQN8JJS0uDo6OjNP9+VX2bNm1w4sQJ3Lx5E1999RUiIiJw8OBBafm9PeVCiAdellebNpVi16n1fYSFheGrr74y1OaIiIgeShWj6yum+yV7pVKJVq1aoVu3boiNjUWnTp2wZMkSuLm5AUClCj0zM1Oq9t3c3FBcXIzs7Oxq22jLYMn+yy+/hJOTk6E2R0REZFB37mdf8wvqGOKaOkIIFBUVwdPTE25ubkhMTJSWFRcX4+DBg+jZsycAwM/PD9bW1hpt0tPTcfr0aamNtnTuxu/SpYtG94EQAhkZGbh+/TqWL1+u6+aIiIhqRW1fLvftt99GWFgYPDw8kJeXh40bN+LAgQPYtWsXFAoFoqKiEBMTA29vb3h7eyMmJgZ2dnYYMWIEAECtViMyMhJTpkyBs7MznJycMHXqVPj6+kqj87Wlc7IfPHiwxmMLCws0bNgQQUFBaNu2ra6bIyIiMkvXrl3DqFGjkJ6eDrVajY4dO2LXrl0ICQkBAEyfPh0FBQWYMGECsrOz4e/vjz179sDBwUHaxqJFi2BlZYWhQ4eioKAAwcHBiI+P17gRnTYUQgihbePS0lKsW7cOffv2lY43mFJubi7UajX++jsLDncNliAyJ/Epl00dApHRFObnYWb/zsjJydEY9GZIFbniP98cg429w4NXqEZhfh7eDe9q1FiNRadj9lZWVnjllVdQVFRkrHiIiIiMQmGAf3WVzgP0/P39cfz4cWPEQkREZDQVp97pM9VVOh+znzBhAqZMmYIrV67Az88P9vb2Gss7duxosOCIiIhIf1on+xdffBGLFy/Gc889BwB47bXXpGUKhUI6yV/Xi/MTERHVBkNdVKcu0jrZJyQkYN68eUhNTTVmPEREREahUCh0vvLcvevXVVon+4pB+82bNzdaMERERGR4Oh2zr8u/aoiISN7Yja+l1q1bPzDh//PPP3oFREREZAy1fQW9h4lOyX7OnDlQq9XGioWIiIiMQKdkP2zYMDRq1MhYsRARERlNxQ1t9Fm/rtI62fN4PRER1WVyPmav9RX0dLiEPhERET1EtK7sy8vLjRkHERGRcek5QK8OXxpf98vlEhER1UUWUMBCj4ytz7qmxmRPRESyIOdT73S+6x0RERHVLazsiYhIFuQ8Gp/JnoiIZEHO59mzG5+IiMjMsbInIiJZkPMAPSZ7IiKSBQvo2Y1fh0+9Yzc+ERGRmWNlT0REssBufCIiIjNnAf26s+tyV3hdjp2IiIi0wMqeiIhkQaFQ6HW79rp8q3cmeyIikgUF9LtxXd1N9Uz2REQkE7yCHhEREZktVvZERCQbdbc21w+TPRERyYKcz7NnNz4REZGZY2VPRESywFPviIiIzByvoEdERERmi5U9ERHJArvxiYiIzJycr6DHbnwiIiIzx8qeiIhkgd34REREZk7Oo/GZ7ImISBbkXNnX5R8qREREpAVW9kREJAtyHo3PZE9ERLLAG+EQERGR2WJlT0REsmABBSz06IzXZ11TY7InIiJZYDc+ERERmS1W9kREJAuK//3TZ/26ismeiIhkgd34REREZLZY2RMRkSwo9ByNz258IiKih5ycu/GZ7ImISBbknOx5zJ6IiMjMsbInIiJZ4Kl3REREZs5CcWfSZ/26it34RERERhAbG4vu3bvDwcEBjRo1wuDBg3H+/HmNNkIIREdHw93dHba2tggKCsKZM2c02hQVFWHSpElwcXGBvb09Bg0ahCtXrugUC5M9ERHJgsIA/3Rx8OBBTJw4EUeOHEFiYiJKS0sRGhqK/Px8qc2CBQuwcOFCLFu2DMnJyXBzc0NISAjy8vKkNlFRUdiyZQs2btyIQ4cO4datWxgwYADKysq0joXd+EREJAu1PRp/165dGo9Xr16NRo0aISUlBb1794YQAosXL8aMGTMwZMgQAEBCQgJcXV2xfv16jBs3Djk5OVi1ahXWrFmDPn36AADWrl0LDw8P7N27F3379tUqFlb2REREOsjNzdWYioqKtFovJycHAODk5AQASE1NRUZGBkJDQ6U2KpUKgYGBOHz4MAAgJSUFJSUlGm3c3d3h4+MjtdEGkz0REcmCAvp25d/h4eEBtVotTbGxsQ/ctxACkydPxmOPPQYfHx8AQEZGBgDA1dVVo62rq6u0LCMjA0qlEg0aNKi2jTbYjU9ERLJgqNH4aWlpcHR0lOarVKoHrvvqq6/i5MmTOHToUKVlinuODwghKs27lzZt7sbKnoiISAeOjo4a04OS/aRJk7Bt2zbs378fTZs2lea7ubkBQKUKPTMzU6r23dzcUFxcjOzs7GrbaIOVPVVSWlqGhat3YWtiCjKz8uDq7Ihnw7rjtYhQWFj8+/vwj4sZiFnxLX4+8SfKywVae7oh7r+j0cS1wX22TlS7Dib+gnMn/8D1zH9gbW0FjxbuCB3YCw1dnaQ2RUXFSPz2R5w79Sdu3y5A/QZqBPTugkce6yS1ST58EidTfkP6lUwUFRXj7ZgJsLWzMcVTohqq7YvqCCEwadIkbNmyBQcOHICnp6fGck9PT7i5uSExMRFdunQBABQXF+PgwYOYP38+AMDPzw/W1tZITEzE0KFDAQDp6ek4ffo0FixYoHUsJk32P/zwA9577z2kpKQgPT0dW7ZsweDBg00ZEgFYvv57rP3mMBa9PQKtPd1w8rc0TIndAId6toh8NhAAcPHvGxgy8UMM698DU14Mg0M9G1y4eA0qJX8/0sPl4p9peOSxzmjSzBXl5QJ7dxxCwoqv8Nr/jYZSZQ0A+G7LAaReSMMzz4ehvpMjLpy/hO1ffg8HtT3a+bYCAJQUl8K7XQt4t2uBxO2Vu2Lp4Vfbo/EnTpyI9evX45tvvoGDg4NUwavVatja2kKhUCAqKgoxMTHw9vaGt7c3YmJiYGdnhxEjRkhtIyMjMWXKFDg7O8PJyQlTp06Fr6+vNDpfGyb9y5yfn49OnTphzJgxePrpp00ZCt3l2OmLCH3MB8E9OwAAPBo745vvj+Hkb2lSmwWf7MATPdpjxoRB0rzm7i61HivRg0SM1/zbMmREX8z7zwpcvXINLbzudKmmXUxH5+4d4OntAQDo3rMjjh4+ib/TrknJvmdQVwBA6h9poLpJ8b9Jn/V1ERcXBwAICgrSmL969WqMHj0aADB9+nQUFBRgwoQJyM7Ohr+/P/bs2QMHBwep/aJFi2BlZYWhQ4eioKAAwcHBiI+Ph6WlpdaxmDTZh4WFISwszJQhUBW6d2yJtd/8hL8uZ6Jls0Y4e+FvJJ/8C7NfewoAUF5ejn1JZzF+xBMYOTkOZ/74Gx6NnTDx+T54sndHE0dPdH+FBXdOk7q7C755yyY4f/pP+Pl3gIO6HlIvpOHG9Wz0a/u4qcIkMyCEeGAbhUKB6OhoREdHV9vGxsYGS5cuxdKlS2scS53qcy0qKtI4nzE3N9eE0ZivCSODkXerAEHPx8LSQoGycoHpL/XD4D5+AIAb2beQX1CE5eu+x7Sx/fD2KwNx4Off8PJ/VmPTkokI6NLKxM+AqGpCCHy39SCat2wC18b/9kT1G/I4vtmUiPeiV8LCwgIKhQKDh4WgecsmJoyWDM0CCljo0Y9vwRvh1I7Y2FjMmTPH1GGYvW3fH8fXiSlYOmsUWnu64ewffyN66Ra4uqjxbNgjKP/fr9XQx3zw0nNBAIAO3k1x9HQq1n7zE5M9PbS2f7UP167ewNjXn9OYf+SH40i7mI6RY8NR38kRF/+8gm+//B4OjvbwatPcRNGSodV2N/7DpE6devfWW28hJydHmtLSeOzMGObGbcOEkcEI79MV7bzc8fST3TF2aBA+WrsXAOCktoeVpQW8W7hprOfd3BVXr900QcRED7b9q3347fSfePHVZ6Gu/+/x0JLiEuzdcQhhgwPR1scLbu4N0aNXF/h2aYND+4+aMGIiw6lTlb1KpdLq4gWkn4LC4kpdXZYWCpSX36noldZW6NSuGf66nKnR5q+062jixtPu6OEihMCOr/bh7KkLiHx1KBo4qzWWl5WXo6ysvNIFShQKBbQ45Ep1iYxL+zqV7Kl29OnZAUvXJKKJawO09nTD6T/+xspNB/Bcf3+pzbjhT2Di7AT4d/JCQNdWOPjzb9h7+Aw2f/iqCSMnqmz7l/twMuU3jBg7CEqVEnm5d+44ZmOjhLXSGjY2KrTwaord236AtbUV6js5IvXCFZw4ehZh4UHSdvJy83ErNx9ZN24CAK6l34BKpYS6gQPs7G1N8MxIV7V9nv3DxKTJ/tatW7hw4YL0ODU1FSdOnICTkxOaNWtmwsjk7Z03nsb7n+7EjIVf4kb2Lbi6OGJkeE9Ejf737kphvTsiZuqz+GjtXsxa8jW8mjXEx++MwSMdW5owcqLKfvnpVwDAZ8u+0Jj/1PC+6Op/5/TSoRH9kbj9EL5YuxMFtwtRv4Ej+vR7DN0f/ffskuSffsX+3Uekx6uWbq60HaKHlUJoc26AkRw4cACPP1751JaIiAjEx8c/cP3c3Fyo1Wr89XcWHO66TjGROYlPuWzqEIiMpjA/DzP7d0ZOTo7G9eYNqSJXfH/iMuo51Hwft/JyEdy5mVFjNRaTVvZBQUFanYdIRESkLxkfsq9bo/GJiIhIdxygR0RE8iDj0p7JnoiIZIGj8YmIiMxcbd/17mHCY/ZERERmjpU9ERHJgowP2TPZExGRTMg427Mbn4iIyMyxsiciIlngaHwiIiIzx9H4REREZLZY2RMRkSzIeHwekz0REcmEjLM9u/GJiIjMHCt7IiKSBY7GJyIiMnNyHo3PZE9ERLIg40P2PGZPRERk7ljZExGRPMi4tGeyJyIiWZDzAD124xMREZk5VvZERCQLHI1PRERk5mR8yJ7d+EREROaOlT0REcmDjEt7JnsiIpIFjsYnIiIis8XKnoiIZIGj8YmIiMycjA/ZM9kTEZFMyDjb85g9ERGRmWNlT0REsiDn0fhM9kREJA96DtCrw7me3fhERETmjpU9ERHJgozH5zHZExGRTMg427Mbn4iIyMyxsiciIlngaHwiIiIzJ+fL5bIbn4iIyMyxsiciIlmQ8fg8JnsiIpIJGWd7JnsiIpIFOQ/Q4zF7IiIiM8fKnoiIZEEBPUfjGyyS2sdkT0REsiDjQ/bsxiciIjJ3rOyJiEgW5HxRHSZ7IiKSCfl25LMbn4iIyAh++OEHDBw4EO7u7lAoFNi6davGciEEoqOj4e7uDltbWwQFBeHMmTMabYqKijBp0iS4uLjA3t4egwYNwpUrV3SOhcmeiIhkoaIbX59JF/n5+ejUqROWLVtW5fIFCxZg4cKFWLZsGZKTk+Hm5oaQkBDk5eVJbaKiorBlyxZs3LgRhw4dwq1btzBgwACUlZXpFAu78YmISBZquxM/LCwMYWFhVS4TQmDx4sWYMWMGhgwZAgBISEiAq6sr1q9fj3HjxiEnJwerVq3CmjVr0KdPHwDA2rVr4eHhgb1796Jv375ax8LKnoiIqJalpqYiIyMDoaGh0jyVSoXAwEAcPnwYAJCSkoKSkhKNNu7u7vDx8ZHaaIuVPRERyYKhRuPn5uZqzFepVFCpVDptKyMjAwDg6uqqMd/V1RWXLl2S2iiVSjRo0KBSm4r1tcXKnoiIZEFhgH8A4OHhAbVaLU2xsbE1j+meXx9CiErz7qVNm3uxsiciInkw0EH7tLQ0ODo6SrN1reoBwM3NDcCd6r1x48bS/MzMTKnad3NzQ3FxMbKzszWq+8zMTPTs2VOn/bGyJyIi0oGjo6PGVJNk7+npCTc3NyQmJkrziouLcfDgQSmR+/n5wdraWqNNeno6Tp8+rXOyZ2VPRESyUNuj8W/duoULFy5Ij1NTU3HixAk4OTmhWbNmiIqKQkxMDLy9veHt7Y2YmBjY2dlhxIgRAAC1Wo3IyEhMmTIFzs7OcHJywtSpU+Hr6yuNztcWkz0REclCbV8u9+jRo3j88celx5MnTwYAREREID4+HtOnT0dBQQEmTJiA7Oxs+Pv7Y8+ePXBwcJDWWbRoEaysrDB06FAUFBQgODgY8fHxsLS01C12IYTQLfyHR25uLtRqNf76OwsOdx0/ITIn8SmXTR0CkdEU5udhZv/OyMnJ0TgObkgVueLClRt65Yq83Fy0aupi1FiNhZU9ERHJwt0j6mu6fl3FZE9ERPIg3/vgcDQ+ERGRuWNlT0REsiDjwp7JnoiI5KG2R+M/TNiNT0REZOZY2RMRkUzoNxq/LnfkM9kTEZEssBufiIiIzBaTPRERkZljNz4REcmCnLvxmeyJiEgW5Hy5XHbjExERmTlW9kREJAvsxiciIjJzcr5cLrvxiYiIzBwreyIikgcZl/ZM9kREJAscjU9ERERmi5U9ERHJAkfjExERmTkZH7JnsiciIpmQcbbnMXsiIiIzx8qeiIhkQc6j8ZnsiYhIFjhAr44SQgAA8vJyTRwJkfEU5ueZOgQioym8fQvAv3/PjSk3V79coe/6plSnk31e3p0/gp3aepo4EiIi0kdeXh7UarVRtq1UKuHm5gZvTw+9t+Xm5galUmmAqGqXQtTGzykjKS8vx9WrV+Hg4ABFXe5fqUNyc3Ph4eGBtLQ0ODo6mjocIoPi57v2CSGQl5cHd3d3WFgYb8x4YWEhiouL9d6OUqmEjY2NASKqXXW6srewsEDTpk1NHYYsOTo68o8hmS1+vmuXsSr6u9nY2NTJJG0oPPWOiIjIzDHZExERmTkme9KJSqXC7NmzoVKpTB0KkcHx803mqk4P0CMiIqIHY2VPRERk5pjsiYiIzByTPRERkZljsiciIjJzTPakteXLl8PT0xM2Njbw8/PDjz/+aOqQiAzihx9+wMCBA+Hu7g6FQoGtW7eaOiQig2KyJ61s2rQJUVFRmDFjBo4fP45evXohLCwMly9fNnVoRHrLz89Hp06dsGzZMlOHQmQUPPWOtOLv74+uXbsiLi5OmteuXTsMHjwYsbGxJoyMyLAUCgW2bNmCwYMHmzoUIoNhZU8PVFxcjJSUFISGhmrMDw0NxeHDh00UFRERaYvJnh7oxo0bKCsrg6urq8Z8V1dXZGRkmCgqIiLSFpM9ae3e2wgLIXhrYSKiOoDJnh7IxcUFlpaWlar4zMzMStU+ERE9fJjs6YGUSiX8/PyQmJioMT8xMRE9e/Y0UVRERKQtK1MHQHXD5MmTMWrUKHTr1g0BAQH45JNPcPnyZYwfP97UoRHp7datW7hw4YL0ODU1FSdOnICTkxOaNWtmwsiIDIOn3pHWli9fjgULFiA9PR0+Pj5YtGgRevfubeqwiPR24MABPP7445XmR0REID4+vvYDIjIwJnsiIiIzx2P2REREZo7JnoiIyMwx2RMREZk5JnsiIiIzx2RPRERk5pjsiYiIzByTPRERkZljsifSU3R0NDp37iw9Hj16tEnuhX7x4kUoFAqcOHGi2jYtWrTA4sWLtd5mfHw86tevr3dsCoUCW7du1Xs7RFQzTPZklkaPHg2FQgGFQgFra2u0bNkSU6dORX5+vtH3vWTJEq2vuqZNgiYi0hevjU9m68knn8Tq1atRUlKCH3/8EWPHjkV+fj7i4uIqtS0pKYG1tbVB9qtWqw2yHSIiQ2FlT2ZLpVLBzc0NHh4eGDFiBEaOHCl1JVd0vX/22Wdo2bIlVCoVhBDIycnByy+/jEaNGsHR0RFPPPEEfv31V43tzps3D66urnBwcEBkZCQKCws1lt/bjV9eXo758+ejVatWUKlUaNasGebOnQsA8PT0BAB06dIFCoUCQUFB0nqrV69Gu3btYGNjg7Zt22L58uUa+/nll1/QpUsX2NjYoFu3bjh+/LjOr9HChQvh6+sLe3t7eHh4YMKECbh161aldlu3bkXr1q1hY2ODkJAQpKWlaSz/9ttv4efnBxsbG7Rs2RJz5sxBaWmpzvEQkXEw2ZNs2NraoqSkRHp84cIFbN68GV999ZXUjd6/f39kZGRg586dSElJQdeuXREcHIx//vkHALB582bMnj0bc+fOxdGjR9G4ceNKSfheb731FubPn4+ZM2fi7NmzWL9+PVxdXQHcSdgAsHfvXqSnp+Prr78GAKxcuRIzZszA3Llzce7cOcTExGDmzJlISEgAAOTn52PAgAFo06YNUlJSEB0djalTp+r8mlhYWODDDz/E6dOnkZCQgH379mH69OkabW7fvo25c+ciISEBP/30E3JzczFs2DBp+e7du/H888/jtddew9mzZ/Hxxx8jPj5e+kFDRA8BQWSGIiIiRHh4uPT4559/Fs7OzmLo0KFCCCFmz54trK2tRWZmptTm+++/F46OjqKwsFBjW15eXuLjjz8WQggREBAgxo8fr7Hc399fdOrUqcp95+bmCpVKJVauXFllnKmpqQKAOH78uMZ8Dw8PsX79eo1577zzjggICBBCCPHxxx8LJycnkZ+fLy2Pi4urclt3a968uVi0aFG1yzdv3iycnZ2lx6tXrxYAxJEjR6R5586dEwDEzz//LIQQolevXiImJkZjO2vWrBGNGzeWHgMQW7ZsqXa/RGRcPGZPZmv79u2oV68eSktLUVJSgvDwcCxdulRa3rx5czRs2FB6nJKSglu3bsHZ2VljOwUFBfjzzz8BAOfOncP48eM1lgcEBGD//v1VxnDu3DkUFRUhODhY67ivX7+OtLQ0REZG4qWXXpLml5aWSuMBzp07h06dOsHOzk4jDl3t378fMTExOHv2LHJzc1FaWorCwkLk5+fD3t4eAGBlZYVu3bpJ67Rt2xb169fHuXPn8MgjjyAlJQXJyckalXxZWRkKCwtx+/ZtjRiJyDSY7MlsPf7444iLi4O1tTXc3d0rDcCrSGYVysvL0bhxYxw4cKDStmp6+pmtra3O65SXlwO405Xv7++vsczS0hIAIAxwZ+pLly6hX79+GD9+PN555x04OTnh0KFDiIyM1DjcAdw5de5eFfPKy8sxZ84cDBkypFIbGxsbveMkIv0x2ZPZsre3R6tWrbRu37VrV2RkZMDKygotWrSosk27du1w5MgRvPDCC9K8I0eOVLtNb29v2Nra4vvvv8fYsWMrLVcqlQDuVMIVXF1d0aRJE/z1118YOXJkldtt37491qxZg4KCAukHxf3iqMrRo0dRWlqKDz74ABYWd4bvbN68uVK70tJSHD16FI888ggA4Pz587h58ybatm0L4M7rdv78eZ1eayKqXUz2RP/Tp08fBAQEYPDgwZg/fz7atGmDq1evYufOnRg8eDC6deuG119/HREREejWrRsee+wxrFu3DmfOnEHLli2r3KaNjQ3efPNNTJ8+HUqlEo8++iiuX7+OM2fOIDIyEo0aNYKtrS127dqFpk2bwsbGBmq1GtHR0Xjttdfg6OiIsLAwFBUV4ejRo8jOzsbkyZMxYsQIzJgxA5GRkfjPf/6Dixcv4v3339fp+Xp5eaG0tBRLly7FwIED8dNPP2HFihWV2llbW2PSpEn48MMPYW1tjVdffRU9evSQkv+sWbMwYMAAeHh44Nlnn4WFhQVOnjyJU6dO4d1339X9jSAig+NofKL/USgU2LlzJ3r37o0XX3wRrVu3xrBhw3Dx4kVp9Pxzzz2HWbNm4c0334Sfnx8uXbqEV1555b7bnTlzJqZMmYJZs2ahXbt2eO6555CZmQngzvHwDz/8EB9//DHc3d0RHh4OABg7diw+/fRTxMfHw9fXF4GBgYiPj5dO1atXrx6+/fZbnD17Fl26dMGMGTMwf/58nZ5v586dsXDhQsyfPx8+Pj5Yt24dYmNjK7Wzs7PDm2++iREjRiAgIAC2trbYuHGjtLxv377Yvn07EhMT0b17d/To0QMLFy5E8+bNdYqHiIxHIQxx8I+IiIgeWqzsiYiIzByTPRERkZljsiciIjJzTPZERERmjsmeiIjIzDHZExERmTkmeyIiIjPHZE9ERGTmmOyJiIjMHJM9ERGRmWOyJyIiMnNM9kRERGbu/wF19nP0fWE2fgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Bootstrapping F1 Scores: [0.7856025039123631, 0.7717717717717718, 0.8612903225806452, 0.7678571428571429, 0.7981366459627329]...\n", + "Bootstrapping Precision Scores: [0.8311258278145696, 0.8210862619808307, 0.902027027027027, 0.819047619047619, 0.8371335504885994]...\n", + "Bootstrapping Recall Scores: [0.744807121661721, 0.7280453257790368, 0.8240740740740741, 0.7226890756302521, 0.7626112759643917]...\n", + "Bootstrapping AUC Scores: [0.9269081473266255, 0.9242285550672642, 0.9561955723428812, 0.918435459290099, 0.9466034417729629]...\n", + "Mean F1 Score (Bootstrapping): 0.8013186055213821\n", + "Mean AUC Score (Bootstrapping): 0.9379810966521147\n" + ] + } + ], + "source": [ + "n_bootstrap_samples = 50\n", + "f1_scores_bootstrap = []\n", + "precision_scores_bootstrap = []\n", + "recall_scores_bootstrap = []\n", + "auc_scores_bootstrap = []\n", + "\n", + "plt.figure(figsize=(8, 6)) # Set figure size for better visualization\n", + "\n", + "# Store confusion matrices for visualization later\n", + "confusion_matrices = []\n", + "\n", + "for i in range(n_bootstrap_samples):\n", + " # Create Bootstrap Sample\n", + " indices = np.random.choice(range(len(X)), size=len(X), replace=True)\n", + " X_train, y_train = X.iloc[indices], y.iloc[indices]\n", + " \n", + " # Out-of-Bag (OOB) Data\n", + " oob_indices = list(set(range(len(X))) - set(indices))\n", + " if len(oob_indices) == 0 or len(y_train.unique()) < 2:\n", + " continue # Skip iteration if no OOB data or only one class\n", + " X_test, y_test = X.iloc[oob_indices], y.iloc[oob_indices]\n", + " \n", + " # Train the model\n", + " model.fit(X_train, y_train)\n", + " \n", + " # Predictions\n", + " y_pred = model.predict(X_test)\n", + " y_pred_proba = model.predict_proba(X_test)[:, 1]\n", + " \n", + " # Metrics\n", + " f1_scores_bootstrap.append(f1_score(y_test, y_pred))\n", + " precision_scores_bootstrap.append(precision_score(y_test, y_pred))\n", + " recall_scores_bootstrap.append(recall_score(y_test, y_pred))\n", + " auc_scores_bootstrap.append(roc_auc_score(y_test, y_pred_proba))\n", + " \n", + " # Save confusion matrix for the last bootstrap sample\n", + " conf_matrix = confusion_matrix(y_test, y_pred)\n", + " confusion_matrices.append(conf_matrix)\n", + " \n", + " # Plot ROC Curve only for the first iteration with a label\n", + " fpr, tpr, _ = roc_curve(y_test, y_pred_proba)\n", + " if i == 0:\n", + " plt.plot(fpr, tpr, label=\"Bootstrap ROC Curve\", alpha=0.3)\n", + " else:\n", + " plt.plot(fpr, tpr, alpha=0.3)\n", + "\n", + "# Finalize and Display AUC-ROC Plot\n", + "plt.xlabel(\"False Positive Rate\")\n", + "plt.ylabel(\"True Positive Rate\")\n", + "plt.title(\"Bootstrapping AUC-ROC Curve\")\n", + "plt.legend(loc=\"lower right\") # Show single legend\n", + "plt.show()\n", + "\n", + "# Display Confusion Matrix for the last bootstrap sample\n", + "if confusion_matrices:\n", + " disp = ConfusionMatrixDisplay(confusion_matrix=confusion_matrices[-1], display_labels=model.classes_)\n", + " disp.plot(cmap='Blues', values_format='d')\n", + " plt.title(\"Confusion Matrix for Last Bootstrap Sample\")\n", + " plt.show()\n", + "\n", + "# Print Metrics\n", + "print(f\"Bootstrapping F1 Scores: {f1_scores_bootstrap[:5]}...\") # Showing first 5 scores\n", + "print(f\"Bootstrapping Precision Scores: {precision_scores_bootstrap[:5]}...\")\n", + "print(f\"Bootstrapping Recall Scores: {recall_scores_bootstrap[:5]}...\")\n", + "print(f\"Bootstrapping AUC Scores: {auc_scores_bootstrap[:5]}...\")\n", + "print(f\"Mean F1 Score (Bootstrapping): {np.mean(f1_scores_bootstrap)}\")\n", + "print(f\"Mean AUC Score (Bootstrapping): {np.mean(auc_scores_bootstrap)}\")" + ] + }, + { + "cell_type": "markdown", + "id": "b6a81e32-8704-4ec5-a43f-3dfd15c877e4", + "metadata": {}, + "source": [ + "### Finding Best Parameters Using Bayesian Optimization Hyperparameter Tuning" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "1bc78135-1c70-4ad4-89d1-b017cb558819", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5e6c53d049a14d20b39e81c70e9f2956", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/20 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAHFCAYAAABvgvpjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPfUlEQVR4nO3deVxUVf8H8M+wzLAIo4BsCohrKuCGC1gCIhgpampq+hgaWYbaw6OWL/NRsRTUSi1NbVExl7BfuWaZmku5UIiaa6YFignigiD7dn5/+DA5AjLDXDbv593rvl7Nvefec+7MePnO95xzr0IIIUBERESyZVTXDSAiIqK6xWCAiIhI5hgMEBERyRyDASIiIpljMEBERCRzDAaIiIhkjsEAERGRzDEYICIikjkGA0RERDJXrWDgzJkzGD9+PNzd3WFmZoZGjRqha9euWLx4Me7evSt1G7WcOnUKfn5+UKvVUCgUWLZsmeR1KBQKREVFSX7cqsTGxkKhUEChUODQoUPltgsh0Lp1aygUCvj7+1erjpUrVyI2NlavfQ4dOlRpm6pry5Yt6NixI8zNzaFQKHD69GnJjv2osvZ//fXXNVbHw3JzcxEVFaXz+5WcnKz53B9dvL299aq77Fi6fMZRUVFQKBRVlhs3bhxatGihVzsep6yN77//vtb6kpISvPzyy1AoFFiwYEGl+7do0aLS9ys7O1uvtrRo0QLjxo2rspy+/wbq8hophS5duqBZs2YoKSmptEzv3r1hZ2eHwsJCnY5Z0Xez7JqXnJxc5f7+/v7Vvu5FR0dj+/bt5dbXxLWtoTLRd4fPPvsMERERaNeuHd5880106NABRUVFOHHiBFavXo3jx49j27ZtNdFWAMDLL7+MnJwcxMXFoUmTJpJepMocP34czZs3l/y4urKyssKaNWvKffEPHz6MP//8E1ZWVtU+9sqVK2FnZ6fTBbBM165dcfz4cXTo0KHa9T7s1q1bGDt2LJ599lmsXLkSKpUKbdu2leTY9UFubi7mzZsHAHpdvKZMmYLRo0drrWvUqJGUTauW2bNn49///neN1lFYWIgXX3wR27dvx8qVK/H6668/tnzv3r3LBRMAYGFhUVNN1FldXyOlEB4ejilTpuCHH37Ac889V277H3/8gWPHjiEyMhJKpbLa9QwYMADHjx+Hk5OTIc2tUnR0NIYPH44hQ4ZorZf62taQ6RUMHD9+HK+//jqCgoKwfft2qFQqzbagoCBMmzYNe/bskbyRDzt37hwmTJiAkJCQGqujV69eNXZsXYwcORKbNm3Cxx9/DGtra836NWvWwMfHB1lZWbXSjqKiIigUClhbW0v6nvzxxx8oKirCv/71L/j5+UlyzNzc3Hrxh8AQrq6udf7dq0irVq1q9Pg5OTkYMmQIDh8+jE2bNmHUqFFV7tO4ceN6+V5JcY3My8uDubl5TTf1scaMGYM333wTa9eurTAYWLt2LYAHP84M0bRpUzRt2tSgYxhC6mtbQ6ZXN0F0dDQUCgU+/fRTrS95GaVSiUGDBmlel5aWYvHixXjqqaegUqlgb2+Pl156CdevX9faz9/fHx4eHkhISMAzzzwDCwsLtGzZEgsXLkRpaSmAf9JJxcXFWLVqlSYtCFSe7qwoBXXgwAH4+/vD1tYW5ubmcHV1xbBhw5Cbm6spU1E3wblz5zB48GA0adIEZmZm6Ny5M9avX69Vpizl9OWXX2LWrFlwdnaGtbU1+vXrh0uXLun2JgN48cUXAQBffvmlZl1mZia++eabSv/xzZs3Dz179oSNjQ2sra3RtWtXrFmzBg8/h6pFixY4f/48Dh8+rHn/yjIrZW3fsGEDpk2bhmbNmkGlUuHKlSvlUmm3b9+Gi4sLfH19UVRUpDn+hQsXYGlpibFjx1Z6buPGjcPTTz8N4EHQ82iXx86dO+Hj4wMLCwtYWVkhKCgIx48f1zpG2ed98uRJDB8+HE2aNJHkD5Yu7yHw+O9QcnKy5uI2b948zfusTyamMrp8Byuze/dudO7cGSqVCu7u7hX+qq5MRd0ECoUCkydPxoYNG9C+fXtYWFigU6dO+Pbbb/U5JWRkZKBfv344evQotm/frlMgoIu7d+8iIiICzZo1g1KpRMuWLTFr1iwUFBRUue/vv/+OZ599FhYWFrCzs8PEiRNx//59nerV9xrZokULDBw4EFu3bkWXLl1gZmamySrp8nmXlpZi/vz5aNeuHczNzdG4cWN4eXnhww8/1JS5desWXn31Vbi4uEClUqFp06bo3bs39u/fX+l5NGnSBM8//zx27dqFO3fuaG0rKSnBhg0b0L17d3h6euLKlSsYP3482rRpAwsLCzRr1gyhoaE4e/Zsle9XRddoIQQWL14MNzc3mJmZoWvXrvj+++/L7Zufn49p06ahc+fOUKvVsLGxgY+PD3bs2KFVTqFQICcnB+vXr9f8eyy75lTWTaDPdej8+fN48cUXoVar4eDggJdffhmZmZlVnnt9o3NmoKSkBAcOHEC3bt3g4uKi0z6vv/46Pv30U0yePBkDBw5EcnIyZs+ejUOHDuHkyZOws7PTlE1LS8OYMWMwbdo0zJ07F9u2bcPMmTPh7OyMl156SZNO8vHxwfDhwzFt2jS9TzY5ORkDBgzAM888g7Vr16Jx48b4+++/sWfPHhQWFlb6y/LSpUvw9fWFvb09PvroI9ja2mLjxo0YN24cbt68ibfeekur/Ntvv43evXvj888/R1ZWFmbMmIHQ0FBcvHgRxsbGVbbT2toaw4cPx9q1a/Haa68BeBAYGBkZYeTIkRWOk0hOTsZrr70GV1dXAEB8fDymTJmCv//+G3PmzAEAbNu2DcOHD4darcbKlSsBoNwFa+bMmfDx8cHq1athZGQEe3t7pKWlaZWxs7NDXFwc/P39MWPGDCxZsgS5ubl44YUX4OrqitWrV1d6brNnz0aPHj0wadIkREdHIyAgQJP92Lx5M8aMGYPg4GB8+eWXKCgowOLFi+Hv748ff/xRE0SUGTp0KEaNGoWJEyciJyenyve1Krq8h1V9h5ycnLBnzx48++yzCA8PxyuvvAIAOv36KS0tRXFxsdY6Y2NjKBQKvb+DD/vxxx8xePBg+Pj4IC4uDiUlJVi8eDFu3rxZ3bcKwIMAIyEhAe+88w4aNWqExYsX4/nnn8elS5fQsmXLKvdPTU1Fnz59kJKSgr1795b7fB9HCFHuvTIyMoKRkRHy8/MREBCAP//8E/PmzYOXlxd+/vlnxMTE4PTp09i9e3elx7158yb8/PxgamqKlStXwsHBAZs2bcLkyZOrbFN1rpEAcPLkSVy8eBH//e9/4e7uDktLS50/78WLFyMqKgr//e9/0adPHxQVFeH333/HvXv3NMcfO3YsTp48iQULFqBt27a4d+8eTp48We6P/KPCw8Px5ZdfYuPGjVrdRD/88ANu3Lih+Tdx48YN2NraYuHChWjatCnu3r2L9evXo2fPnjh16hTatWun83sBPAii582bh/DwcAwfPhwpKSmYMGECSkpKtI5VUFCAu3fvYvr06WjWrBkKCwuxf/9+DB06FOvWrcNLL70E4EG2pm/fvggICMDs2bMBQCvj+ih9r0PDhg3DyJEjER4ejrNnz2LmzJkA/smeNBhCR2lpaQKAGDVqlE7lL168KACIiIgIrfW//PKLACDefvttzTo/Pz8BQPzyyy9aZTt06CD69++vtQ6AmDRpkta6uXPniopOZd26dQKASEpKEkII8fXXXwsA4vTp049tOwAxd+5czetRo0YJlUolrl27plUuJCREWFhYiHv37gkhhDh48KAAIJ577jmtcl999ZUAII4fP/7Yesvam5CQoDnWuXPnhBBCdO/eXYwbN04IIUTHjh2Fn59fpccpKSkRRUVF4p133hG2traitLRUs62yfcvq69OnT6XbDh48qLV+0aJFAoDYtm2bCAsLE+bm5uLMmTOPPceHj/d///d/Wm12dnYWnp6eoqSkRLP+/v37wt7eXvj6+mrWlX3ec+bMqbKuyuqrSmXvoS7foVu3bpX7Dj1OUlKSAFDhsm/fPiGE7t/BsmOtW7dOU6Znz57C2dlZ5OXladZlZWUJGxubCv/dPCosLEy4ublprQMgHBwcRFZWlmZdWlqaMDIyEjExMXqd7969e6tsw8Pc3NwqfK9mzZolhBBi9erVAoD46quvtPYr+74+XJ+bm5sICwvTvJ4xY4ZQKBTlPt+goKAK/w08TN9rZFn9xsbG4tKlS1rrdf28Bw4cKDp37vzYOho1aiQiIyN1blOZ0tJS4e7uLry8vLTWDxs2TFhYWIjMzMwK9ysuLhaFhYWiTZs24j//+Y9mfUXfzUev0RkZGcLMzEw8//zzWsc8evSoAPDY615xcbEoKioS4eHhokuXLlrbLC0ttT7nMo9e26pzHVq8eLHWMSMiIoSZmZnWdbchqLGphQcPHgSAcunRHj16oH379vjxxx+11js6OqJHjx5a67y8vHD16lXJ2tS5c2colUq8+uqrWL9+Pf766y+d9jtw4AACAwPLRfvjxo1Dbm5uufTRw2lA4MF5ANDrXPz8/NCqVSusXbsWZ8+eRUJCwmP75w4cOIB+/fpBrVbD2NgYpqammDNnDu7cuYP09HSd6x02bJjOZd98800MGDAAL774ItavX4/ly5fD09NT5/0fdunSJdy4cQNjx46FkdE/X8tGjRph2LBhiI+P1+rK0betutDlPazud0gX//73v5GQkKC19OzZU9M2fb6DZXJycpCQkIChQ4fCzMxMs97KygqhoaEGtTcgIEBrMKuDgwPs7e11/p73798fKpUKU6dOxa1bt7S2lZSUoLi4WLOUdReWefrpp8u9VxEREQAevFeWlpYYPny41j5l16JHrz0PO3jwIDp27IhOnTpprX90YKeUvLy8yg2g1fXz7tGjB3777TdERETghx9+qHA8UY8ePRAbG4v58+cjPj5eq2sP+CfL8vACPEivjx8/HmfOnEFiYiIA4M6dO9i1axeGDRum+XVdXFyM6OhodOjQAUqlEiYmJlAqlbh8+TIuXryo13tx/Phx5OfnY8yYMVrrfX194ebmVq78//3f/6F3795o1KgRTExMYGpqijVr1uhdb5nqXIcqut7n5+frdd2tD3QOBuzs7GBhYYGkpCSdypeloCoaJers7FwuRWVra1uunEqlQl5enq5NrFKrVq2wf/9+2NvbY9KkSWjVqhVatWql1b9WkTt37lR6HmXbH/bouZSl4vU5l7J/iBs3bsTq1avRtm1bPPPMMxWW/fXXXxEcHAzgwUjmo0ePIiEhAbNmzdK7Xn1G9Zb1hefn58PR0fGxYwWqUtX3pbS0FBkZGdVua1V0fQ+r+x3SRfPmzeHt7a21lP2x1fc7WCYjIwOlpaVwdHQst62idfow9N9sv379sG3bNly+fBkBAQFaF8/AwECYmppqlkcDYbVaXe69evi9cHR0LDeOyN7eHiYmJo9Nj5ft+yhd3it9r5FlKvpcdf28Z86ciffffx/x8fEICQmBra0tAgMDceLECc0+W7ZsQVhYGD7//HP4+PjAxsYGL730kqb7b/369VrvtampqWbf8ePHw8jICOvWrQMAbNq0CYWFhQgPD9eUmTp1KmbPno0hQ4Zg165d+OWXX5CQkIBOnTrpff0uOy9dPoOtW7dixIgRaNasGTZu3Ijjx49rfjTl5+frVe+j9etzHZLiel8f6BwMGBsbIzAwEImJieUGAFak7A1KTU0tt+3GjRta4wUMVfaL59HBQbdv3y5X9plnnsGuXbuQmZmJ+Ph4+Pj4IDIyEnFxcZUe39bWttLzACDpuTxs3LhxuH37NlavXo3x48dXWi4uLg6mpqb49ttvMWLECPj6+uo9P72MLvPOy6SmpmLSpEno3Lkz7ty5g+nTp1erTqDq74uRkRGaNGlS7bZWRZ/3sDrfIUNV9zvYpEkTKBSKcuM+AFS4rraFhIRgx44d+PPPPxEQEKAZx/DJJ59o/erX574ftra2uHnzZrmBn+np6SguLn7sv1dbW9tqv1f6XiPLVPQ91vXzNjExwdSpU3Hy5EncvXsXX375JVJSUtC/f3/NL1g7OzssW7YMycnJuHr1KmJiYrB161ZNpiQ0NLRclqVM8+bNERwcjM2bN6OgoADr1q1D69at0adPH02ZjRs34qWXXkJ0dDT69++PHj16wNvbu8Lrb1XKrgO6fAYbN26Eu7s7tmzZgiFDhqBXr17w9vbWaZBoVfXrcx16UujVTTBz5kwIITBhwoQKbzRRVFSEXbt2AQD69u0L4MEH9rCEhARcvHgRgYGB1W1zOWUjnc+cOaO1vqwtFTE2NkbPnj3x8ccfA3gwiKcygYGBOHDggOYfYpkvvvgCFhYWNTY1pVmzZnjzzTcRGhqKsLCwSsspFAqYmJhoDU7My8vDhg0bypWVKttSUlKCF198EQqFAt9//z1iYmKwfPlybN26tVrHa9euHZo1a4bNmzdrXcRzcnLwzTffaEb21hR93sMylX2HauKXQXW/g5aWlujRowe2bt2q9Wvp/v37j/33UZv69++PHTt24K+//kJAQADS0tLQrl07rV/9+txPJDAwENnZ2eVuMvPFF19otlcmICAA58+fx2+//aa1fvPmzTrVrc818nGq83k3btwYw4cPx6RJk3D37t0Kb+Tj6uqKyZMnIygoSPN9tbW1LZdleVh4eDgyMjIwZ84cnD59GuPHj9cKYBQKRbmByLt378bff/9d5Xk+qlevXjAzM8OmTZu01h87dqxc95NCoYBSqdRqS1paWrnZBIDu1726vg7VJb3uM+Dj44NVq1YhIiIC3bp1w+uvv46OHTuiqKgIp06dwqeffgoPDw+EhoaiXbt2ePXVV7F8+XIYGRkhJCREM5vAxcUF//nPfyQ7ieeeew42NjYIDw/HO++8AxMTE8TGxiIlJUWr3OrVq3HgwAEMGDAArq6uyM/P14z47NevX6XHnzt3Lr799lsEBARgzpw5sLGxwaZNm7B7924sXrwYarVasnN51MKFC6ssM2DAACxZsgSjR4/Gq6++ijt37uD999+vcGqTp6cn4uLisGXLFrRs2RJmZmbV6uefO3cufv75Z+zduxeOjo6YNm0aDh8+jPDwcHTp0gXu7u56Hc/IyAiLFy/GmDFjMHDgQLz22msoKCjAe++9h3v37un0PlQlPj6+wvV+fn46v4e6fIesrKzg5uaGHTt2IDAwEDY2NrCzszPoBlmGfAffffddPPvss5p57iUlJVi0aBEsLS3rzd3wgoODsXPnTgwePBgBAQE4cOBAtbuBXnrpJXz88ccICwtDcnIyPD09ceTIEURHR+O555577L/1yMhIrF27FgMGDMD8+fM1swl+//13nerW5xr5OLp+3qGhofDw8IC3tzeaNm2Kq1evYtmyZXBzc0ObNm2QmZmJgIAAjB49Gk899RSsrKyQkJCAPXv2YOjQoTqd06BBg2BnZ4f33nsPxsbG5X6YDBw4ELGxsXjqqafg5eWFxMREvPfee9W6cVuTJk0wffp0zJ8/H6+88gpeeOEFpKSkICoqqlw3QdmUzIiICM2sg3fffRdOTk64fPmyVllPT08cOnQIu3btgpOTE6ysrCqc5VAb16F6qzqjDk+fPi3CwsKEq6urUCqVwtLSUnTp0kXMmTNHpKena8qVlJSIRYsWibZt2wpTU1NhZ2cn/vWvf4mUlBSt4/n5+YmOHTuWq6eyUcyPziYQQohff/1V+Pr6CktLS9GsWTMxd+5c8fnnn2uNVD1+/Lh4/vnnhZubm1CpVMLW1lb4+fmJnTt3lqvj0ZHgZ8+eFaGhoUKtVgulUik6deqkNSpWiMpHrVc0irYiD88meJyKZgSsXbtWtGvXTqhUKtGyZUsRExMj1qxZo3X+QgiRnJwsgoODhZWVlQCgeX8fN+L+0RG3e/fuFUZGRuXeozt37ghXV1fRvXt3UVBQUGn7H1fX9u3bRc+ePYWZmZmwtLQUgYGB4ujRo1plykbx3rp1q/I3qYL6KlvKzkuX91DX79D+/ftFly5dhEqlEgAqHMlcpuz78d577z32PHT5Dlb2Xdu5c6fw8vISSqVSuLq6ioULF1Y6C+dR+vw7fHR0fkUed7779+8X5ubmol27duLvv/+ucH83NzcxYMCAx9Zx584dMXHiROHk5CRMTEyEm5ubmDlzpsjPz6+yvRcuXBBBQUHCzMxM2NjYiPDwcLFjx44qZxM8TNdr5OPORZfP+4MPPhC+vr7Czs5O89mGh4eL5ORkIYQQ+fn5YuLEicLLy0tYW1tr3tu5c+eKnJwcnc5FCCH+85//VDhTSogHMwDCw8OFvb29sLCwEE8//bT4+eefhZ+fn9Z1SpfZBEI8mMUQExMjXFxchFKpFF5eXmLXrl3ljieEEAsXLhQtWrQQKpVKtG/fXnz22WcVfq9Pnz4tevfuLSwsLLRmJVQ2U8qQ61BF59QQKIR4pGONiIiIZIVPLSQiIpI5BgNEREQyx2CAiIhI5hgMEBERyRyDASIiIpljMEBERCRzet10qKEpLS3FjRs3YGVlJemta4mIqHYIIXD//n04OztrPTxIavn5+RXeNVJfSqVS66FgDcUTHQzcuHFDr+eKExFR/ZSSklKtuxrqIj8/H+ZWtkBxbtWFq+Do6IikpKQGFxA80cFA2RPflB3CoDBW1nFriGrGtUPv13UTiGrM/awstHZ30XpcttQKCwuB4lyoOoQBhvytKClE2oX1KCwsZDBQn5R1DSiMlQwG6IlV9lx5oidZrXT1mpgZ9LdCKBruMLwnOhggIiLSmQKAIUFHAx6axmCAiIgIABRGDxZD9m+gGm7LiYiISBLMDBAREQEPuggM6iZouP0EDAaIiIgAdhMQERFR7Vq1ahW8vLxgbW0Na2tr+Pj44Pvvv9dsHzduHBQKhdbSq1cvrWMUFBRgypQpsLOzg6WlJQYNGoTr16/r3RYGA0RERMA/3QSGLHpo3rw5Fi5ciBMnTuDEiRPo27cvBg8ejPPnz2vKPPvss0hNTdUs3333ndYxIiMjsW3bNsTFxeHIkSPIzs7GwIEDUVJSoldb2E1AREQEADCwm0DP39ehoaFarxcsWIBVq1YhPj4eHTt2BACoVCo4OjpWuH9mZibWrFmDDRs2oF+/fgCAjRs3wsXFBfv370f//v1rqOVERET0WFlZWVpLQUFBlfuUlJQgLi4OOTk58PHx0aw/dOgQ7O3t0bZtW0yYMAHp6emabYmJiSgqKkJwcLBmnbOzMzw8PHDs2DG92sxggIiICJCsm8DFxQVqtVqzxMTEVFrl2bNn0ahRI6hUKkycOBHbtm1Dhw4dAAAhISHYtGkTDhw4gA8++AAJCQno27evJrhIS0uDUqlEkyZNtI7p4OCAtLQ0vU6d3QRERESAZLMJUlJStG4TrlKpKt2lXbt2OH36NO7du4dvvvkGYWFhOHz4MDp06ICRI0dqynl4eMDb2xtubm7YvXs3hg4dWukxhRB6376ZmQEiIiIJlc0OKFseFwwolUq0bt0a3t7eiImJQadOnfDhhx9WWNbJyQlubm64fPkygAdPSCwsLERGRoZWufT0dDg4OOjVZgYDREREQK3PJqiIEKLSMQZ37txBSkoKnJycAADdunWDqakp9u3bpymTmpqKc+fOwdfXV6962U1AREQE1PpNh95++22EhITAxcUF9+/fR1xcHA4dOoQ9e/YgOzsbUVFRGDZsGJycnJCcnIy3334bdnZ2eP755wEAarUa4eHhmDZtGmxtbWFjY4Pp06fD09NTM7tAVwwGiIiIgFq/HfHNmzcxduxYpKamQq1Ww8vLC3v27EFQUBDy8vJw9uxZfPHFF7h37x6cnJwQEBCALVu2wMrKSnOMpUuXwsTEBCNGjEBeXh4CAwMRGxsLY2Nj/ZouhBB67dGAZGVlQa1WQ+U5waBnVBPVZxkJK+q6CUQ1JisrCw62amRmZmoNypO6DrVaDVWvt6Awqbx/vyqiuAAF8YtrtK01hZkBIiIiQNbPJmAwQEREBPyvm8CQYKDhPrWw4YYxREREJAlmBoiIiADASPFgMWT/BorBABERESDrMQMNt+VEREQkCWYGiIiIgFq/z0B9wmCAiIgIYDcBERERyRczA0RERAC7CYiIiGRPxt0EDAaIiIgAWWcGGm4YQ0RERJJgZoCIiAhgNwEREZHssZuAiIiI5IqZASIiIgCAgd0EDfj3NYMBIiIigN0EREREJF/MDBAREQH/ywwYMpug4WYGGAwQEREBsp5a2HBbTkRERJJgZoCIiAiQ9QBCBgNERESArLsJGAwQEREBss4MNNwwhoiIiCTBzAARERHAbgIiIiLZYzcBERERyRUzA0RERAAUCgUUMs0MMBggIiKCvIMBdhMQERHJHDMDREREAKD432LI/g0UgwEiIiKwm4CIiIhkjJkBIiIiyDszwGCAiIgIDAaIiIhkT87BAMcMEBERyRwzA0RERICspxYyM0BERIR/ugkMWfSxatUqeHl5wdraGtbW1vDx8cH333+v2S6EQFRUFJydnWFubg5/f3+cP39e6xgFBQWYMmUK7OzsYGlpiUGDBuH69et6nzuDASIiojrQvHlzLFy4ECdOnMCJEyfQt29fDB48WPMHf/HixViyZAlWrFiBhIQEODo6IigoCPfv39ccIzIyEtu2bUNcXByOHDmC7OxsDBw4ECUlJXq1hcEAERERyp5gbEhmQL/6QkND8dxzz6Ft27Zo27YtFixYgEaNGiE+Ph5CCCxbtgyzZs3C0KFD4eHhgfXr1yM3NxebN28GAGRmZmLNmjX44IMP0K9fP3Tp0gUbN27E2bNnsX//fr3awmCAiIgIgAIGdhMYMGigpKQEcXFxyMnJgY+PD5KSkpCWlobg4GBNGZVKBT8/Pxw7dgwAkJiYiKKiIq0yzs7O8PDw0JTRFQcQEhERSSgrK0vrtUqlgkqlqrDs2bNn4ePjg/z8fDRq1Ajbtm1Dhw4dNH/MHRwctMo7ODjg6tWrAIC0tDQolUo0adKkXJm0tDS92szMABEREaQbQOji4gK1Wq1ZYmJiKq2zXbt2OH36NOLj4/H6668jLCwMFy5c0GrTw4QQVQ5U1KXMo5gZICIiAiSbWpiSkgJra2vN6sqyAgCgVCrRunVrAIC3tzcSEhLw4YcfYsaMGQAe/Pp3cnLSlE9PT9dkCxwdHVFYWIiMjAyt7EB6ejp8fX31ajozA0RERBIqmypYtjwuGHiUEAIFBQVwd3eHo6Mj9u3bp9lWWFiIw4cPa/7Qd+vWDaamplplUlNTce7cOb2DAWYGiIiIAMDA2xELPfd9++23ERISAhcXF9y/fx9xcXE4dOgQ9uzZA4VCgcjISERHR6NNmzZo06YNoqOjYWFhgdGjRwMA1Go1wsPDMW3aNNja2sLGxgbTp0+Hp6cn+vXrp1dbGAwQERHB8GcT6LvvzZs3MXbsWKSmpkKtVsPLywt79uxBUFAQAOCtt95CXl4eIiIikJGRgZ49e2Lv3r2wsrLSHGPp0qUwMTHBiBEjkJeXh8DAQMTGxsLY2Fi/tgshhF57NCBZWVlQq9VQeU6AwlhZ180hqhEZCSvquglENSYrKwsOtmpkZmZq9cNLXYdarYbtmHUwUlpU+zilhbm4s2l8jba1pnDMABERkcyxm4CIiAiQ9YOKGAwQERGh9scM1CfsJiAiIpI5ZgaIiIgg78wAgwEiIiLIOxhgNwEREZHMMTNAREQEeWcGGAwQEREBsp5ayG4CIiIimWNmgIiICOwmICIikj0GA0RERDIn52CAYwaIiIhkjpkBIiIiQNazCRgMEBERgd0EREREJGPMDFCVXh72NF4e9gxcnGwAAL//lYb31nyP/ccuaMq0beGAqClD0LtraygUCvz+VypenrkW129moLG1BWa+OgABvZ5CM4cmuHsvG7sPnUH06m+RlZNfV6dFpJejJ69g+Yb9+O33a0i7nYWN703AAP9Odd0skhAzA/XcypUr4e7uDjMzM3Tr1g0///xzXTdJVm6k38O8FTvQN+w99A17Dz+f+AOb3n8VT7V0BAC0aGaH7z+bisvJaRj42od4ZkwM3l+zB/mFRQAAp6ZqODZVY86H29B7VDQi5m1EoE8HfDR7TF2eFpFecvMK4NG2GRa/OaKum0I1RAGFJiCo1tKABw3U+8zAli1bEBkZiZUrV6J379745JNPEBISggsXLsDV1bWumycLe34+p/V6/qpdeHnY0/D2cMfvf6VhdkQo9h07j7nLd2jKXP37jub/L/6ZirAZn2teJ/99G/NX7cIn77wEY2MjlJSU1vxJEBkoqHdHBPXuWNfNIKoR9T4zsGTJEoSHh+OVV15B+/btsWzZMri4uGDVqlV13TRZMjJSYGhQN1iYK5FwNgkKhQJBvTviyrV0fP3RJPzxQwz2rZuO5/y8Hnsc60ZmuJ+Tz0CAiOoNg7ICBnYx1LV6HQwUFhYiMTERwcHBWuuDg4Nx7NixOmqVPHVo5YyUwx/g5tFlWDJzJMa++RkuJaWhqU0jWFmaITIsCD8ev4ChU1Zg96HfsGHxK/Dt2rrCYzVRW+LN8BDEbj1ay2dBRPQYCgmWBqpedxPcvn0bJSUlcHBw0Frv4OCAtLS0cuULCgpQUFCgeZ2VlVXjbZSLy1dvos+YGKitLDCob2esjBqLga99iMz7eQCA7w+fxaovDwIAzv3xN3p4tcTLQ5/GsZNXtI5jZWmGLUsn4lJSKhZ99l2tnwcREZVXrzMDZR5NvQghKkzHxMTEQK1WaxYXF5faauITr6i4BEnXb+P0xWt45+OdOHf5b0wc5Y8797JRVFyC35NStcr/kZSG5o5NtNY1slDh648ikJNXgH+9+RmK2UVARPUIuwnqKTs7OxgbG5fLAqSnp5fLFgDAzJkzkZmZqVlSUlJqq6myo1AooFSaoKi4BKcuXEUbN+3Po5WrPVJSMzSvrSzN8M3yySgsKsHoqZ+goLC4tptMRPRYDAbqKaVSiW7dumHfvn1a6/ft2wdfX99y5VUqFaytrbUWMtzsiFD4dG4FFycbdGjljP++Hoqnu7bB/31/AgDw0Yb9eD6oK14a4gv35naY8EIfPPuMB9Z8/ROABxmBb5ZPgqW5ElPe3QSrRmawt7WCva0VjIwa7j8ekpfs3AKcvXQdZy9dBwBcvXEHZy9dR0ra3TpuGUlFoTB8aajq9ZgBAJg6dSrGjh0Lb29v+Pj44NNPP8W1a9cwceLEum6abDS1scLqeS/Bwc4aWdn5OH/lbwx/YyUO/fo7AGD3oTOYGhOH/4wLxsJpw3HlWjpemvE54n/7CwDQ6SlXdPd0BwCc2h6ldWyvQXOQksqLKdV/py9eRejEjzSvZy3dCgB4cUBPrIwaW1fNIpJEvQ8GRo4ciTt37uCdd95BamoqPDw88N1338HNza2umyYbb8zfXGWZTbvisWlXfIXbjp68jCbdJ0vdLKJa9XS3tshIWFHXzaAa9ODXvSF3IJSwMbWs3gcDABAREYGIiIi6bgYRET3JDE31N+BgoF6PGSAiIqKa1yAyA0RERDVNzg8qYjBAREQEw2cENOBYgN0EREREcsfMABERER48iM2Qe5+IBnzfFAYDREREYDcBERERyRgzA0REROBsAiIiItmTczcBgwEiIiLIOzPAMQNEREQyx8wAERERmBkgIiKSvbIxA4Ys+oiJiUH37t1hZWUFe3t7DBkyBJcuXdIqM27cOE2QUrb06tVLq0xBQQGmTJkCOzs7WFpaYtCgQbh+/bpebWEwQEREVAcOHz6MSZMmIT4+Hvv27UNxcTGCg4ORk5OjVe7ZZ59FamqqZvnuu++0tkdGRmLbtm2Ii4vDkSNHkJ2djYEDB6KkpETntrCbgIiICIACBnYT6PkM4z179mi9XrduHezt7ZGYmIg+ffpo1qtUKjg6OlZ4jMzMTKxZswYbNmxAv379AAAbN26Ei4sL9u/fj/79++vUFmYGiIiIIF03QVZWltZSUFCgU/2ZmZkAABsbG631hw4dgr29Pdq2bYsJEyYgPT1dsy0xMRFFRUUIDg7WrHN2doaHhweOHTum87kzGCAiIpKQi4sL1Gq1ZomJialyHyEEpk6diqeffhoeHh6a9SEhIdi0aRMOHDiADz74AAkJCejbt68mwEhLS4NSqUSTJk20jufg4IC0tDSd28xuAiIiIkg3myAlJQXW1taa9SqVqsp9J0+ejDNnzuDIkSNa60eOHKn5fw8PD3h7e8PNzQ27d+/G0KFDKz2eEEKvc2FmgIiICNJ1E1hbW2stVQUDU6ZMwc6dO3Hw4EE0b978sWWdnJzg5uaGy5cvAwAcHR1RWFiIjIwMrXLp6elwcHDQ+dwZDBAREdUBIQQmT56MrVu34sCBA3B3d69ynzt37iAlJQVOTk4AgG7dusHU1BT79u3TlElNTcW5c+fg6+urc1vYTUBERITav+nQpEmTsHnzZuzYsQNWVlaaPn61Wg1zc3NkZ2cjKioKw4YNg5OTE5KTk/H222/Dzs4Ozz//vKZseHg4pk2bBltbW9jY2GD69Onw9PTUzC7QBYMBIiIi1P6DilatWgUA8Pf311q/bt06jBs3DsbGxjh79iy++OIL3Lt3D05OTggICMCWLVtgZWWlKb906VKYmJhgxIgRyMvLQ2BgIGJjY2FsbKxzWxgMEBERofYzA0KIx243NzfHDz/8UOVxzMzMsHz5cixfvlyv+h/GMQNEREQyx8wAERERABjYTaDnDQjrFQYDRERE4FMLiYiISMaYGSAiIkLtzyaoTxgMEBERgd0EREREJGPMDBAREYHdBERERLLHbgIiIiKSLWYGiIiIIO/MAIMBIiIicMwAERGR7Mk5M8AxA0RERDLHzAARERHYTUBERCR77CYgIiIi2WJmgIiICIACBnYTSNaS2sdggIiICICRQgEjA6IBQ/ata+wmICIikjlmBoiIiMDZBERERLIn59kEDAaIiIgAGCkeLIbs31BxzAAREZHMMTNAREQEAAoDU/0NODPAYICIiAjyHkDIbgIiIiKZY2aAiIgIgOJ//xmyf0PFYICIiAicTUBEREQyxswAEREReNMhg3300Uc6l33jjTekqJKIiEhScp5NIEkwsHTpUp3KKRQKBgNERET1jCTBQFJSkhSHISIiqjN8hHENKCwsxKVLl1BcXFxTVRAREUmmrJvAkKWhkjwYyM3NRXh4OCwsLNCxY0dcu3YNwIOxAgsXLpS6OiIiIkmUDSA0ZGmoJA8GZs6cid9++w2HDh2CmZmZZn2/fv2wZcsWqasjIiIiA0k+tXD79u3YsmULevXqpRUldejQAX/++afU1REREUmCswkkdOvWLdjb25dbn5OT06BTKERE9GTjAEIJde/eHbt379a8LgsAPvvsM/j4+EhdHRERERlI8mAgJiYGs2bNwuuvv47i4mJ8+OGHCAoKQmxsLBYsWCB1dURERJJQSLDoIyYmBt27d4eVlRXs7e0xZMgQXLp0SauMEAJRUVFwdnaGubk5/P39cf78ea0yBQUFmDJlCuzs7GBpaYlBgwbh+vXrerVF8mDA19cXR48eRW5uLlq1aoW9e/fCwcEBx48fR7du3aSujoiISBK1PZvg8OHDmDRpEuLj47Fv3z4UFxcjODgYOTk5mjKLFy/GkiVLsGLFCiQkJMDR0RFBQUG4f/++pkxkZCS2bduGuLg4HDlyBNnZ2Rg4cCBKSkp0P3chhNCr9Q1IVlYW1Go1VJ4ToDBW1nVziGpERsKKum4CUY3JysqCg60amZmZsLa2rrE61Go1hq3+Gabmjap9nKK8bHwz8Zlqt7VszN3hw4fRp08fCCHg7OyMyMhIzJgxA8CDLICDgwMWLVqE1157DZmZmWjatCk2bNiAkSNHAgBu3LgBFxcXfPfdd+jfv79OddfIg4pKSkqwbds2XLx4EQqFAu3bt8fgwYNhYsLnIhERUf0k1SOMs7KytNarVCqoVKoq98/MzAQA2NjYAHhwd9+0tDQEBwdrHcvPzw/Hjh3Da6+9hsTERBQVFWmVcXZ2hoeHB44dO1Z3wcC5c+cwePBgpKWloV27dgCAP/74A02bNsXOnTvh6ekpdZVEREQGk+qphS4uLlrr586di6ioqMfuK4TA1KlT8fTTT8PDwwMAkJaWBgBwcHDQKuvg4ICrV69qyiiVSjRp0qRcmbL9dSF5MPDKK6+gY8eOOHHihKZxGRkZGDduHF599VUcP35c6iqJiIjqjZSUFK1uAl2yApMnT8aZM2dw5MiRctseDVCEEFUGLbqUeZjkwcBvv/2mFQgAQJMmTbBgwQJ0795d6uqIiIgkI8WtAqytrfUaMzBlyhTs3LkTP/30E5o3b65Z7+joCODBr38nJyfN+vT0dE22wNHREYWFhcjIyND6u5ueng5fX1+d2yD5bIJ27drh5s2b5danp6ejdevWUldHREQkidqeTSCEwOTJk7F161YcOHAA7u7uWtvd3d3h6OiIffv2adYVFhbi8OHDmj/03bp1g6mpqVaZ1NRUnDt3Tq9gQJLMwMODJaKjo/HGG28gKioKvXr1AgDEx8fjnXfewaJFi6SojoiISHJSDSDU1aRJk7B582bs2LEDVlZWmj5+tVoNc3NzKBQKREZGIjo6Gm3atEGbNm0QHR0NCwsLjB49WlM2PDwc06ZNg62tLWxsbDB9+nR4enqiX79+OrdFkmCgcePGWhGREAIjRozQrCubvRgaGqrXvEciIqIn1apVqwAA/v7+WuvXrVuHcePGAQDeeust5OXlISIiAhkZGejZsyf27t0LKysrTfmlS5fCxMQEI0aMQF5eHgIDAxEbGwtjY2Od2yJJMHDw4EEpDkNERFRnpJpNoCtdbvOjUCgQFRX12NkIZmZmWL58OZYvX65X/Q+TJBjw8/OT4jBERER1pjq3FH50/4aqxu4ClJubi2vXrqGwsFBrvZeXV01VSURERNVQI48wHj9+PL7//vsKt3PMABER1Ud8hLGEIiMjkZGRgfj4eJibm2PPnj1Yv3492rRpg507d0pdHRERkSQUCsOXhkryzMCBAwewY8cOdO/eHUZGRnBzc0NQUBCsra0RExODAQMGSF0lERERGUDyzEBOTg7s7e0BPHjYwq1btwAAnp6eOHnypNTVERERSaK2bzpUn9TIHQgvXboEAOjcuTM++eQT/P3331i9erXW7RSJiIjqE3YTSCgyMhKpqakAHjypqX///ti0aROUSiViY2Olro6IiIgMJHkwMGbMGM3/d+nSBcnJyfj999/h6uoKOzs7qasjIiKShJxnE9TYfQbKWFhYoGvXrjVdDRERkUEMTfU34FhAmmBg6tSpOpddsmSJFFUSERFJqrZvR1yfSBIMnDp1SqdyDfmNIiIielLJ4kFF1w69D2tr67puBlGNmLz1XF03gajGFOZm11pdRjBsip3k0/NqUY2PGSAiImoI5NxN0JADGSIiIpIAMwNERER4MBvAiLMJiIiI5MvIwGDAkH3rGrsJiIiIZK5GgoENGzagd+/ecHZ2xtWrVwEAy5Ytw44dO2qiOiIiIoPxQUUSWrVqFaZOnYrnnnsO9+7dQ0lJCQCgcePGWLZsmdTVERERSaKsm8CQpaGSPBhYvnw5PvvsM8yaNQvGxsaa9d7e3jh79qzU1REREZGBJB9AmJSUhC5dupRbr1KpkJOTI3V1REREkpDzswkkzwy4u7vj9OnT5dZ///336NChg9TVERERSaLsqYWGLA2V5JmBN998E5MmTUJ+fj6EEPj111/x5ZdfIiYmBp9//rnU1REREUmCtyOW0Pjx41FcXIy33noLubm5GD16NJo1a4YPP/wQo0aNkro6IiIiMlCN3HRowoQJmDBhAm7fvo3S0lLY29vXRDVERESSkfOYgRq9A6GdnV1NHp6IiEgyRjCs398IDTcakDwYcHd3f+yNF/766y+pqyQiIiIDSB4MREZGar0uKirCqVOnsGfPHrz55ptSV0dERCQJdhNI6N///neF6z/++GOcOHFC6uqIiIgkwQcV1YKQkBB88803tVUdERER6ajWHmH89ddfw8bGpraqIyIi0otCAYMGELKb4CFdunTRGkAohEBaWhpu3bqFlStXSl0dERGRJDhmQEJDhgzRem1kZISmTZvC398fTz31lNTVERERkYEkDQaKi4vRokUL9O/fH46OjlIemoiIqEZxAKFETExM8Prrr6OgoEDKwxIREdU4hQT/NVSSzybo2bMnTp06JfVhiYiIalRZZsCQpaGSfMxAREQEpk2bhuvXr6Nbt26wtLTU2u7l5SV1lURERGQAyYKBl19+GcuWLcPIkSMBAG+88YZmm0KhgBACCoUCJSUlUlVJREQkGTmPGZAsGFi/fj0WLlyIpKQkqQ5JRERUaxQKxWOfraPL/g2VZGMGhBAAADc3t8cuRERE9MBPP/2E0NBQODs7Q6FQYPv27Vrbx40bpwlSypZevXpplSkoKMCUKVNgZ2cHS0tLDBo0CNevX9erHZIOIGzIUREREclbXQwgzMnJQadOnbBixYpKyzz77LNITU3VLN99953W9sjISGzbtg1xcXE4cuQIsrOzMXDgQL265SUdQNi2bdsqA4K7d+9KWSUREZEk6uIOhCEhIQgJCXlsGZVKVem9ezIzM7FmzRps2LAB/fr1AwBs3LgRLi4u2L9/P/r3769TOyQNBubNmwe1Wi3lIYmIiBqUrKwsrdcqlQoqlaraxzt06BDs7e3RuHFj+Pn5YcGCBbC3twcAJCYmoqioCMHBwZryzs7O8PDwwLFjx+omGBg1apSmgURERA2JkUJh0IOKyvZ1cXHRWj937lxERUVV65ghISF44YUX4ObmhqSkJMyePRt9+/ZFYmIiVCoV0tLSoFQq0aRJE639HBwckJaWpnM9kgUDHC9AREQNmVRTC1NSUmBtba1Zb0hWoGy6PgB4eHjA29sbbm5u2L17N4YOHVrpfmXT+XUl+WwCIiIiObO2ttZaDAkGHuXk5AQ3NzdcvnwZAODo6IjCwkJkZGRolUtPT4eDg4POx5UsGCgtLWUXARERNVyKfwYRVmepjUcT3LlzBykpKXBycgIAdOvWDaampti3b5+mTGpqKs6dOwdfX1+djyv57YiJiIgaIiMoYGTAX/Tq7JudnY0rV65oXiclJeH06dOwsbGBjY0NoqKiMGzYMDg5OSE5ORlvv/027Ozs8PzzzwMA1Go1wsPDMW3aNNja2sLGxgbTp0+Hp6enZnaBLhgMEBERoW6mFp44cQIBAQGa11OnTgUAhIWFYdWqVTh79iy++OIL3Lt3D05OTggICMCWLVtgZWWl2Wfp0qUwMTHBiBEjkJeXh8DAQMTGxsLY2FjndjAYICIiqiP+/v6PHXP3ww8/VHkMMzMzLF++HMuXL692OxgMEBERgQ8qIiIikj2p7jPQEEn6bAIiIiJqeJgZICIiQt0MIKwvGAwQERHhf1MLDekmqI0bDdQQdhMQERHJHDMDREREYDcBERGR7BnBsHR5Q061N+S2ExERkQSYGSAiIgKgUCj0euxvRfs3VAwGiIiI8OChg4b8OW+4oQCDASIiIgC8AyERERHJGDMDRERE/9Nwf9sbhsEAERER5H2fAXYTEBERyRwzA0RERODUQiIiItnjHQiJiIhItpgZICIiArsJiIiIZE/OdyBkNwEREZHMMTNAREQEdhMQERHJnpxnEzAYICIigrwzAw05kCEiIiIJMDNAREQEec8mYDBAREQEPqiIiIiIZIyZASIiIgBGUMDIgGS/IfvWNQYDREREYDcBERERyRgzA0RERAAU//vPkP0bKgYDREREYDcBERERyRgzA0RERHiQ5jdkRgC7CYiIiBo4OXcTMBggIiKCvIMBjhkgIiKSOWYGiIiIIO+phcwMEBERATBSGL7o66effkJoaCicnZ2hUCiwfft2re1CCERFRcHZ2Rnm5ubw9/fH+fPntcoUFBRgypQpsLOzg6WlJQYNGoTr16/rd+76N52IiIikkJOTg06dOmHFihUVbl+8eDGWLFmCFStWICEhAY6OjggKCsL9+/c1ZSIjI7Ft2zbExcXhyJEjyM7OxsCBA1FSUqJzO9hNQEREhLrpJggJCUFISEiF24QQWLZsGWbNmoWhQ4cCANavXw8HBwds3rwZr732GjIzM7FmzRps2LAB/fr1AwBs3LgRLi4u2L9/P/r3769TO5gZICIiwj+zCQxZACArK0trKSgoqFZ7kpKSkJaWhuDgYM06lUoFPz8/HDt2DACQmJiIoqIirTLOzs7w8PDQlNEFgwEiIiIJubi4QK1Wa5aYmJhqHSctLQ0A4ODgoLXewcFBsy0tLQ1KpRJNmjSptIwu2E1AREQEQAHDZgSU7ZmSkgJra2vNepVKZVi7HrmBgRCi3LpH6VLmYcwMEBERQbrZBNbW1lpLdYMBR0dHACj3Cz89PV2TLXB0dERhYSEyMjIqLaPTuVerhURERFSj3N3d4ejoiH379mnWFRYW4vDhw/D19QUAdOvWDaamplplUlNTce7cOU0ZXbCbgCRx9OQVLN+wH7/9fg1pt7Ow8b0JGODfqa6bRaSTVrYW6NfWDq6NzaE2N8Wnx6/iTOo/U7eUxkYY7OEAL2drWCqNcTenEIf+vIsjSXc1ZewslXje0xEtbS1gYqTAxZvZ+L/fbuB+ge7Tu6hu1cVsguzsbFy5ckXzOikpCadPn4aNjQ1cXV0RGRmJ6OhotGnTBm3atEF0dDQsLCwwevRoAIBarUZ4eDimTZsGW1tb2NjYYPr06fD09NTMLtBFvc4MVHUzBqo/cvMK4NG2GRa/OaKum0KkN5WJEf7OzMdXv6VWuH2YlyM6ODTCFwnXMX/fZRy8cgcvdHKCp5MVAEBprMCk3i0ghMDyn5Ow9PBfMDZS4DUftwZ8Tzr5kWo2gT5OnDiBLl26oEuXLgCAqVOnokuXLpgzZw4A4K233kJkZCQiIiLg7e2Nv//+G3v37oWVlZXmGEuXLsWQIUMwYsQI9O7dGxYWFti1axeMjY11bke9zgyU3Yxh/PjxGDZsWF03hx4jqHdHBPXuWNfNIKqWCzezceFmdqXb3W0s8Mu1e7h8OwcAcDQ5A73dbeDaxBxnU++jpa0lbC1NsejAFeQXlwIANiZex3uhHdC2qSUu3cqplfMgwygAg4K36uzr7+8PIUTlx1QoEBUVhaioqErLmJmZYfny5Vi+fHk1WvBAvQ4GHnczBiKi2vLXnVx4OlnheHIGMvOL0cbOEvaNlPj6zIMAwsRIASGA4tJ/LurFJQKlQqCVHYMBqv/qdTCgr4KCAq2bO2RlZdVha4joSfF/v6VidFdnLHjuKZSUPvgjv/nkDfx1JxcAkHw3F4UlpRjs4YCd529CAWCwhyOMFApYmz1Rl9knmhEUMDLgOcRGDbhT6In6lsbExGDevHl13QwiesL4t7ZBCxsLrD52FXdzC9HazhIjOzshK78Il27lILuwBGt+ScHIzs7wa2ULIYDE65m4lpGH0sekgKl+qYtugvriiQoGZs6cialTp2peZ2VlwcXFpQ5bREQNnamRAqEdHfBZ/DWcT3vQLXAjqwDNG5shsK2dpgvg9/RszNv7ByyVxigVAnlFpYh+rh3uXC+qy+YT6eSJCgZUKpXBd3oiInqYsZECJkZGePQHfqmoeCpZTuGDqYRtm1qikcoEZ1PZXdlgyDg18EQFA1R3snMLkJRyS/P66o07OHvpOhqrLeDiaFOHLSOqmtLYCE0bKTWvbS2VaKY2Q25hCTLyinD5Vg6GeDiiqCRV003Qw7Uxtp75585wvdwaIy2rANmFJXC3McdwLyccvHIH6dmFdXFKVA11cZ+B+qJeBwNV3YyB6o/TF68idOJHmtezlm4FALw4oCdWRo2tq2YR6cStiTn+3cdd83qYlxMAIP5qBjYm/o21v6ZgsIcDwro3h4XSGHdzi/Dt+ZtaNx2yb6TCoI4OD7bnFOGHS7dw4MqdWj8XoupQiMdNcKxjhw4dQkBAQLn1YWFhiI2NrXL/rKwsqNVq3LyTqfXQCKInyeSt5+q6CUQ1pjA3GxvG+yAzs+au42V/K348fQ2NrKpfR/b9LAR2dq3RttaUep0ZqOpmDERERFKR8ZCB+n07YiIiIqp59TozQEREVGtknBpgMEBERATOJiAiIpK96j558OH9GyqOGSAiIpI5ZgaIiIgg6yEDDAaIiIgAyDoaYDcBERGRzDEzQEREBM4mICIikj3OJiAiIiLZYmaAiIgIsh4/yGCAiIgIgKyjAXYTEBERyRwzA0REROBsAiIiItmT82wCBgNERESQ9ZABjhkgIiKSO2YGiIiIAFmnBhgMEBERQd4DCNlNQEREJHPMDBAREYGzCYiIiGRPxkMG2E1AREQkd8wMEBERAbJODTAYICIiAmcTEBERkYwxM0BERATOJiAiIpI9GQ8ZYDBAREQEQNbRAMcMEBERyRyDASIiIvwzm8CQ//QRFRUFhUKhtTg6Omq2CyEQFRUFZ2dnmJubw9/fH+fPn5f6tAEwGCAiInpA8c8gwuos1ekm6NixI1JTUzXL2bNnNdsWL16MJUuWYMWKFUhISICjoyOCgoJw//596c75fxgMEBER1RETExM4OjpqlqZNmwJ4kBVYtmwZZs2ahaFDh8LDwwPr169Hbm4uNm/eLHk7GAwQERHhn/GDhiz6unz5MpydneHu7o5Ro0bhr7/+AgAkJSUhLS0NwcHBmrIqlQp+fn44duxYNc+wcpxNQEREBEg2myArK0trtUqlgkqlKle8Z8+e+OKLL9C2bVvcvHkT8+fPh6+vL86fP4+0tDQAgIODg9Y+Dg4OuHr1qgGNrBgzA0RERBJycXGBWq3WLDExMRWWCwkJwbBhw+Dp6Yl+/fph9+7dAID169dryigeuZOREKLcOikwM0BERATpnk2QkpICa2trzfqKsgIVsbS0hKenJy5fvowhQ4YAANLS0uDk5KQpk56eXi5bIAVmBoiIiGDYTIKHb2VsbW2ttegaDBQUFODixYtwcnKCu7s7HB0dsW/fPs32wsJCHD58GL6+vpKfOzMDREREdWD69OkIDQ2Fq6sr0tPTMX/+fGRlZSEsLAwKhQKRkZGIjo5GmzZt0KZNG0RHR8PCwgKjR4+WvC0MBoiIiFD7dyO+fv06XnzxRdy+fRtNmzZFr169EB8fDzc3NwDAW2+9hby8PERERCAjIwM9e/bE3r17YWVlZUArK8ZggIiICKj1aCAuLu7xh1MoEBUVhaioqOq3SUcMBoiIiCDdAMKGiAMIiYiIZI6ZASIiIvyvl8CAH/cNNy/AYICIiAhA7Q8grE/YTUBERCRzzAwQERFB+8ZB1d2/oWIwQEREBEDOHQXsJiAiIpI5ZgaIiIjAbgIiIiLZk28nAbsJiIiIZI+ZASIiIrCbgIiISPbk/GwCBgNERESArAcNcMwAERGRzDEzQEREBFknBhgMEBERAfIeQMhuAiIiIpljZoCIiAicTUBEREQyHjTAbgIiIiKZY2aAiIgIsk4MMBggIiICOJuAiIiIZIyZASIiIgAwcDZBQ+4oYDBAREQEdhMQERGRjDEYICIikjl2ExAREUHe3QQMBoiIiCDv2xGzm4CIiEjmmBkgIiICuwmIiIhkT863I2Y3ARERkcwxM0BERATIOjXAYICIiAicTUBEREQyxswAEREROJuAiIhI9mQ8ZIDBABEREQBZRwMcM0BERCRzzAwQERFB3rMJGAwQERGBAwifWEIIAMD9rKw6bglRzSnMza7rJhDVmMK8HAD/XM9rUpaBfysM3b8uPdHBwP379wEArd1d6rglRERkiPv370OtVtfIsZVKJRwdHdFGgr8Vjo6OUCqVErSqdilEbYRbdaS0tBQ3btyAlZUVFA05f9OAZGVlwcXFBSkpKbC2tq7r5hBJjt/x2iWEwP379+Hs7Awjo5ob856fn4/CwkKDj6NUKmFmZiZBi2rXE50ZMDIyQvPmzeu6GbJkbW3NCyU90fgdrz01lRF4mJmZWYP8Iy4VTi0kIiKSOQYDREREMsdggCSlUqkwd+5cqFSqum4KUY3gd5yeRE/0AEIiIiKqGjMDREREMsdggIiISOYYDBAREckcgwEiIiKZYzBAklm5ciXc3d1hZmaGbt264eeff67rJhFJ5qeffkJoaCicnZ2hUCiwffv2um4SkWQYDJAktmzZgsjISMyaNQunTp3CM888g5CQEFy7dq2um0YkiZycHHTq1AkrVqyo66YQSY5TC0kSPXv2RNeuXbFq1SrNuvbt22PIkCGIiYmpw5YRSU+hUGDbtm0YMmRIXTeFSBLMDJDBCgsLkZiYiODgYK31wcHBOHbsWB21ioiIdMVggAx2+/ZtlJSUwMHBQWu9g4MD0tLS6qhVRESkKwYDJJlHHxMthOCjo4mIGgAGA2QwOzs7GBsbl8sCpKenl8sWEBFR/cNggAymVCrRrVs37Nu3T2v9vn374OvrW0etIiIiXZnUdQPoyTB16lSMHTsW3t7e8PHxwaeffopr165h4sSJdd00IklkZ2fjypUrmtdJSUk4ffo0bGxs4OrqWoctIzIcpxaSZFauXInFixcjNTUVHh4eWLp0Kfr06VPXzSKSxKFDhxAQEFBufVhYGGJjY2u/QUQSYjBAREQkcxwzQEREJHMMBoiIiGSOwQAREZHMMRggIiKSOQYDREREMsdggIiISOYYDBAREckcgwGiGhYVFYXOnTtrXo8bNw5Dhgyp9XYkJydDoVDg9OnTlZZp0aIFli1bpvMxY2Nj0bhxY4PbplAosH37doOPQ0TVw2CAZGncuHFQKBRQKBQwNTVFy5YtMX36dOTk5NR43R9++KHOd6zT5Q84EZGh+GwCkq1nn30W69atQ1FREX7++We88soryMnJwapVq8qVLSoqgqmpqST1qtVqSY5DRCQVZgZItlQqFRwdHeHi4oLRo0djzJgxmlR1WWp/7dq1aNmyJVQqFYQQyMzMxKuvvgp7e3tYW1ujb9+++O2337SOu3DhQjg4OMDKygrh4eHIz8/X2v5oN0FpaSkWLVqE1q1bQ6VSwdXVFQsWLAAAuLu7AwC6dOkChUIBf39/zX7r1q1D+/btYWZmhqeeegorV67UqufXX39Fly5dYGZmBm9vb5w6dUrv92jJkiXw9PSEpaUlXFxcEBERgezs7HLltm/fjrZt28LMzAxBQUFISUnR2r5r1y5069YNZmZmaNmyJebNm4fi4mK920NENYPBANH/mJubo6ioSPP6ypUr+Oqrr/DNN99o0vQDBgxAWloavvvuOyQmJqJr164IDAzE3bt3AQBfffUV5s6diwULFuDEiRNwcnIq90f6UTNnzsSiRYswe/ZsXLhwAZs3b4aDgwOAB3/QAWD//v1ITU3F1q1bAQCfffYZZs2ahQULFuDixYuIjo7G7NmzsX79egBATk4OBg4ciHbt2iExMRFRUVGYPn263u+JkZERPvroI5w7dw7r16/HgQMH8NZbb2mVyc3NxYIFC7B+/XocPXoUWVlZGDVqlGb7Dz/8gH/961944403cOHCBXzyySeIjY3VBDxEVA8IIhkKCwsTgwcP1rz+5ZdfhK2trRgxYoQQQoi5c+cKU1NTkZ6erinz448/Cmtra5Gfn691rFatWolPPvlECCGEj4+PmDhxotb2nj17ik6dOlVYd1ZWllCpVOKzzz6rsJ1JSUkCgDh16pTWehcXF7F582atde+++67w8fERQgjxySefCBsbG5GTk6PZvmrVqgqP9TA3NzexdOnSSrd/9dVXwtbWVvN63bp1AoCIj4/XrLt48aIAIH755RchhBDPPPOMiI6O1jrOhg0bhJOTk+Y1ALFt27ZK6yWimsUxAyRb3377LRo1aoTi4mIUFRVh8ODBWL58uWa7m5sbmjZtqnmdmJiI7Oxs2Nraah0nLy8Pf/75JwDg4sWLmDhxotZ2Hx8fHDx4sMI2XLx4EQUFBQgMDNS53bdu3UJKSgrCw8MxYcIEzfri4mLNeISLFy+iU6dOsLCw0GqHvg4ePIjo6GhcuHABWVlZKC4uRn5+PnJycmBpaQkAMDExgbe3t2afp556Co0bN8bFixfRo0cPJCYmIiEhQSsTUFJSgvz8fOTm5mq1kYjqBoMBkq2AgACsWrUKpqamcHZ2LjdAsOyPXZnS0lI4OTnh0KFD5Y5V3el15ubmeu9TWloK4EFXQc+ePbW2GRsbAwCEBE8mv3r1Kp577jlMnDgR7777LmxsbHDkyBGEh4drdacAD6YGPqpsXWlpKebNm4ehQ4eWK2NmZmZwO4nIcAwGSLYsLS3RunVrnct37doVaWlpMDExQYsWLSos0759e8THx+Oll17SrIuPj6/0mG3atIG5uTl+/PFHvPLKK+W2K5VKAA9+SZdxcHBAs2bN8Ndff2HMmDEVHrdDhw7YsGED8vLyNAHH49pRkRMnTqC4uBgffPABjIweDC/66quvypUrLi7GiRMn0KNHDwDApUuXcO/ePTz11FMAHrxvly5d0uu9JqLaxWCASEf9+vWDj48PhgwZgkWLFqFdu3a4ceMGvvvuOwwZMgTe3t7497//jbCwMHh7e+Ppp5/Gpk2bcP78ebRs2bLCY5qZmWHGjBl46623oFQq0bt3b9y6dQvnz59HeHg47O3tYW5ujj179qB58+YwMzODWq1GVFQU3njjDVhbWyMkJAQFBQU4ceIEMjIyMHXqVIwePRqzZs1CeHg4/vvf/yI5ORnvv/++XufbqlUrFBcXY/ny5QgNDcXRo0exevXqcuVMTU0xZcoUfPTRRzA1NcXkyZPRq1cvTXAwZ84cDBw4EC4uLnjhhRdgZGSEM2fO4OzZs5g/f77+HwQRSY6zCYh0pFAo8N1336FPnz54+eWX0bZtW4waNQrJycma0f8jR47EnDlzMGPGDHTr1g1Xr17F66+//tjjzp49G9OmTcOcOXPQvn17jBw5Eunp6QAe9Md/9NFH+OSTT+Ds7IzBgwcDAF555RV8/vnniI2NhaenJ/z8/BAbG6uZitioUSPs2rULFy5cQJcuXTBr1iwsWrRIr/Pt3LkzlixZgkWLFsHDwwObNm1CTExMuXIWFhaYMWMGRo8eDR8fH5ibmyMuLk6zvX///vj222+xb98+dO/eHb169cKSJUvg5uamV3uIqOYohBSdi0RERNRgMTNAREQkcwwGiIiIZI7BABERkcwxGCAiIpI5BgNEREQyx2CAiIhI5hgMEBERyRyDASIiIpljMEBERCRzDAaIiIhkjsEAERGRzDEYICIikrn/B8neZQUlUMHMAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "K-Fold F1 Scores: [0.9921259842519685, 0.9947643979057592, 0.9844559585492227, 0.9894736842105263, 0.9947368421052631]\n", + "K-Fold Precision Scores: [0.9947368421052631, 0.9947643979057592, 0.9693877551020408, 0.9894736842105263, 0.9947368421052631]\n", + "K-Fold Recall Scores: [0.9895287958115183, 0.9947643979057592, 1.0, 0.9894736842105263, 0.9947368421052631]\n", + "K-Fold AUC Scores: [0.9994374972956601, 0.9977788354751707, 0.9977009832272989, 0.9951573147745398, 0.999942003769755]\n", + "Mean F1 Score (K-Fold): 0.9911113734045479\n", + "Mean AUC Score (K-Fold): 0.9980033269084849\n" + ] + } + ], + "source": [ + "# Initialize the Gradient Boosting Classifier\n", + "model = GradientBoostingClassifier(\n", + " random_state=42,\n", + " n_estimators=96,\n", + " learning_rate= 0.08020404204698642,\n", + " max_depth=7,\n", + " min_samples_split=5,\n", + " min_samples_leaf=2,\n", + " subsample=0.9877960074080036\n", + ")\n", + "# Stratified K-Fold\n", + "skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)\n", + "\n", + "f1_scores_kfold = []\n", + "precision_scores_kfold = []\n", + "recall_scores_kfold = []\n", + "auc_scores_kfold = []\n", + "\n", + "# For Confusion Matrix Display\n", + "all_conf_matrices = []\n", + "\n", + "for train_index, test_index in skf.split(X, y):\n", + " # Splitting the data\n", + " X_train, X_test = X.iloc[train_index], X.iloc[test_index]\n", + " y_train, y_test = y.iloc[train_index], y.iloc[test_index]\n", + " \n", + " # Train the model\n", + " model.fit(X_train, y_train)\n", + " \n", + " # Predictions\n", + " y_pred = model.predict(X_test)\n", + " y_pred_proba = model.predict_proba(X_test)[:, 1]\n", + " \n", + " # Metrics\n", + " f1_scores_kfold.append(f1_score(y_test, y_pred))\n", + " precision_scores_kfold.append(precision_score(y_test, y_pred))\n", + " recall_scores_kfold.append(recall_score(y_test, y_pred))\n", + " auc_scores_kfold.append(roc_auc_score(y_test, y_pred_proba))\n", + " \n", + " # Save confusion matrix for the fold\n", + " conf_matrix = confusion_matrix(y_test, y_pred)\n", + " all_conf_matrices.append(conf_matrix)\n", + " \n", + " # ROC Curve for one fold\n", + " fpr, tpr, _ = roc_curve(y_test, y_pred_proba)\n", + " plt.plot(fpr, tpr, label=f\"K-Fold ROC Curve\")\n", + "\n", + "# Plot AUC-ROC Curve for K-Fold\n", + "plt.xlabel(\"False Positive Rate\")\n", + "plt.ylabel(\"True Positive Rate\")\n", + "plt.title(\"K-Fold AUC-ROC Curve\")\n", + "plt.legend(loc=\"lower right\")\n", + "plt.show()\n", + "\n", + "# Plot Confusion Matrix for the last fold as an example\n", + "disp = ConfusionMatrixDisplay(confusion_matrix=all_conf_matrices[-1], display_labels=model.classes_)\n", + "disp.plot(cmap='Blues', values_format='d')\n", + "plt.title(\"Confusion Matrix for Last Fold in K-Fold Cross-Validation\")\n", + "plt.show()\n", + "\n", + "# Print Metrics\n", + "print(f\"K-Fold F1 Scores: {f1_scores_kfold}\")\n", + "print(f\"K-Fold Precision Scores: {precision_scores_kfold}\")\n", + "print(f\"K-Fold Recall Scores: {recall_scores_kfold}\")\n", + "print(f\"K-Fold AUC Scores: {auc_scores_kfold}\")\n", + "print(f\"Mean F1 Score (K-Fold): {np.mean(f1_scores_kfold)}\")\n", + "print(f\"Mean AUC Score (K-Fold): {np.mean(auc_scores_kfold)}\")" + ] + }, + { + "cell_type": "markdown", + "id": "eb511669-8c12-426d-b965-61a7f33be08e", + "metadata": {}, + "source": [ + "### Hyperparameter Tuned Bootstrap Sampled Model" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "e68a28cd-be72-47c0-adaf-b58aba3ee152", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIhCAYAAABdSTJTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoeElEQVR4nO3deXxU1f3G8efOmj0hCYQEwi5FpQIGUUBKUQEBoWpVKCiIoOKGSMVKbQXtQt0QN8AVxALiAtYFUVQEFKyAICL8FDXsCXv2dWbO74/IlCELGczCwOf9eo0yZ86993vnZnly5t5zLWOMEQAAABCCbPVdAAAAAHCiCLMAAAAIWYRZAAAAhCzCLAAAAEIWYRYAAAAhizALAACAkEWYBQAAQMgizAIAACBkEWYBAAAQsgizwClm9uzZsiwr4NGwYUP99re/1bvvvlvr258+fbpmz559QsuuWrVKkydPVlZWVo3WVJuOvN/btm2r1zqefPJJWZal9u3bV/j6tm3bZFmWHn300Qpff/TRRyvcD5/Pp1deeUWXXHKJEhMT5XQ61ahRI1122WV655135PP5jlvbsV+PMTEx6tatm+bPn1/pMl988YWuvvpqJScny+VyqXHjxrrqqqu0evXqSpfZuHGjRo4cqZYtWyosLExRUVE699xz9fDDD+vQoUPHrVOSVq5cqWuuuUZNmjSRy+VSbGysunXrphkzZig/P79a6wBQtwizwClq1qxZWr16tVatWqXnnntOdrtdAwcO1DvvvFOr2/2lYfaBBx4IqTA7YMAArV69WsnJyfVax0svvSRJ+vbbb/Xf//63RtZZVFSk/v37a8SIEWrUqJFmzJihTz75RDNnzlRKSoquvvrqan89HQmiq1at0syZM5WTk6OhQ4dq3rx55fo+9dRT6t69u3bt2qWHH35YH330kR599FHt3r1bF154oZ5++ulyyzz//PNKS0vTmjVrNGHCBC1ZskSLFi3S1VdfrZkzZ2rUqFHHrXHSpEn6zW9+o927d+tvf/ubli5dqldffVUXX3yxJk+erL/85S/V2lcAdcwAOKXMmjXLSDJr1qwJaC8oKDBut9v84Q9/qNXtn3322aZnz54ntOwjjzxiJJn09PRq9S8oKDih7Zxq1qxZYySZAQMGGEnmxhtvLNcnPT3dSDKPPPJIheuo6L2/5ZZbjCTz8ssvV7jM999/b77++uvj1ifJ3HbbbQFt27ZtM5LMb37zm4D2zz77zNhsNnPZZZeZ0tLSgNdKS0vNZZddZmw2m/nss8/87atWrTJ2u91ceumlpqioqNz2i4uLzX/+858qa3zttdeMJDNq1Cjj8/nKvZ6Tk2M++OCD4+5rdeTn59fIegCUIcwCp5jKwqzP5zPR0dFm+PDhAe0HDx40t9xyi0lJSTFOp9O0bNnS/PnPfy4XCgoLC829995rWrRoYZxOp0lJSTG33nqrOXz4sL9P8+bNjaSAR/PmzY0xxni9XvO3v/3NtG3b1oSFhZnY2Fjz61//2kybNs0YY8ykSZPKLSvJLFu2zL/uAQMGmDfffNN07NjRuN1u86c//ckYY8zTTz9tevToYRo2bGgiIiJM+/btzUMPPWRKSkoC9qFnz57m7LPPNitWrDDnn3++CQsLMykpKeYvf/mL8Xg8/n5Hgt9DDz1k/v73v5vU1FTjdrtNWlqa+eijjyp8v48OgUe28+WXX5oLL7zQhIeHm5YtW5opU6YYr9cbsPymTZtM7969TXh4uElMTDS33nqreffddwP2/XjGjBljJJlvvvnGdOvWzURHR5cLTMGG2YyMDON0Ok3fvn2rVUNVKgqzxhjTsGFD86tf/SqgbcCAAcZut5udO3dWuK4dO3YYu91uLrvsMn/bZZddZhwOh9mxY8cJ19i+fXvToEGDagXNI+/lrFmzyr0myUyaNMn//MjX9bp168zvf/97ExcXZxo3bmwef/xxI8ls3bq13Druuece43Q6zf79+/1tS5cuNRdddJGJjo424eHhplu3buW+FoHTFacZAKcor9crj8ej0tJS7dq1S+PGjVN+fr6GDh3q71NUVKRevXppzpw5Gj9+vN577z1de+21evjhh3XllVf6+xljdPnll+vRRx/Vddddp/fee0/jx4/Xyy+/rIsuukjFxcWSpEWLFqlVq1bq1KmTVq9erdWrV2vRokWSpIcffliTJ0/WH/7wB7333ntasGCBRo0a5T+lYPTo0brjjjskSQsXLvQvf+655/rr+OqrrzRhwgSNHTtWS5Ys0e9//3tJ0o8//qihQ4fqlVde0bvvvqtRo0bpkUce0c0331zufcnMzNSQIUM0bNgw/ec//9FVV12lv//977rzzjvL9X366ae1ZMkSTZs2Tf/+979ls9nUr1+/Ks/bPHo7w4YN07XXXqu3335b/fr108SJE/Xvf//b3ycjI0M9e/bUd999pxkzZmjOnDnKzc3V7bffftz1H1FYWKj58+frvPPOU/v27XXDDTcoNzdXr7/+erXXUZFly5aptLRUl19++S9aT2Wys7N16NAhtW3b1t/m9Xq1bNkyde7cWU2bNq1wudTUVKWlpemTTz6R1+uV1+vVJ598orS0NKWmpp5QLRkZGdq0aZP69OmjiIiIE1rH8Vx55ZVq06aNXn/9dc2cOVPXXnutXC5XuVNyvF6v/v3vf2vgwIFKTEyUJP373/9Wnz59FBMTo5dfflmvvfaa4uPj1bdvX3388ce1Ui8QUuo7TQOoWUdGCo99uN1uM3369IC+M2fONJLMa6+9FtD+0EMPGUnmww8/NMYYs2TJEiPJPPzwwwH9FixYYCSZ5557zt9W2WkGl112menYsWOVtVd1mkHz5s2N3W433333XZXr8Hq9prS01MyZM8fY7XZz6NAh/2s9e/Y0ksp95HzjjTcam81mtm/fboz538hbSkqKKSws9PfLyckx8fHx5pJLLvG3VTYyK8n897//DdjOWWedFTDSOWHCBGNZlvn2228D+vXt27faI7Nz5swxkszMmTONMcbk5uaaqKgo06NHj4B+wY7M/utf/zKSzJIlS45bw/FIMrfeeqspLS01JSUl5vvvvzeDBg0y0dHRZu3atf5+mZmZRpIZMmRIlesbPHiwkWT27t1b7WWq8sUXXxhJ5t57761W/xMZmb3//vvL9b3yyitN06ZNA0brFy9ebCSZd955xxhTdkpCfHy8GThwYMCyXq/XdOjQwXTp0qVaNQOnMkZmgVPUnDlztGbNGq1Zs0bvv/++RowYodtuuy3g4plPPvlEkZGRuuqqqwKWvf766yXJP+rzySefBLQfcfXVVysyMrJao0NdunTR119/rVtvvVUffPCBcnJygt6nc845J2Ak74j169dr0KBBSkhIkN1ul9Pp1PDhw+X1evX9998H9I2OjtagQYMC2oYOHSqfz6cVK1YEtF955ZUKCwsLWHbgwIFasWKFvF5vlbU2btxYXbp0KVf/9u3b/c+XL1+u9u3b66yzzgro94c//KHKdR/txRdfVHh4uIYMGSJJioqK0tVXX62VK1dq69at1V7PL3Xkk4Ajj2NnOZg+fbqcTqdcLpfatm2r999/X/Pnz1daWlrQ2zLGSCqbJSFUHPkU4WgjR47Url279NFHH/nbZs2apcaNG6tfv36Syi6KPHTokEaMGFHu/b300ku1Zs0aZlnAaY8wC5yizjzzTHXu3FmdO3fWpZdeqmeffVZ9+vTRPffc4/9o/+DBg2rcuHG5UNCoUSM5HA4dPHjQ38/hcKhhw4YB/SzLUuPGjf39qjJx4kQ9+uij+uKLL9SvXz8lJCTo4osv1tq1a6u9TxXNGLBjxw716NFDu3fv1hNPPKGVK1dqzZo1euaZZySVfQx/tKSkpHLraNy4sX8/K2o/tq2kpER5eXlV1pqQkFCuze12B9Rz8ODBCuupqK0iP/zwg1asWKEBAwbIGKOsrCxlZWX5/zg5MsOBJDkcDkmqNIR7PB5JktPplCQ1a9ZMkpSenl6tWlq3bi2n0+l/PPjggwGvX3PNNVqzZo1WrVqlZ599VtHR0RoyZEhA4E5MTFRERMRxt7lt2zZFREQoPj6+2stUJdh9PREVfe3269dPycnJmjVrliTp8OHDevvttzV8+HDZ7XZJ0t69eyWVzQZx9PvrdDr10EMPyRhT7WnHgFMVYRY4jZxzzjkqLCz0j1YmJCRo7969/pGuI/bt2yePx+M/Zy8hIUEej0f79+8P6GeMUWZmpr9fVRwOh8aPH6+vvvpKhw4d0vz587Vz50717dtXBQUF1aq/opG4t956S/n5+Vq4cKGuvfZaXXjhhercubNcLleF6zgSDo6WmZkpqXwAPdJ+bJvL5VJUVFS1aq7Kkfe/snqO56WXXpIxRm+88YYaNGjgfwwYMECS9PLLL/vDa2Jioux2u3bv3l3hunbv3i273e5/D3r16iWn06m33nqrWrW88847/k8C1qxZo5tuuing9YYNG6pz587q2rWrbrrpJv9xu+uuu/x97Ha7evXqpbVr12rXrl0VbmfXrl1at26dLrroItntdtntdl188cVat25dpcscT3Jysn7961/rww8/rNbX4pHR+iPnih9R1R91FX3t2u12XXfddXrrrbeUlZWlefPmqbi4WCNHjvT3OfK99dRTTwW8v0c/qvvHD3CqIswCp5ENGzZIkn+E9eKLL1ZeXl65wDJnzhz/60f//+iLlyTpzTffVH5+vv91qfzoY0Xi4uJ01VVX6bbbbtOhQ4f8E/W73W5J5UdTq3IkJBxZVioL2c8//3yF/XNzc/X2228HtM2bN082m02/+c1vAtoXLlyooqKigGXfeecd9ejRwz9y9kv07NlTmzZt0ubNmwPaX3311eMu6/V69fLLL6t169ZatmxZuccf//hHZWRk6P3335dUFsC6d++ut99+O2CfpLILAd9++21deOGF/qDWuHFjjR49Wh988IH/6+FYP/74ozZu3ChJ+vWvf+3/JKBz585KSUmpsv4ePXpo+PDheu+99wIuqJs4caKMMbr11lvLjSJ7vV7dcsstMsZo4sSJ5Za58cYbVVJSUm5bpaWlx50P969//asOHz6ssWPHlvvjTpLy8vL04YcfSiobOQ8LC/Pv+xH/+c9/qtxGRUaOHKmioiLNnz9fs2fPVteuXdWuXTv/6927d1dcXJw2b94c8P4e/ajsDzfgtFFP5+oCqCVHLkiaNWuWWb16tVm9erV59913zQ033GAkmSuuuMLft7Cw0JxzzjkmOjraTJ061SxdutRMmjTJOJ1O079/f38/n89n+vbta5xOp5k8ebJZunSpeeyxx0xUVJTp1KlTwDReI0aMMG6327z66qvmyy+/NBs3bjTGlF0Adu+995o33njDLF++3MyZM8e0aNHCNG/e3D+F1rJly4wkc/PNN5tVq1aZNWvWmJycHGPM/6bmOtaWLVuMy+Uyv/3tb83ixYvNwoULTe/evc0ZZ5xR7iKqnj17moSEBJOSkmKeeuop88EHH5g777zTSDK33HKLv9+RC3xSU1PNhRdeaBYuXGjeeOMNc9555xmHwxEwx2lVU3Mda8SIEf6pyowxZvfu3SYhIcE0a9bMzJ4927z//vvmuuuu809xtnz58kqP8zvvvOOfPqwi+/fvN26321x++eX+tlWrVhm32206duxoZs+ebT755BMze/Zs/1Rnq1atClhHYWGh6du3r7EsywwdOtS8/vrrZsWKFWbhwoXmlltuMWFhYeatt96qtMYjVMnUXDt27DBhYWHm4osvDmh/8sknjc1mMxdccIH597//bVasWGH+/e9/m65duxqbzWaefPLJcut67rnnjMPhMO3btzfPPPOM+fTTT83SpUvNww8/bNq0aRPwPlTmr3/9q5Fkunfvbl566SWzfPly8/7775vJkyeb5ORkM27cOH/f0aNHm7CwMPPYY4+Zjz76yPzzn/807du3r/QCsKOn2TpW165dTWpqarmLKY945ZVXjM1mM4MHDzavv/66Wb58uXnjjTfMX//6VzNmzJjj7hdwqiPMAqeYimYziI2NNR07djRTp04tN3/swYMHzZgxY0xycrJxOBymefPmZuLEiRXOM/unP/3JNG/e3DidTpOcnGxuueWWgHlmjSmbDL9Pnz4mOjo6YJ7Zxx57zHTr1s0kJiYal8tlmjVrZkaNGmW2bdsWsPzEiRNNSkqKsdlsFc4zW5F33nnHdOjQwYSFhZkmTZqYCRMmmPfff7/CMHv22WebTz/91HTu3Nm43W6TnJxs/vznPwdM0H/0PLMPPPCAadq0qXG5XKZTp07lJs7/JWHWmLJ5Zi+55BITFhZm4uPjzahRo8zLL79sJFV5Q4LLL7/cuFwus2/fvkr7DBkyxDgcDpOZmelvW7t2rbniiitMYmKisdvtJjEx0VxxxRVm3bp1Fa7D4/GYl19+2Vx00UUmPj7eOBwO07BhQ9OvXz8zb968cvPmVqSyMGtM2YwOFQX31atXm6uuusokJSUZh8NhGjVqZK688spygftoGzZsMCNGjDDNmjUzLpfLREZGmk6dOpn777+/yvfpaMuXLzdXXXWVSU5ONk6n08TExJiuXbuaRx55xP+HlTHGZGdnm9GjR5ukpCQTGRlpBg4c6L8RRLBh9rnnnjOSTHh4uMnOzq60rgEDBpj4+HjjdDpNkyZNzIABA8zrr79erf0CTmWWMRV8ngIAp6Df/va3OnDggDZt2lRlv23btqlly5Z65JFHdPfdd9dRdf9z0003af78+Tp48CAfIQPAcTjquwAAOJ09+OCDSklJUatWrZSXl6d3331XL7zwgv7yl78QZAGgGgizAFCPnE6nHnnkEe3atUsej0dnnHGGpk6dWuEdyQAA5XGaAQAAAEIWU3MBAAAgZBFmAQAAELIIswAAAAhZp90FYD6fT3v27FF0dHSFtxcEAABA/TLGKDc3VykpKbLZqh57Pe3C7J49e5SamlrfZQAAAOA4du7cqaZNm1bZ57QLs9HR0ZLK3pyYmJh6rgYAAADHysnJUWpqqj+3VeW0C7NHTi2IiYkhzAIAAJzEqnNKKBeAAQAAIGQRZgEAABCyCLMAAAAIWYRZAAAAhCzCLAAAAEIWYRYAAAAhizALAACAkEWYBQAAQMgizAIAACBkEWYBAAAQsgizAAAACFmEWQAAAIQswiwAAABCFmEWAAAAIatew+yKFSs0cOBApaSkyLIsvfXWW8ddZvny5UpLS1NYWJhatWqlmTNn1n6hAAAAOCnVa5jNz89Xhw4d9PTTT1erf3p6uvr3768ePXpo/fr1+vOf/6yxY8fqzTffrOVKAQAAcDJy1OfG+/Xrp379+lW7/8yZM9WsWTNNmzZNknTmmWdq7dq1evTRR/X73/++lqqsRz6vfD6fSnw+eX1GklTi8cjn86rUWyrzc1thcaF/EW+pRx6fJ2A1XlO2nrJ1+sptxpRvqpLXW/UCpror9HmD2zDqhTE+yZj6LqPeHfl+O5mZCr6/TwjfmzXCHOdn5S/iM8H/7D76S/jYr5WjVuY9Cb/fq1tRtX//VGtlwa/LF+x79/M2fMfb1jE/f8zxtnP06zV8PHtfdmWNrq8m1GuYDdbq1avVp0+fgLa+ffvqxRdfVGlpqZxOZ7lliouLVVxc7H+ek5NT63WeMJ/351+YRtrxhTJ2bNVnOYXKKPDIZ4wOFx6UKcyWvbRElvHJJ0uOkkOSr1TGSAk5BcqIbqZCh9u/ysNur0qtCFmy/287R3+NyyYjq9ol2uSUqugfEVkou70avwhPvp+VqIDd7pHdZpMVxNfIKckbrpP+EgPvSfRHx0lSRn1yW2GyrFr8vvn5V0W1u9usSn/W27xG1snytRPCjKy6+dqv7x/H7558gTakwmxmZqaSkpIC2pKSkuTxeHTgwAElJyeXW2bKlCl64IEH6qrEE7fjC5Vu3yVvoVfGSJsyd2rf3nx5rQQ19rokGTVUA9kLU+SxufRjTJQKHXbJUSJ5bZLPp0K3UbHdI5//u8koWkaeo/7is/k8Uq0NFhiFmUOS5/g965vl/w+qxO+30HKyfE2fLHXUo1of27ZUY++zzZigBjVQBd7GehFSYVZSub90jwy1V/YX8MSJEzV+/Hj/85ycHKWmptZegUHy+kzZiGzuQR3+zqvSYim3JFcl2UbF9jhtDU+RcdiUkG9JvhIZ41NxiVN7FSnLY5PPlEqS7Hab5PWoVAVyGa/amu9kd5SdfmBUKrvPLbtxyekpCMgnRz65sAV8B5qqQ4wlWUcF5gCHy/6Xf6CZjK+Kkawji9XTN77N2Otv4yHDyPp5lN147fLV3l9BIcFYRsX2kl+wgpqrpTI+u02FrgjV59e2IxT+mq0jxZZHu6ycWjv0Rj7ZHdVfu9PnVVJh1s/PLHltdlnGp4YHDkmS9ifGy1hlvw0cMiffj0hbdQqyJKuGoo2xSd7yn/hWxSWfUu35R/2OrJpHDh0oKfs01RUWLh2bZYyRKSyQJFnhEf7XbbIUYXdVul67063IhMZlfZ2WohJsNXY4T7ZRWSnEwmzjxo2VmZkZ0LZv3z45HA4lJCRUuIzb7Zbb7a7wtbrkreActLXbD+twfrFkvErZlK+C3XuV6WmkXcaSpzhc+6PjJJ9XRS6fDpsDKrUXSMalYpdDu6OdSizKUsq+dNmMFO+2qaV9j743luxRlho0MDK+CMkYWd6yX8DuMIc8ucUq8hnZYtwKs9uUU1oWOKO8NsmS7M4SWd4CRXlzZOxu5TniVNFPtJTiItkP5Uul5ffLVuqQw7ujWu+LLT6hfn5gFthUXGrJa/cpLMJU72fkacztS9FJ/zF7LftFnxgbo+ysA5Kk2LjEX7iyypX9UV9QA2s60WPtk6tguySpJDxVsviakSzlZmfJ56nhkH8CHy+VHY2ff+37vwbtUmxDSZKnSXPJZpP9ZPx5WM2arBr8OXUi6wr6vTvqeyQltYVsVfxsiPrNhbLsZacM2mxV12az2Y/698l4QGtWSIXZrl276p133glo+/DDD9W5c+cKz5c9Wazft17ZxdkBbT6f0X/X7JW3pEQ2n0+2ffvlKixQvtepjUqXRz7tjWyr3MRwxRXn6pzt/yePKZbXkaswV7gK85ooybNfZxRulNtnKbY0Uh5viZyuBjJenzz2UsnrUd7BBjI+m2zGK7etVDkKV7Hs8haFyXXkm8ZIbq9NYaZADnu27KZYJbLJZ1kqsjlkjvnmcnm9Kir0ybW74g/SLHlVouwKXwvgsEtZ9XChiZGcvnB5vHYVqVC+Eu/JNwJxMvE6lV90eo/K1iSPK6++S6g1lowcJfmSpFJf3mkfZo9w2x2S/ST/dRsWJnd4RH1Xcdpyh4UpzFV5jrHHxcodHl6HFYWWev3uysvL0w8//OB/np6erg0bNig+Pl7NmjXTxIkTtXv3bs2ZM0eSNGbMGD399NMaP368brzxRq1evVovvvii5s+fX1+7cFxen7dckJUkX/5WqeSQ7JLOjD+khnlSqUOynD/K1UryOaMVa0mNivcqLjtbNq9ks7tks4XL6bMUKa+i8myKzXbKxIWpNDpKzvzDcti8sluW4nylMl6PmpTmSUcu33HFaF+JQ15Pody5HoU7yz6qcFs+uUsayFHqU8PwUv8pG6XhCfKENyxXuyVJ4UbK2VfW0CxROs5fiZJkjvnYpf4uKrLJXpig4gLJ4dqnyBiL37lVOO0v/qpBNqdb0ZV8inTqKLuuwdfoPMmyH6fv6cMVHqEmbdudtH84HxnxQ/04eiS1IhyfqtVrmF27dq169erlf37k3NYRI0Zo9uzZysjI0I4d//u4umXLllq8eLHuuusuPfPMM0pJSdGTTz4ZMtNydUvpJrtllzFeHd64QV5PWRjs1KCBfAcStcexWxE2ozBPE+XZ4hXtkQ5ZTpU4Y5XVMEo+h0+l0ZLbJsXaPQrPD1OM3S6Fx8gk5ymnxCjW2CSbpQjTQrI5FB3WROHucMnhlJyRshd6ZJUWqoHLp+hwpyxZZZ82GSMVZalhdIKs6IaSM1yKbVrpvhifT4WFWyRJ4a3PlHWcMJt7uFi+0pNodC/65//HN1PDFtFVfrQD1BTrdPmrKTxOanZBfVdxUjleWAFw4uo1zP72t7+tcq602bNnl2vr2bOnvvrqq1qsqvbYLbvsNrs8pSWyFZV9FOewkhQT2VYrw+z6IS5M++x2bXPEa5/DozhTIFdhlmLCCuQIy5XLnidHlE/hzoaKdtoUZfkUER4hX2y4jHHpgD1T8tpkc8WoxN1KJQUOuWObyxnXQJZlkzFSvlUsFWapQYxkT2n7v/OmjJErb5vs8T4ppeNxPxIzXq9se8suPrM1Savyr0ZjjIq8uTXyHtYol13uZtFytomr70qAUwvBDUAdOslP4jn1rN+3XlkFB9Qgd6d82Q2009FM727P13f5TpV6pB2ebSp1OWQcNrlc6YrXAVmeRKVm/aRY5wFFREtNEuyK8mVJO0tki45SaZJbpT6v7Pttsopj1fqsnspqdqGydm3Xr+w+terQUTabXZ5tq3Xopyzp8Dad1ShH9sY2/+kBxuv735kCZ8Qf95eR8Xrl2R8jSQo7M7HKMOvzGRlPWWhOPTNe1klydYFls06LE+MBADiVEWbr0NHnzxqvVKgY/WT3KqbIrawij4ocdlkRxUoI36NET65aur7VOd5M7Ss5Wz5JMUVeufPdaljcUglF6crf55EVHq+i1CTJkr4tzFWJkTK8zbUto1BZ+71y2H3KSD8sa/93UubGsmsz7ZLd9vPgq00q2JIub+7PV0C7oqR9q6q1P0fOrbVslqwqQqEl+adUsTltBEgAAFBjCLP1IPenXbLvkNKLwlXg8Wpv6X5ZJSVyu3PV1sqQ5TkkU5qriKwCmdIYle5JlM9nV3ycT87SWHkOhMlXmiiPMmX7+aY/RpLNXSKHLVzRiSlS3lHzYRqfVJLvvzlQbFILWS3i5Wt2QdkI686VUtTPfS1bUHcRssXGyli2Km/1abzMvA8AAGoHYbaO5f64Uznf7ZDjUL4K3S45HYWKtQ7LbStWtH2vYk2pfF4j16F8GUehfKalik28SuXVXs+vZPKjtN8urS08pBJXoSzrgKL3l93U63B4S1mWTRe0jJPJLdZe7VcXu1dt2sRpb6alIo9dimshe4NztT3PKW3OkvF55dtRdv6urcN5UpBXTFo2u7TpYC28UwAAAMdHmK1DntIShe2RHIUJ+iE8THJKtkinzk1wKH7rjyrw7tOPUck6XJSiSG+p7K4sNbQ1VV5ElIrtRo4m+bLbSuUzmTroy1O4o0A+u1Pb8gtVLMkTJrkd0frvd1/IJin88B5FeQ9K3x9SSaFNtp9va2tM2V3HJEneo+Z5tdvLwmktCYtwcIoBAACoUYTZOpKXvlsb/psh7948eY1U6oqUPdwjOVwq2XdQhdsbyptyQAfcsTpsD1NhmCWnrZUyXbGSzSbLYRQWG6bY2EjZHJaKdu+WO6tAZ0W20VdJZ8uy22UZo9SM7Yr4erOM16uwrP0yvgLlHyiVb59VNvWWr1hWuDtwMvPmZfNURZ6dUKtz2RFkAQBATSPM1gHj86k0v0BF+4zs+ZK9sEQHmxYoJ9IhX7FP/5fbSK4EyUrcqazwIuW7itWsJE52e4Ia2xvosLHkckTp/BZn6FftzlDRV1/pq83rZfbl66z4nQovtEkOt85qd6acZ7SVDnwnU1SoHFNQdvWVpbLwGpEgy2bKLtw6Zl5Ve1ys7E6+HAAAQGghvdQVnySPT67oGIWHRcvn3iPjK1VhaYEO5zVRrDNLdpddNoelxgURSiiSwt1JatwgTlszfbI7Y7TLs1tZew7Klf61LGNkfCq7WCs2VXI4ZbMsGZ9PNptX4R3bKX+HS5IU0ewM2XaVHerIM2Nka1F+MnPuLgIAAEIRYbaOGGO02+uR22ZTjDtTB52SLJ8aF+9X7N4wRSV6VWjLk+zh+k1EQ5XaSuR0NlV8gl2uiCIZOZSTlauCzd8rassPKs48KE9MovZ6Y7XRmyAZh+zZDtlk5M6NlNYdVHFsmmTZVGzayGpadlqB1bJRldNoAQAAhBLCbB0whT9oZ/5+JeXvVSNXojzhPkkRKrIZFTkOKTw6STlhJUqwGdlKfdqZv1uFPo+MCnWg2Gi/L0wxGT8q8nC2HIf2qnlpIxXlemWzx8jEhUuOnyeMtdlUNknXzyybnOGRsuxOSVyABQAATj2E2VpmjFc+T75KfZLTVyzLGCV682QvtZTpjlTL/GK5fHb5wiMVFumUSxHyFZXNzWqzS5aRLOOVs6REipASIsIVllssR4tUhTUsVePev9ZBexvJsqlz20TZ5ZV+zCnb+BldZHO4/LUQZAEAwKmGMFsHPFlF8hV6lVNUpGhvoVZ6GmljXJgSC8Pkym+uhPxmisx2qdGBbHlNidKzpAjLqV+5Y+XOytcBhSnc+NTWLqW0cCl73145owsVpb1yHrTLblySZcnhlOw2S3L8PFOBw+G/8xYAAMCpiDBby4zPKH9ntny+cJX6SuX1evR9VLRK7T5ZpQ7Jcirf6VG0z6lSj1ceX4m8Po9McalM4X55HUXy5cfLVpAjs+UbleYWy1FYIKc7SlENGlS+4fAGUi3OGQsAAHAyIMzWMp/Pq9J9XslrVKoSeSTFhtmU4vCpQa5PLXNz5cr7RlHuForJ368CZUm+A/LE2qX9PuVn5yhLNkUU7FNxiU85JWGyRcXIG9ZAMY1bymrdWSpsXbaxMxr+bySWIAsAAE4DhNla5vF4FZ6zTw1tDnncHpnSUjkcpXLJoyZZOSoxdsltVOjMV7jNJ7u8OmiFqVhOeZyW8qPOlq+kVN6cIllRhbK3jZW342VyRTdQ+Fnt5ZVN+r99ZRuz2TmtAAAAnFYIs7XM5ylVSalUbHdI8ipPNrm9TkUVFik8t1RhYTmyJfi0N8quPEVINqNit5EnVsr1RSoyfacaRUQpqV1TtYqPUnTns2W16/a/C7t8psrtAwAAnMoIs7XM6zPy+CzJLn1vT1aHbJccxSVlb7zxyalCReYWyetxKUo5MqZYTUvcsu/NVbtD+SopjVZ4nFtJzv1yxSWU3aWLUwgAAAAkEWbrhCWvJI8iJLm9pZJ8cucVK6K4WKXuOBWGF6g4o4liHVFqHfaj7DGSs6RANnuy3DabEuPj1aJXK9md9oALu8qCsq8+dw0AAKBeEWZrmTFehXtzFW8Zuew5Ck9qKIXHKdwtRaUclqs4SpFGSm/YVrFh+Yr3HJataZg8VqIK9jaTLa6lwrv+RvZ28WUr/DnIrt12SFkFpfW4ZwAAAPWPMFvLvF6PIpz7ZHOEqdgXK5koeRQmjylVkcelzLBE2W3xsmeXSAUH5Ygokc0eKXtqMzkcLWRr0EzJZwROs+X1mXJBNi7CWTbHLAAAwGmEMFvLvMWFKraXyGFPVqQtQcUet4rzmim3OFcH9xYrPDxG9ogcybVViY4MuV1ZsiKby2pyrpQfU7YSq/KQ2qNtohw2G0EWAACclgiztcxrvCqx2xVluZSV10ql9lJ5rWJJRpatVJdEb5Ev4aBKfYd0lpJl+9Vv5GjVudJJCo49T5YgCwAATmeE2VrmNUZR7gTZVaL4iHx9meiTx1coySZLkjsqUptijQ4U5OugLUIFRSXy7MmQT5ZSFR2wLs6TBQAACESYrWXG65FdDvmMkTylKpRblldylfhkk025EYk66LbrcG6uwjyS2zgkWYqyRcpm2eRwuGVkqdjj5TxZAACAYxBma5nX49F3kc2Ub4/SttI2KslyyCWbUvZnqtiZp+/y9qnUFabSEoeSC1orMuV8OQsi1DixiTbl5Sqv2Kf87/bJOuq8Wc6TBQAAKEOYrWUej0f59nBJUp4ayGe8MsUlsoxPHstorzdKPo9Hbp9bLleYmia3lN3pktdnlFfik9NtDwiycRFOuR3cNAEAAEAizNYZI6nR3jw5VCSf76B8rnw5nV7Zk3w6I7aTSrRXEVGxatE+UTanU8Uerxo5vbIsyz8SK4nRWAAAgKMQZmuZ11M280CRZZPNnie7zaNmrnwp2qk841Czdk11XuNk7d2UpWiXJZvd0lc7DiuroNQ/IsspBQAAABWz1XcBp4MSOVUqh+yOIoU5s5QQv0c2m2SzjOJizlRSQndFu5Illb8hAhd5AQAAVI6R2VpWXFIsI5uMHIoqzFVScY5al27X/8U3VJHJkzK+lSktm1TW5zPyHDXBbI+2iZwfCwAAUAXCbC3zeH8Op8ZSWGmJYvMLVRjjVpE3TNmuCO3JKdSPnmylZ1vKU7h2/XBI1s/nxx45TxYAAAAVI8zWMuMzsmSTJZsiLacamRIVNr9Au5t00F79pGYNEuSJ66A8X56c7nB/kOX0AgAAgOMjzNYy4zXy2BzyGZsKXHZ90yBJu1ytVFxkU6k7TIdMlDJMA8UnJ8qy2ZhDFgAAIAiE2VrmNZJ8TsmSimRUpEIdCsuXiYyV026XzbJk2WyyLBtzyAIAAASJMFvLjM/I8vhksxlZnhyF52aqla+VmsYVyOuKUEpKnH7TtJHsNjujsQAAAEHiCqNa5vMWyyYjI8kyOSoNi1CSvUCxrkjZbTbZrLIbIRBkAQAAgkeYrWXGlAVZSToc3UiHEs9QW2eqWsa1ksvlko0ZCwAAAE4YpxnUIa8s2XwOtWgQr8TWrbV/3/76LgkAACCkMSxY5yzZLIsRWQAAgBpAoqoHXuOT13jruwwAAICQx2kGdexQ+D59WWIpLsPtv0ECAAAATgxpqpaZgH8bldqLdfS8BbHuWNltzC0LAABwIhiZrWXG+Pz/tssny2WTZbOpW3JXORwugiwAAMAvQJitQ4XucBXHumVzuwmyAAAANYDTDOqQ+fn8AnfLlvVbCAAAwCmCMFvLfCbwudvnZVouAACAGsJpBnWogadYUZ6S+i4DAADglMEQYR3izQYAAKhZ5CsAAACELMIsAAAAQhZhtrb5fAFPHZYly7Iq6QwAAIBgcAFYHXJbks1JkAUAAKgpjMwCAAAgZBFmAQAAELIIswAAAAhZhFkAAACELMIsAAAAQhZhFgAAACGLMAsAAICQRZgFAABAyCLM1jafCXhquZyybLztAAAANYE7gNUhW3yUnIm85QAAADWFIcI6xa1sAQAAahJhFgAAACGLMFuHjMzxOwEAAKDaCLN1wCcjn2V02Dpc36UAAACcUgiztcxnfOXGY2NcsbLb7PVSDwAAwKmEMFuHGpgGOsvdTp0adazvUgAAAE4JhNk6ZMmSzeItBwAAqCkkKwAAAIQswiwAAABCFmEWAAAAIYswCwAAgJBV72F2+vTpatmypcLCwpSWlqaVK1dW2X/u3Lnq0KGDIiIilJycrJEjR+rgwYN1VC0AAABOJvUaZhcsWKBx48bpvvvu0/r169WjRw/169dPO3bsqLD/Z599puHDh2vUqFH69ttv9frrr2vNmjUaPXp0HVdefV4TOMtsnFuy26x6qgYAAODUUq9hdurUqRo1apRGjx6tM888U9OmTVNqaqpmzJhRYf8vvvhCLVq00NixY9WyZUtdeOGFuvnmm7V27do6rvzENIsoUVojgiwAAEBNqbcwW1JSonXr1qlPnz4B7X369NGqVasqXKZbt27atWuXFi9eLGOM9u7dqzfeeEMDBgyodDvFxcXKyckJeNSXej+nAwAA4BRTb/nqwIED8nq9SkpKCmhPSkpSZmZmhct069ZNc+fO1eDBg+VyudS4cWPFxcXpqaeeqnQ7U6ZMUWxsrP+Rmppao/sBAACA+lPvg4WWFfixuzGmXNsRmzdv1tixY3X//fdr3bp1WrJkidLT0zVmzJhK1z9x4kRlZ2f7Hzt37qzR+gEAAFB/HPW14cTERNnt9nKjsPv27Ss3WnvElClT1L17d02YMEGSdM455ygyMlI9evTQ3//+dyUnJ5dbxu12y+121/wOAAAAoN7V28isy+VSWlqali5dGtC+dOlSdevWrcJlCgoKZLMFlmy32yWVjegCAADg9FKvpxmMHz9eL7zwgl566SVt2bJFd911l3bs2OE/bWDixIkaPny4v//AgQO1cOFCzZgxQz/99JM+//xzjR07Vl26dFFKSkp97QYAAADqSb2dZiBJgwcP1sGDB/Xggw8qIyND7du31+LFi9W8eXNJUkZGRsCcs9dff71yc3P19NNP649//KPi4uJ00UUX6aGHHqqvXQAAAEA9ssxp9vl8Tk6OYmNjlZ2drZiYmFrf3tLFb+nz9G9UYpc6GKOrf9tZtl/1lWz2Wt82AABAKAomr9X7bAYAAADAiSLMAgAAIGQRZgEAABCyCLMAAAAIWYRZAAAAhCzCLAAAAEIWYRYAAAAhizALAACAkEWYBQAAQMgizAIAACBkEWYBAAAQsgizAAAACFmEWQAAAIQswmxtMybweXgDyWavn1oAAABOMYTZuhTTVGp2fn1XAQAAcMogzNYp3m4AAICaRLoCAABAyCLMAgAAIGQRZgEAABCyCLMAAAAIWYRZAAAAhCzCLAAAAEIWYRYAAAAhizALAACAkEWYBQAAQMgizAIAACBkEWYBAAAQsgizAAAACFmEWQAAAIQswiwAAABCFmEWAAAAIYswCwAAgJBFmAUAAEDIIswCAAAgZBFmAQAAELIIswAAAAhZhFkAAACELMIsAAAAQhZhFgAAACGLMAsAAICQRZgFAABAyCLMAgAAIGQRZgEAABCyCLMAAAAIWYRZAAAAhCzCLAAAAEIWYRYAAAAhizALAACAkEWYBQAAQMgizAIAACBkEWYBAAAQsgizAAAACFmEWQAAAIQswiwAAABCFmEWAAAAIYswCwAAgJBFmAUAAEDIIswCAAAgZJ1QmPV4PProo4/07LPPKjc3V5K0Z88e5eXl1WhxAAAAQFUcwS6wfft2XXrppdqxY4eKi4vVu3dvRUdH6+GHH1ZRUZFmzpxZG3UCAAAA5QQ9MnvnnXeqc+fOOnz4sMLDw/3tV1xxhT7++OMaLQ4AAACoStAjs5999pk+//xzuVyugPbmzZtr9+7dNVYYAAAAcDxBj8z6fD55vd5y7bt27VJ0dHSNFAUAAABUR9Bhtnfv3po2bZr/uWVZysvL06RJk9S/f/+arA0AAACoUtCnGTz++OPq1auXzjrrLBUVFWno0KHaunWrEhMTNX/+/NqoEQAAAKhQ0GE2JSVFGzZs0Kuvvqp169bJ5/Np1KhRGjZsWMAFYQAAAEBtCzrMrlixQt26ddPIkSM1cuRIf7vH49GKFSv0m9/8pkYLBAAAACoT9DmzvXr10qFDh8q1Z2dnq1evXjVSFAAAAFAdQYdZY4wsyyrXfvDgQUVGRtZIUQAAAEB1VPs0gyuvvFJS2ewF119/vdxut/81r9erjRs3qlu3bjVfIQAAAFCJaofZ2NhYSWUjs9HR0QEXe7lcLl1wwQW68cYba75CAAAAoBLVDrOzZs2SJLVo0UJ33303pxQAAACg3gU9m8GkSZNqow4AAAAgaEFfACZJb7zxhq655hpdcMEFOvfccwMewZo+fbpatmypsLAwpaWlaeXKlVX2Ly4u1n333afmzZvL7XardevWeumll05kNwAAABDigg6zTz75pEaOHKlGjRpp/fr16tKlixISEvTTTz+pX79+Qa1rwYIFGjdunO677z6tX79ePXr0UL9+/bRjx45Kl7nmmmv08ccf68UXX9R3332n+fPnq127dsHuBgAAAE4BljHGBLNAu3btNGnSJP3hD39QdHS0vv76a7Vq1Ur333+/Dh06pKeffrra6zr//PN17rnnasaMGf62M888U5dffrmmTJlSrv+SJUs0ZMgQ/fTTT4qPjw+mbL+cnBzFxsYqOztbMTExJ7SOYCx9b5E+37ZJJXapQ3Sqrv7DcNlsJzQgDgAAcFoIJq8Fnap27Njhn4IrPDxcubm5kqTrrrtO8+fPr/Z6SkpKtG7dOvXp0yegvU+fPlq1alWFy7z99tvq3LmzHn74YTVp0kRt27bV3XffrcLCwkq3U1xcrJycnIAHAAAATg1Bh9nGjRvr4MGDkqTmzZvriy++kCSlp6crmEHeAwcOyOv1KikpKaA9KSlJmZmZFS7z008/6bPPPtOmTZu0aNEiTZs2TW+88YZuu+22SrczZcoUxcbG+h+pqanVrhEAAAAnt6DD7EUXXaR33nlHkjRq1Cjddddd6t27twYPHqwrrrgi6AKOvZtYZXcYkySfzyfLsjR37lx16dJF/fv319SpUzV79uxKR2cnTpyo7Oxs/2Pnzp1B1wgAAICTU9BTcz333HPy+XySpDFjxig+Pl6fffaZBg4cqDFjxlR7PYmJibLb7eVGYfft21dutPaI5ORkNWnSxH8DB6nsHFtjjHbt2qUzzjij3DJutzvgbmUAAAA4dQQ9Mmuz2eRw/C8DX3PNNXryySc1duxY7d+/v9rrcblcSktL09KlSwPaly5dWultcbt37649e/YoLy/P3/b999/LZrOpadOmQe4JAAAAQl2NXFafmZmpO+64Q23atAlqufHjx+uFF17QSy+9pC1btuiuu+7Sjh07/CO8EydO1PDhw/39hw4dqoSEBI0cOVKbN2/WihUrNGHCBN1www0Bt9cFAADA6aHaYTYrK0vDhg1Tw4YNlZKSoieffFI+n0/333+/WrVqpS+++CLomxcMHjxY06ZN04MPPqiOHTtqxYoVWrx4sZo3by5JysjICJhzNioqSkuXLlVWVpY6d+6sYcOGaeDAgXryySeD2i4AAABODdWeZ/bWW2/VO++8o8GDB2vJkiXasmWL+vbtq6KiIk2aNEk9e/as7VprBPPMAgAAnNyCyWvVvgDsvffe06xZs3TJJZfo1ltvVZs2bdS2bVtNmzbtl9YLAAAAnJBqDxHu2bNHZ511liSpVatWCgsL0+jRo2utMAAAAOB4qh1mfT6fnE6n/7ndbldkZGStFAUAAABUR7VPMzDG6Prrr/fP2VpUVKQxY8aUC7QLFy6s2QoBAACASlQ7zI4YMSLg+bXXXlvjxQAAAADBqHaYnTVrVm3WAQAAAASNOaIAAAAQsgizAAAACFmEWQAAAIQswiwAAABCFmEWAAAAIeuEwuwrr7yi7t27KyUlRdu3b5ckTZs2Tf/5z39qtLhTRSl/MgAAANSKoGPWjBkzNH78ePXv319ZWVnyer2SpLi4OE2bNq2m6wt9xshYZf+022yy2Ui2AAAANSXoZPXUU0/p+eef13333Se73e5v79y5s7755psaLe5UExsdVd8lAAAAnFKCDrPp6enq1KlTuXa32638/PwaKQoAAACojqDDbMuWLbVhw4Zy7e+//77OOuusmqgJAAAAqJZq3872iAkTJui2225TUVGRjDH68ssvNX/+fE2ZMkUvvPBCbdQIAAAAVCjoMDty5Eh5PB7dc889Kigo0NChQ9WkSRM98cQTGjJkSG3UCAAAAFQo6DArSTfeeKNuvPFGHThwQD6fT40aNarpugAAAIDjCvqc2QceeEA//vijJCkxMZEgCwAAgHoTdJh988031bZtW11wwQV6+umntX///tqoCwAAADiuoMPsxo0btXHjRl100UWaOnWqmjRpov79+2vevHkqKCiojRoBAACACp3Q7ajOPvts/fOf/9RPP/2kZcuWqWXLlho3bpwaN25c0/UBAAAAlfrF91aNjIxUeHi4XC6XSktLa6ImAAAAoFpOKMymp6frH//4h8466yx17txZX331lSZPnqzMzMyarg8AAACoVNBTc3Xt2lVffvmlfv3rX2vkyJH+eWYBAACAuhZ0mO3Vq5deeOEFnX322bVRDwAAAFBtQYfZf/7zn7VRBwAAABC0aoXZ8ePH629/+5siIyM1fvz4KvtOnTq1RgoDAAAAjqdaYXb9+vX+mQrWr19fqwUBAAAA1VWtMLts2bIK/w0AAADUp6Cn5rrhhhuUm5tbrj0/P1833HBDjRQFAAAAVEfQYfbll19WYWFhufbCwkLNmTOnRooCAAAAqqPasxnk5OTIGCNjjHJzcxUWFuZ/zev1avHixWrUqFGtFAkAAABUpNphNi4uTpZlybIstW3bttzrlmXpgQceqNHiAAAAgKpUO8wuW7ZMxhhddNFFevPNNxUfH+9/zeVyqXnz5kpJSamVIgEAAICKVDvM9uzZU5KUnp6uZs2aybKsWisKAAAAqI5qhdmNGzeqffv2stlsys7O1jfffFNp33POOafGigMAAACqUq0w27FjR2VmZqpRo0bq2LGjLMuSMaZcP8uy5PV6a7xIAAAAoCLVCrPp6elq2LCh/98AAADAyaBaYbZ58+YV/hsAAACoTyd004T33nvP//yee+5RXFycunXrpu3bt9docQAAAEBVgg6z//znPxUeHi5JWr16tZ5++mk9/PDDSkxM1F133VXjBQIAAACVqfbUXEfs3LlTbdq0kSS99dZbuuqqq3TTTTepe/fu+u1vf1vT9QEAAACVCnpkNioqSgcPHpQkffjhh7rkkkskSWFhYSosLKzZ6gAAAIAqBD0y27t3b40ePVqdOnXS999/rwEDBkiSvv32W7Vo0aKm6wMAAAAqFfTI7DPPPKOuXbtq//79evPNN5WQkCBJWrdunf7whz/UeIEAAABAZYIemY2Li9PTTz9drv2BBx6okYIAAACA6go6zEpSVlaWXnzxRW3ZskWWZenMM8/UqFGjFBsbW9P1AQAAAJUK+jSDtWvXqnXr1nr88cd16NAhHThwQI8//rhat26tr776qjZqBAAAACoU9MjsXXfdpUGDBun555+Xw1G2uMfj0ejRozVu3DitWLGixosEAAAAKhJ0mF27dm1AkJUkh8Ohe+65R507d67R4gAAAICqBH2aQUxMjHbs2FGufefOnYqOjq6RogAAAIDqCDrMDh48WKNGjdKCBQu0c+dO7dq1S6+++qpGjx7N1FwAAACoU0GfZvDoo4/KsiwNHz5cHo9HkuR0OnXLLbfoX//6V40XCAAAAFQm6DDrcrn0xBNPaMqUKfrxxx9ljFGbNm0UERFRG/UBAAAAlar2aQYFBQW67bbb1KRJEzVq1EijR49WcnKyzjnnHIIsAAAA6kW1w+ykSZM0e/ZsDRgwQEOGDNHSpUt1yy231GZtAAAAQJWqfZrBwoUL9eKLL2rIkCGSpGuvvVbdu3eX1+uV3W6vtQIBAACAylR7ZHbnzp3q0aOH/3mXLl3kcDi0Z8+eWikMAAAAOJ5qh1mv1yuXyxXQ5nA4/DMaAAAAAHWt2qcZGGN0/fXXy+12+9uKioo0ZswYRUZG+tsWLlxYsxUCAAAAlah2mB0xYkS5tmuvvbZGiwEAAACCUe0wO2vWrNqsAwAAAAha0LezBQAAAE4WhFkAAACELMIsAAAAQhZhFgAAACGLMAsAAICQdUJh9pVXXlH37t2VkpKi7du3S5KmTZum//znPzVaHAAAAFCVoMPsjBkzNH78ePXv319ZWVnyer2SpLi4OE2bNq2m6wMAAAAqFXSYfeqpp/T888/rvvvuk91u97d37txZ33zzTY0WBwAAAFQl6DCbnp6uTp06lWt3u93Kz8+vkaIAAACA6gg6zLZs2VIbNmwo1/7+++/rrLPOCrqA6dOnq2XLlgoLC1NaWppWrlxZreU+//xzORwOdezYMehtAgAA4NRQ7dvZHjFhwgTddtttKioqkjFGX375pebPn68pU6bohRdeCGpdCxYs0Lhx4zR9+nR1795dzz77rPr166fNmzerWbNmlS6XnZ2t4cOH6+KLL9bevXuD3QUAAACcIoIOsyNHjpTH49E999yjgoICDR06VE2aNNETTzyhIUOGBLWuqVOnatSoURo9erSkshkRPvjgA82YMUNTpkypdLmbb75ZQ4cOld1u11tvvRXsLgAAAOAUcUJTc914443avn279u3bp8zMTO3cuVOjRo0Kah0lJSVat26d+vTpE9Dep08frVq1qtLlZs2apR9//FGTJk2q1naKi4uVk5MT8AAAAMCp4RfdNCExMVGNGjU6oWUPHDggr9erpKSkgPakpCRlZmZWuMzWrVt17733au7cuXI4qjeoPGXKFMXGxvofqampJ1QvAAAATj5Bn2bQsmVLWZZV6es//fRTUOs7dl3GmArX7/V6NXToUD3wwANq27Zttdc/ceJEjR8/3v88JyeHQAsAAHCKCDrMjhs3LuB5aWmp1q9fryVLlmjChAnVXk9iYqLsdnu5Udh9+/aVG62VpNzcXK1du1br16/X7bffLkny+XwyxsjhcOjDDz/URRddVG45t9stt9td7boAAAAQOoIOs3feeWeF7c8884zWrl1b7fW4XC6lpaVp6dKluuKKK/ztS5cu1e9+97ty/WNiYsrdlGH69On65JNP9MYbb6hly5bV3jYAAABODUGH2cr069dPEydO1KxZs6q9zPjx43Xdddepc+fO6tq1q5577jnt2LFDY8aMkVR2isDu3bs1Z84c2Ww2tW/fPmD5Ro0aKSwsrFw7AAAATg81FmbfeOMNxcfHB7XM4MGDdfDgQT344IPKyMhQ+/bttXjxYjVv3lySlJGRoR07dtRUiQAAADjFWMYYE8wCnTp1CrhAyxijzMxM7d+/X9OnT9dNN91U40XWpJycHMXGxio7O1sxMTG1vr2l7y7Usl3fSpJ6NT1bvS+7sta3CQAAEMqCyWtBj8xefvnlAc9tNpsaNmyo3/72t2rXrl2wqwMAAABOWFBh1uPxqEWLFurbt68aN25cWzUBAAAA1RLUTRMcDoduueUWFRcX11Y9AAAAQLUFfQew888/X+vXr6+NWgAAAICgBH3O7K233qo//vGP2rVrl9LS0hQZGRnw+jnnnFNjxQEAAABVqXaYveGGGzRt2jQNHjxYkjR27Fj/a5Zl+W9D6/V6a75KAAAAoALVDrMvv/yy/vWvfyk9Pb026wEAAACqrdph9sh0tEduaAAAAADUt6AuADv6ZgkAAABAfQvqArC2bdseN9AeOnToFxUEAAAAVFdQYfaBBx5QbGxsbdUCAAAABCWoMDtkyBA1atSotmoBAAAAglLtc2Y5XxYAAAAnm2qH2SOzGQAAAAAni2qfZuDz+WqzDgAAACBoQU3NBQAAAJxMCLMAAAAIWYRZAAAAhCzCLAAAAEIWYRYAAAAhizALAACAkEWYBQAAQMgizAIAACBkEWYBAAAQsgizAAAACFmEWQAAAIQswiwAAABCFmEWAAAAIYswCwAAgJBFmAUAAEDIIswCAAAgZBFmAQAAELIIswAAAAhZhFkAAACELMIsAAAAQhZhFgAAACGLMAsAAICQRZgFAABAyCLMAgAAIGQRZgEAABCyCLMAAAAIWYRZAAAAhCzCLAAAAEIWYRYAAAAhizALAACAkEWYBQAAQMgizAIAACBkEWYBAAAQsgizAAAACFmEWQAAAIQswiwAAABCFmEWAAAAIYswCwAAgJBFmAUAAEDIIswCAAAgZBFmAQAAELIIswAAAAhZhFkAAACELMIsAAAAQhZhFgAAACGLMAsAAICQRZgFAABAyCLMAgAAIGQRZgEAABCyCLMAAAAIWYRZAAAAhCzCLAAAAEIWYRYAAAAhizALAACAkEWYBQAAQMgizAIAACBkEWYBAAAQsgizAAAACFn1HmanT5+uli1bKiwsTGlpaVq5cmWlfRcuXKjevXurYcOGiomJUdeuXfXBBx/UYbUAAAA4mdRrmF2wYIHGjRun++67T+vXr1ePHj3Ur18/7dixo8L+K1asUO/evbV48WKtW7dOvXr10sCBA7V+/fo6rhwAAAAnA8sYY+pr4+eff77OPfdczZgxw9925pln6vLLL9eUKVOqtY6zzz5bgwcP1v3331+t/jk5OYqNjVV2drZiYmJOqO5gLH13oZbt+laS1Kvp2ep92ZW1vk0AAIBQFkxeq7eR2ZKSEq1bt059+vQJaO/Tp49WrVpVrXX4fD7l5uYqPj6+0j7FxcXKyckJeAAAAODUUG9h9sCBA/J6vUpKSgpoT0pKUmZmZrXW8dhjjyk/P1/XXHNNpX2mTJmi2NhY/yM1NfUX1Q0AAICTR71fAGZZVsBzY0y5torMnz9fkydP1oIFC9SoUaNK+02cOFHZ2dn+x86dO39xzQAAADg5OOprw4mJibLb7eVGYfft21dutPZYCxYs0KhRo/T666/rkksuqbKv2+2W2+3+xfUCAADg5FNvI7Mul0tpaWlaunRpQPvSpUvVrVu3SpebP3++rr/+es2bN08DBgyo7TIBAABwEqu3kVlJGj9+vK677jp17txZXbt21XPPPacdO3ZozJgxkspOEdi9e7fmzJkjqSzIDh8+XE888YQuuOAC/6hueHi4YmNj620/AAAAUD/qNcwOHjxYBw8e1IMPPqiMjAy1b99eixcvVvPmzSVJGRkZAXPOPvvss/J4PLrtttt02223+dtHjBih2bNn13X5AAAAqGf1Os9sfWCeWQAAgJNbSMwzCwAAAPxShFkAAACELMIsAAAAQhZhFgAAACGLMAsAAICQRZgFAABAyCLMAgAAIGQRZgEAABCyCLMAAAAIWYRZAAAAhCzCLAAAAEIWYRYAAAAhizALAACAkEWYBQAAQMgizAIAACBkEWYBAAAQsgizAAAACFmEWQAAAIQswiwAAABCFmEWAAAAIYswCwAAgJBFmAUAAEDIIswCAAAgZBFmAQAAELIIswAAAAhZhFkAAACELMIsAAAAQhZhFgAAACGLMAsAAICQRZgFAABAyCLMAgAAIGQRZgEAABCyCLMAAAAIWYRZAAAAhCzCLAAAAEIWYRYAAAAhizALAACAkEWYBQAAQMgizAIAACBkEWYBAAAQsgizAAAACFmEWQAAAIQswiwAAABCFmEWAAAAIYswCwAAgJBFmAUAAEDIIswCAAAgZBFmAQAAELIIswAAAAhZhFkAAACELMIsAAAAQhZhFgAAACGLMAsAAICQRZgFAABAyCLMAgAAIGQRZgEAABCyCLMAAAAIWYRZAAAAhCzCLAAAAEIWYRYAAAAhizALAACAkEWYBQAAQMgizAIAACBkEWYBAAAQsgizAAAACFmO+i4AAIDThTFGHo9HXq+3vksB6p3T6ZTdbv/F6yHMAgBQB0pKSpSRkaGCgoL6LgU4KViWpaZNmyoqKuoXrYcwCwBALfP5fEpPT5fdbldKSopcLpcsy6rvsoB6Y4zR/v37tWvXLp1xxhm/aISWMAsAQC0rKSmRz+dTamqqIiIi6rsc4KTQsGFDbdu2TaWlpb8ozHIBGAAAdcRm49cucERNfTrBdxUAAABCFmEWAAAAIYswCwAAgJBV72F2+vTpatmypcLCwpSWlqaVK1dW2X/58uVKS0tTWFiYWrVqpZkzZ9ZRpQAAnH6uv/56WZblfyQkJOjSSy/Vxo0ba3Q727Ztk2VZ2rBhQ7WXmTx5sjp27FijdQTr008/Lff+XHTRRfr888/L9T106JDGjRunFi1ayOVyKTk5WSNHjtSOHTvK9c3MzNQdd9yhVq1aye12KzU1VQMHDtTHH39cZT05OTm677771K5dO4WFhalx48a65JJLtHDhQhljamy/Tyb1GmYXLFigcePG6b777tP69evVo0cP9evXr8KDKknp6enq37+/evToofXr1+vPf/6zxo4dqzfffLOOKwcA4PRx6aWXKiMjQxkZGfr444/lcDh02WWX1XdZ1VZaWlrr2/juu++UkZGhTz/9VA0bNtSAAQO0b98+/+uHDh3SBRdcoI8++kjTp0/XDz/8oAULFujHH3/Ueeedp59++snfd9u2bUpLS9Mnn3yihx9+WN98842WLFmiXr166bbbbqu0hqysLHXr1k1z5szRxIkT9dVXX2nFihUaPHiw7rnnHmVnZ5/w/tXFe3jCTD3q0qWLGTNmTEBbu3btzL333lth/3vuuce0a9cuoO3mm282F1xwQbW3mZ2dbSSZ7Ozs4As+AR++86aZOONBM3HGg+bDd96sk20CAE4uhYWFZvPmzaawsDCg3eP11csjGCNGjDC/+93vAtpWrFhhJJl9+/b52zZu3Gh69eplwsLCTHx8vLnxxhtNbm6u/3Wv12seeOAB06RJE+NyuUyHDh3M+++/739dUsCjZ8+exhhjli1bZs477zwTERFhYmNjTbdu3cy2bdvMrFmzyi0za9Ys/7pmzJhhBg0aZCIiIsz9999vPB6PueGGG0yLFi1MWFiYadu2rZk2bVqF+zp58mTTsGFDEx0dbW666SZTXFxc6fuzbNkyI8kcPnw44L2QZN5++21/25gxY0xkZKTJyMgIWL6goMA0adLEXHrppf62fv36mSZNmpi8vLxy2zt6O8e65ZZbTGRkpNm9e3e513Jzc01paan//Vm0aFHA67Gxsf73Lz093UgyCxYsMD179jRut9tMmzbNhIWFBRwzY4x58803TUREhP9Y79q1y1xzzTUmLi7OxMfHm0GDBpn09PQK663s+8KY4PJavc0zW1JSonXr1unee+8NaO/Tp49WrVpV4TKrV69Wnz59Atr69u2rF198UaWlpXI6neWWKS4uVnFxsf95Tk5ODVQPAMAv4/UZLfu/fcfvWAt6tWsku+3EpkXKy8vT3Llz1aZNGyUkJEiSCgoKdOmll+qCCy7QmjVrtG/fPo0ePVq33367Zs+eLUl64okn9Nhjj+nZZ59Vp06d9NJLL2nQoEH69ttvdcYZZ+jLL79Uly5d9NFHH+nss8+Wy+WSx+PR5ZdfrhtvvFHz589XSUmJvvzyS1mWpcGDB2vTpk1asmSJPvroI0lSbGysv85JkyZpypQpevzxx2W32+Xz+dS0aVO99tprSkxM1KpVq3TTTTcpOTlZ11xzjX+5jz/+WGFhYVq2bJm2bdumkSNHKjExUf/4xz+q9f4UFBRo1qxZkuTPJT6fT6+++qqGDRumxo0bB/QPDw/Xrbfeqr/85S86dOiQJGnJkiX6xz/+ocjIyHLrj4uLq3C7R28jJSWl3OsncpetP/3pT3rsscc0a9Ysud1urVy5UnPnztWll17q7zNv3jz97ne/U1RUlAoKCtSrVy/16NFDK1askMPh0N///nf/aSkulyvoGqqj3sLsgQMH5PV6lZSUFNCelJSkzMzMCpfJzMyssL/H49GBAweUnJxcbpkpU6bogQceqLnCAQA4zbz77rv+MJSfn6/k5GS9++67/nlz586dq8LCQs2ZM8cfwJ5++mkNHDhQDz30kJKSkvToo4/qT3/6k4YMGSJJeuihh7Rs2TJNmzZNzzzzjBo2bChJSkhI8Ae+Q4cOKTs7W5dddplat24tSTrzzDP9dUVFRcnhcJQLiJI0dOhQ3XDDDQFtR+eBli1batWqVXrttdcCwqzL5dJLL72kiIgInX322XrwwQc1YcIE/e1vf6tynuCmTZtKKguzxhilpaXp4osvliTt379fWVlZAbUf7cwzz5QxRj/88IOksrtjtWvXrtJtVeTAgQM6fPhw0MtVZdy4cbryyiv9z4cNG6bhw4eroKBAERERysnJ0Xvvvec/3fPVV1+VzWbTCy+84J9DdtasWYqLi9Onn35abkCyptT7HcCOnTDXGFPlJLoV9a+o/YiJEydq/Pjx/uc5OTlKTU090XKD1vuyK6V3j/o3AACS7DZLvdo1qrdtB6NXr16aMWOGpLKAOX36dPXr109ffvmlmjdvri1btqhDhw4BI4ndu3eXz+fTd999p/DwcO3Zs0fdu3cPWG/37t319ddfV7rd+Ph4XX/99erbt6969+6tSy65RNdcc02Fg1fH6ty5c7m2mTNn6oUXXtD27dtVWFiokpKScheQdejQIeAubV27dlVeXp527typ5s2bV7q9lStXKjIyUuvXr9ef/vQnzZ49u8JPjCtydJbx+Xz+fwfjeHnoRBz7Hg4YMEAOh0Nvv/22hgwZojfffFPR0dH+kLpu3Tr98MMPio6ODliuqKhIP/74Y43Vdax6C7OJiYmy2+3lRmH37dtXbvT1iMaNG1fY3+Fw+D/qOJbb7Zbb7a6Zok8QIRYAUJET/ai/rkVGRqpNmzb+52lpaYqNjdXzzz+vv//971UORB3dHuwAllQ2sjd27FgtWbJECxYs0F/+8hctXbpUF1xwwXFrPtprr72mu+66S4899pi6du2q6OhoPfLII/rvf/9b5Xoqq/1YLVu2VFxcnNq2bauioiJdccUV2rRpk9xutxo2bKi4uDht3ry5wmX/7//+T5Zl+UefLcvSli1bdPnll1erNqns1rANGjTQli1bqrUv5piZDSq6wOvY99Dlcumqq67SvHnzNGTIEM2bN0+DBw+Ww1EWJ30+n9LS0jR37twK66st9TabgcvlUlpampYuXRrQvnTpUnXr1q3CZbp27Vqu/4cffqjOnTtX+68fAADwy1iWJZvNpsLCQknSWWedpQ0bNig/P9/f5/PPP5fNZlPbtm0VExOjlJQUffbZZwHrWbVqlf+j9yPnU3q93nLb69SpkyZOnKhVq1apffv2mjdvnn+ZivpXZOXKlerWrZtuvfVWderUSW3atKlwtPDrr7/275ckffHFF4qKivKfRlAd1113nXw+n6ZPny6p7DbG11xzjebNm1duUK6wsFDTp09X3759FR8fr/j4ePXt21fPPPNMwPt5RFZWVoXbtNlsGjx4sObOnas9e/aUez0/P18ej0dSWbDMyMjwv7Z161YVFBRUa9+GDRumJUuW6Ntvv9WyZcs0bNgw/2vnnnuutm7dqkaNGqlNmzYBj6PPZ65p9To11/jx4/XCCy/opZde0pYtW3TXXXdpx44dGjNmjKSyUwSGDx/u7z9mzBht375d48eP15YtW/TSSy/pxRdf1N13311fuwAAwCmvuLhYmZmZyszM1JYtW3THHXcoLy9PAwcOlFQWcMLCwjRixAht2rRJy5Yt0x133KHrrrvO/2nrhAkT9NBDD2nBggX67rvvdO+992rDhg268847JUmNGjVSeHi4lixZor179yo7O1vp6emaOHGiVq9ere3bt+vDDz/U999/7w/ALVq0UHp6ujZs2KADBw4EXPB9rDZt2mjt2rX64IMP9P333+uvf/2r1qxZU65fSUmJRo0apc2bN+v999/XpEmTdPvtt1d5vuyxbDabxo0bp3/961/+kPiPf/xDjRs3Vu/evfX+++9r586dWrFihfr27avS0lI988wz/uWnT58ur9erLl266M0339TWrVu1ZcsWPfnkk+ratWul2/3nP/+p1NRUnX/++ZozZ442b96srVu36qWXXlLHjh2Vl5cnSbrooov09NNP66uvvtLatWs1ZsyYag8K9uzZU0lJSRo2bJhatGgRMEI+bNgwJSYm6ne/+51Wrlyp9PR0LV++XHfeead27dpV7fcvaMed76CWPfPMM6Z58+bG5XKZc8891yxfvtz/2ogRI/xTcxzx6aefmk6dOhmXy2VatGhhZsyYEdT26npqLgAAqpqC6GQ3YsSIgOmvoqOjzXnnnWfeeOONgH7BTM3ldDrLTc1ljDHPP/+8SU1NNTabzfTs2dNkZmaayy+/3CQnJxuXy2WaN29u7r//fuP1eo0xxhQVFZnf//73Ji4urtzUXMdOPVVUVGSuv/56Exsba+Li4swtt9xi7r33XtOhQ4eAff3d735n7r//fpOQkGCioqLM6NGjTVFRUaXvT0VTcxljTF5enmnQoIF56KGH/G379+83d9xxh0lNTTUOh8MkJSWZESNGmO3bt5db7549e8xtt93mz0hNmjQxgwYNMsuWLau0FmOMycrKMvfee68544wzjMvlMklJSeaSSy4xixYtMj5f2bRsu3fvNn369DGRkZHmjDPOMIsXL65waq7169dXuI0JEyYYSeb+++8v91pGRoYZPny4SUxMNG6327Rq1crceOONFeaumpqayzLmFL0dRCVycnIUGxur7OxsxcTE1Hc5AIDTQFFRkdLT0/13vMTJ6frrr1dWVpbeeuut+i7ltFDV90Uwea3eb2cLAAAAnCjCLAAAAEJWvc8zCwAAcDI4crcyhBZGZgEAABCyCLMAANSR0+yaa6BKNfX9QJgFAKCWHZnDs7oT0wOng5KSEkmS3W7/RevhnFkAAGqZ3W5XXFyc9u3bJ0mKiIg47u1RgVOZz+fT/v37FRER4b8d7okizAIAUAcaN24sSf5AC5zubDabmjVr9ov/sCPMAgBQByzLUnJysho1aqTS0tL6Lgeody6XK6jbBFeGMAsAQB2y2+2/+BxBAP/DBWAAAAAIWYRZAAAAhCzCLAAAAELWaXfO7JEJenNycuq5EgAAAFTkSE6rzo0VTrswm5ubK0lKTU2t50oAAABQldzcXMXGxlbZxzKn2b31fD6f9uzZo+jo6DqbsDonJ0epqanauXOnYmJi6mSbqDkcv9DHMQx9HMPQxvELfXV9DI0xys3NVUpKynGn7zrtRmZtNpuaNm1aL9uOiYnhmziEcfxCH8cw9HEMQxvHL/TV5TE83ojsEVwABgAAgJBFmAUAAEDIIszWAbfbrUmTJsntdtd3KTgBHL/QxzEMfRzD0MbxC30n8zE87S4AAwAAwKmDkVkAAACELMIsAAAAQhZhFgAAACGLMAsAAICQRZitAdOnT1fLli0VFhamtLQ0rVy5ssr+y5cvV1pamsLCwtSqVSvNnDmzjipFZYI5hgsXLlTv3r3VsGFDxcTEqGvXrvrggw/qsFpUJNjvwyM+//xzORwOdezYsXYLxHEFewyLi4t13333qXnz5nK73WrdurVeeumlOqoWxwr2+M2dO1cdOnRQRESEkpOTNXLkSB08eLCOqsWxVqxYoYEDByolJUWWZemtt9467jInTZ4x+EVeffVV43Q6zfPPP282b95s7rzzThMZGWm2b99eYf+ffvrJREREmDvvvNNs3rzZPP/888bpdJo33nijjivHEcEewzvvvNM89NBD5ssvvzTff/+9mThxonE6nearr76q48pxRLDH8IisrCzTqlUr06dPH9OhQ4e6KRYVOpFjOGjQIHP++eebpUuXmvT0dPPf//7XfP7553VYNY4I9vitXLnS2Gw288QTT5iffvrJrFy50px99tnm8ssvr+PKccTixYvNfffdZ958800jySxatKjK/idTniHM/kJdunQxY8aMCWhr166duffeeyvsf88995h27doFtN18883mggsuqLUaUbVgj2FFzjrrLPPAAw/UdGmophM9hoMHDzZ/+ctfzKRJkwiz9SzYY/j++++b2NhYc/DgwbooD8cR7PF75JFHTKtWrQLannzySdO0adNaqxHVV50wezLlGU4z+AVKSkq0bt069enTJ6C9T58+WrVqVYXLrF69ulz/vn37au3atSotLa21WlGxEzmGx/L5fMrNzVV8fHxtlIjjONFjOGvWLP3444+aNGlSbZeI4ziRY/j222+rc+fOevjhh9WkSRO1bdtWd999twoLC+uiZBzlRI5ft27dtGvXLi1evFjGGO3du1dvvPGGBgwYUBclowacTHnGUadbO8UcOHBAXq9XSUlJAe1JSUnKzMyscJnMzMwK+3s8Hh04cEDJycm1Vi/KO5FjeKzHHntM+fn5uuaaa2qjRBzHiRzDrVu36t5779XKlSvlcPBjsL6dyDH86aef9NlnnyksLEyLFi3SgQMHdOutt+rQoUOcN1vHTuT4devWTXPnztXgwYNVVFQkj8ejQYMG6amnnqqLklEDTqY8w8hsDbAsK+C5MaZc2/H6V9SOuhPsMTxi/vz5mjx5shYsWKBGjRrVVnmohuoeQ6/Xq6FDh+qBBx5Q27Zt66o8VEMw34c+n0+WZWnu3Lnq0qWL+vfvr6lTp2r27NmMztaTYI7f5s2bNXbsWN1///1at26dlixZovT0dI0ZM6YuSkUNOVnyDEMSv0BiYqLsdnu5vzz37dtX7q+VIxo3blxhf4fDoYSEhFqrFRU7kWN4xIIFCzRq1Ci9/vrruuSSS2qzTFQh2GOYm5urtWvXav369br99tsllQUjY4wcDoc+/PBDXXTRRXVSO8qcyPdhcnKymjRpotjYWH/bmWeeKWOMdu3apTPOOKNWa8b/nMjxmzJlirp3764JEyZIks455xxFRkaqR48e+vvf/86nlCHgZMozjMz+Ai6XS2lpaVq6dGlA+9KlS9WtW7cKl+natWu5/h9++KE6d+4sp9NZa7WiYidyDKWyEdnrr79e8+bN4xyvehbsMYyJidE333yjDRs2+B9jxozRr371K23YsEHnn39+XZWOn53I92H37t21Z88e5eXl+du+//572Ww2NW3atFbrRaATOX4FBQWy2QIjiN1ul/S/0T2c3E6qPFPnl5ydYo5MR/Liiy+azZs3m3HjxpnIyEizbds2Y4wx9957r7nuuuv8/Y9MZXHXXXeZzZs3mxdffJGpuepZsMdw3rx5xuFwmGeeecZkZGT4H1lZWfW1C6e9YI/hsZjNoP4Fewxzc3NN06ZNzVVXXWW+/fZbs3z5cnPGGWeY0aNH19cunNaCPX6zZs0yDofDTJ8+3fz444/ms88+M507dzZdunSpr1047eXm5pr169eb9evXG0lm6tSpZv369f7p1U7mPEOYrQHPPPOMad68uXG5XObcc881y5cv9782YsQI07Nnz4D+n376qenUqZNxuVymRYsWZsaMGXVcMY4VzDHs2bOnkVTuMWLEiLovHH7Bfh8ejTB7cgj2GG7ZssVccsklJjw83DRt2tSMHz/eFBQU1HHVOCLY4/fkk0+as846y4SHh5vk5GQzbNgws2vXrjquGkcsW7asyt9tJ3OesYxhPB8AAAChiXNmAQAAELIIswAAAAhZhFkAAACELMIsAAAAQhZhFgAAACGLMAsAAICQRZgFAABAyCLMAgAAIGQRZgFA0uzZsxUXF1ffZZywFi1aaNq0aVX2mTx5sjp27Fgn9QBAXSHMAjhlXH/99bIsq9zjhx9+qO/SNHv27ICakpOTdc011yg9Pb1G1r9mzRrddNNN/ueWZemtt94K6HP33Xfr448/rpHtVebY/UxKStLAgQP17bffBr2eUP7jAkDdIcwCOKVceumlysjICHi0bNmyvsuSJMXExCgjI0N79uzRvHnztGHDBg0aNEher/cXr7thw4aKiIiosk9UVJQSEhJ+8baO5+j9fO+995Sfn68BAwaopKSk1rcN4PRDmAVwSnG73WrcuHHAw263a+rUqfr1r3+tyMhIpaam6tZbb1VeXl6l6/n666/Vq1cvRUdHKyYmRmlpaVq7dq3/9VWrVuk3v/mNwsPDlZqaqrFjxyo/P7/K2izLUuPGjZWcnKxevXpp0qRJ2rRpk3/keMaMGWrdurVcLpd+9atf6ZVXXglYfvLkyWrWrJncbrdSUlI0duxY/2tHn2bQokULSdIVV1why7L8z48+zeCDDz5QWFiYsrKyArYxduxY9ezZs8b2s3Pnzrrrrru0fft2fffdd/4+VR2PTz/9VCNHjlR2drZ/hHfy5MmSpJKSEt1zzz1q0qSJIiMjdf755+vTTz+tsh4ApzbCLIDTgs1m05NPPqlNmzbp5Zdf1ieffKJ77rmn0v7Dhg1T06ZNtWbNGq1bt0733nuvnE6nJOmbb75R3759deWVV2rjxo1asGCBPvvsM91+++1B1RQeHi5JKi0t1aJFi3TnnXfqj3/8ozZt2qSbb75ZI0eO1LJlyyRJb7zxhh5//HE9++yz2rp1q9566y39+te/rnC9a9askSTNmjVLGRkZ/udHu+SSSxQXF6c333zT3+b1evXaa69p2LBhNbafWVlZmjdvniT53z+p6uPRrVs3TZs2zT/Cm5GRobvvvluSNHLkSH3++ed69dVXtXHjRl199dW69NJLtXXr1mrXBOAUYwDgFDFixAhjt9tNZGSk/3HVVVdV2Pe1114zCQkJ/uezZs0ysbGx/ufR0dFm9uzZFS573XXXmZtuuimgbeXKlcZms5nCwsIKlzl2/Tt37jQXXHCBadq0qSkuLjbdunUzN954Y8AyV199tenfv78xxpjHHnvMtG3b1pSUlFS4/ubNm5vHH3/c/1ySWbRoUUCfSZMmmQ4dOvifjx071lx00UX+5x988IFxuVzm0KFDv2g/JZnIyEgTERFhJBlJZtCgQRX2P+J4x8MYY3744QdjWZbZvXt3QPvFF19sJk6cWOX6AZy6HPUbpQGgZvXq1UszZszwP4+MjJQkLVu2TP/85z+1efNm5eTkyOPxqKioSPn5+f4+Rxs/frxGjx6tV155RZdccomuvvpqtW7dWpK0bt06/fDDD5o7d66/vzFGPp9P6enpOvPMMyusLTs7W1FRUTLGqKCgQOeee64WLlwol8ulLVu2BFzAJUndu3fXE088IUm6+uqrNW3aNLVq1UqXXnqp+vfvr4EDB8rhOPEf48OGDVPXrl21Z88epaSkaO7cuerfv78aNGjwi/YzOjpaX331lTwej5YvX65HHnlEM2fODOgT7PGQpK+++krGGLVt2zagvbi4uE7OBQZwciLMAjilREZGqk2bNgFt27dvV//+/TVmzBj97W9/U3x8vD777DONGjVKpaWlFa5n8uTJGjp0qN577z29//77mjRpkl599VVdccUV8vl8uvnmmwPOWT2iWbNmldZ2JOTZbDYlJSWVC22WZQU8N8b421JTU/Xdd99p6dKl+uijj3TrrbfqkUce0fLlywM+vg9Gly5d1Lp1a7366qu65ZZbtGjRIs2aNcv/+onup81m8x+Ddu3aKTMzU4MHD9aKFSskndjxOFKP3W7XunXrZLfbA16LiooKat8BnDoIswBOeWvXrpXH49Fjjz0mm63sUoHXXnvtuMu1bdtWbdu21V133aU//OEPmjVrlq644gqde+65+vbbb8uF5uM5OuQd68wzz9Rnn32m4cOH+9tWrVoVMPoZHh6uQYMGadCgQbrtttvUrl07ffPNNzr33HPLrc/pdFZrloShQ4dq7ty5atq0qWw2mwYMGOB/7UT381h33XWXpk6dqkWLFumKK66o1vFwuVzl6u/UqZO8Xq/27dunHj16/KKaAJw6uAAMwCmvdevW8ng8euqpp/TTTz/plVdeKfex99EKCwt1++2369NPP9X27dv1+eefa82aNf5g+ac//UmrV6/Wbbfdpg0bNmjr1q16++23dccdd5xwjRMmTNDs2bM1c+ZMbd26VVOnTtXChQv9Fz7Nnj1bL774ojZt2uTfh/DwcDVv3rzC9bVo0UIff/yxMjMzdfjw4Uq3O2zYMH311Vf6xz/+oauuukphYWH+12pqP2NiYjR69GhNmjRJxphqHY8WLVooLy9PH3/8sQ4cOKCCggK1bdtWw4YN0/Dhw7Vw4UKlp6drzZo1euihh7R48eKgagJwCqnPE3YBoCaNGDHC/O53v6vwtalTp5rk5GQTHh5u+vbta+bMmWMkmcOHDxtjAi84Ki4uNkOGDDGpqanG5XKZlJQUc/vttwdc9PTll1+a3r17m6ioKBMZGWnOOecc849//KPS2iq6oOlY06dPN61atTJOp9O0bdvWzJkzx//aokWLzPnnn29iYmJMZGSkueCCC8xHH33kf/3YC8Defvtt06ZNG+NwOEzz5s2NMeUvADvivPPOM5LMJ598Uu61mtrP7du3G4fDYRYsWGCMOf7xMMaYMWPGmISEBCPJTJo0yRhjTElJibn//vtNixYtjNPpNI0bNzZXXHGF2bhxY6U1ATi1WcYYU79xGgAAADgxnGYAAACAkEWYBQAAQMgizAIAACBkEWYBAAAQsgizAAAACFmEWQAAAIQswiwAAABCFmEWAAAAIYswCwAAgJBFmAUAAEDIIswCAAAgZP0/YV+ZiGmlCTMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAHFCAYAAAD1+1APAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMDklEQVR4nO3deVxU5f4H8M+wzLAIk4AwoqhIuIIbGkJXoYtglFtW5pKhYWmaRW5dr78UuwXpLTU1l8yEXFJvpWm5YSotYiEuuWVZGKAgasi+8/z+8HKuIyAzzAzInM/b13m9nOc855zvOTPDd57nPOcchRBCgIiIiMyWRVMHQERERKbFZE9ERGTmmOyJiIjMHJM9ERGRmWOyJyIiMnNM9kRERGaOyZ6IiMjMMdkTERGZOSZ7IiIiM2e2yf7nn3/GxIkT4enpCRsbG7Ro0QJ9+vTB4sWL8ddff5l02ydPnkRQUBDUajUUCgWWLVtm9G0oFApER0cbfb31iYuLg0KhgEKhwJEjR2rMF0LgwQcfhEKhQHBwcIO2sWrVKsTFxem1zJEjR+qMqaG2bduG7t27w9bWFgqFAqdOnTLauu9WHf9nn31msm3cqaioCNHR0Tofr8uXL0vve/Xk6OiInj17YtmyZaisrDRpvHv27Gnw5/3q1auIjo426ftnqP379yMsLAzu7u5QqVRwd3dHcHAw3nnnnaYOrV7BwcEN/q5T4zHLZL9u3Tr4+fkhOTkZs2fPxr59+7Bjxw48/fTTWLNmDSIjI026/eeffx6ZmZnYunUrkpKSMHr0aKNvIykpCZMmTTL6enXl4OCA9evX1yhPTEzE77//DgcHhwavuyHJvk+fPkhKSkKfPn0avN07Xb9+HePHj4eXlxf27duHpKQkdOrUySjrvh8UFRVh4cKFev84mj59OpKSkpCUlITt27fj4YcfxmuvvYY5c+aYJtD/2rNnDxYuXNigZa9evYqFCxfet8l+zZo1ePTRR+Ho6IiVK1di//79WLRoEbp27dpoP/7I/Fk1dQDGlpSUhJdeegmhoaHYuXMnVCqVNC80NBQzZ87Evn37TBrD2bNn8cILLyA8PNxk2+jfv7/J1q2LZ555Bps3b8YHH3wAR0dHqXz9+vUICAhAXl5eo8RRXl4utTKNeUx+/fVXlJeX49lnn0VQUJBR1llUVAQ7OzujrKuptGvXTus4P/roozh79iw+/fRTvPfee00YmfE09vsUGxuLgQMH1kjs48ePR1VVVaPFQebN7Fr2MTExUCgU+PDDD7USfTWlUolhw4ZJr6uqqrB48WJ06dIFKpUKrq6ueO6555CRkaG1XHBwMHx8fJCcnIwBAwbAzs4OHTt2xDvvvCN9Iau7uCsqKrB69WqpuxMAoqOjpf/fqXqZy5cvS2WHDh1CcHAwnJ2dYWtri3bt2uHJJ59EUVGRVKe2bvyzZ89i+PDhaNmyJWxsbNCrVy/Ex8dr1anuLv70008xb948uLu7w9HREYMGDcLFixd1O8gAxowZAwD49NNPpbLc3Fx8/vnneP7552tdZuHChfD394eTkxMcHR3Rp08frF+/Hnc+i6lDhw44d+4cEhMTpePXoUMHrdg3btyImTNnok2bNlCpVLh06VKNbvwbN27Aw8MDgYGBKC8vl9Z//vx52NvbY/z48XXu24QJE/C3v/0NwO0fNXefkti1axcCAgJgZ2cHBwcHhIaGIikpSWsd1e/3iRMn8NRTT6Fly5bw8vKq/8DWQ5djCNz7M3T58mW0atVKWl/1cZ4wYUKDYlKr1bC2ttYq0/V7BQAff/wxevbsCRsbGzg5OeGJJ57AhQsXpPkTJkzABx98AABapxGqvzP/+c9/4O/vD7VaLX0vqz+DR44cQb9+/QAAEydOlJat/u5MmDABLVq0wJkzZxAWFgYHBweEhIQAABISEjB8+HC0bdsWNjY2ePDBBzF58mTcuHFDK/7q9/rkyZMYOXIkHB0doVar8eyzz+L69ev1Hr+bN2+idevWtc6zsND+E/3BBx9g4MCBcHV1hb29PXx9fbF48WKtzzjwv79XSUlJCAwMhK2tLTp06IANGzYAAL7++mv06dMHdnZ28PX1rdEAMnSfysrK8NZbb0nvf6tWrTBx4kSdliUTEWakoqJC2NnZCX9/f52XefHFFwUA8fLLL4t9+/aJNWvWiFatWgkPDw9x/fp1qV5QUJBwdnYW3t7eYs2aNSIhIUFMnTpVABDx8fFCCCGys7NFUlKSACCeeuopkZSUJJKSkoQQQixYsEDUdrg3bNggAIjU1FQhhBCpqanCxsZGhIaGip07d4ojR46IzZs3i/Hjx4ucnBxpOQBiwYIF0utffvlFODg4CC8vL/HJJ5+Ir7/+WowZM0YAEIsWLZLqHT58WAAQHTp0EOPGjRNff/21+PTTT0W7du2Et7e3qKiouOfxqo43OTlZjB8/Xjz00EPSvNWrVwt7e3uRl5cnunfvLoKCgrSWnTBhgli/fr1ISEgQCQkJ4l//+pewtbUVCxculOqcOHFCdOzYUfTu3Vs6fidOnNCKvU2bNuKpp54Su3btEl999ZW4efOmNO/w4cPSur7//nthZWUlXnvtNSGEEIWFhaJbt26iS5cuoqCgoM59vHTpkvjggw8EABETEyOSkpLEuXPnhBBCbN68WQAQYWFhYufOnWLbtm3Cz89PKJVK8d1330nrqH6/27dvL15//XWRkJAgdu7cWec2q+P/z3/+c8/jr8sxrO8zVFJSIvbt2ycAiMjISOk4X7p0qc7tpqamSp+l8vJyUV5eLm7cuCHWr18vrKysxLx587Tq6/q9iomJEQDEmDFjxNdffy0++eQT0bFjR6FWq8Wvv/4qvR9PPfWUACDFmpSUJEpKSsTRo0eFQqEQo0ePFnv27BGHDh0SGzZsEOPHjxdCCJGbmyt9Zv/v//5PWjY9PV0IIURERISwtrYWHTp0ELGxseKbb74R+/fvF0Lc/jzHxsaKXbt2icTERBEfHy969uwpOnfuLMrKymp9r2fPni32798vlixZIuzt7UXv3r216tZm0KBBwsrKSixYsECcOnXqnt/B1157TaxevVrs27dPHDp0SCxdulS4uLiIiRMnatWr/nvVuXNnsX79erF//34xZMgQAUAsXLhQ+Pr6ik8//VTs2bNH9O/fX6hUKnHlypUG7VNQUJDWd72yslI8+uijwt7eXixcuFAkJCSIjz76SLRp00Z069ZNFBUV3fN4kGmYVbLPysoSAMTo0aN1qn/hwgUBQEydOlWr/McffxQAxD//+U+pLCgoSAAQP/74o1bdbt26icGDB2uVARDTpk3TKtM12X/22WcCgDh16tQ9Y7872Y8ePVqoVCqRlpamVS88PFzY2dmJW7duCSH+l1Qee+wxrXrbt2+X/pjey53JvnpdZ8+eFUII0a9fPzFhwgQhhKg12d+psrJSlJeXizfffFM4OzuLqqoqaV5dy1Zvb+DAgXXOuzPZCyHEokWLBACxY8cOERERIWxtbcXPP/98z328c313Jt/Kykrh7u4ufH19RWVlpVSen58vXF1dRWBgoFRW/X7Pnz+/3m3Vtb361HUMdfkMXb9+vcZn6F6qk31t04QJE7QSlK7fq5ycHGFra1vjs5iWliZUKpUYO3asVDZt2rRavz/vvvuuACB9vmuTnJwsAIgNGzbUmBcRESEAiI8//vie+19VVSXKy8vFn3/+KQCIL7/8UppX/V5X/6isVv3DcNOmTfdc96VLl4SPj490PG1tbUVISIhYuXLlPX8oVL//n3zyibC0tBR//fWXNK/679Xx48elsps3bwpLS0tha2urldhPnTolAIjly5c3aJ/uTvaffvqpACA+//xzrWWr34dVq1bd83iQaZhdN74+Dh8+DAA1ui8feughdO3aFd98841WuUajwUMPPaRV1qNHD/z5559Gi6lXr15QKpV48cUXER8fjz/++EOn5Q4dOoSQkBB4eHholU+YMAFFRUU1upnvPJUB3N4PAHrtS1BQELy8vPDxxx/jzJkzSE5OrrMLvzrGQYMGQa1Ww9LSEtbW1pg/fz5u3ryJ7Oxsnbf75JNP6lx39uzZePzxxzFmzBjEx8djxYoV8PX11Xn5O128eBFXr17F+PHjtbpXW7RogSeffBLHjh3TOtWib6y60OUYNvQzpItXX30VycnJSE5OxuHDhxETE4Pt27dLp3UA3b9XSUlJKC4urlHPw8MDf//732t8/2pT3UU/atQobN++HVeuXGnQftX2PmVnZ2PKlCnw8PCAlZUVrK2t0b59ewDQOs1Qbdy4cVqvR40aBSsrK+l41MXLywunT59GYmIiFi5ciEGDBiE5ORkvv/wyAgICUFJSItU9efIkhg0bBmdnZ+n9f+6551BZWYlff/1Va72tW7eGn5+f9NrJyQmurq7o1asX3N3dpfKuXbsCqP2735B9+uqrr/DAAw9g6NChqKiokKZevXpBo9EY9YoZ0p1ZJXsXFxfY2dkhNTVVp/o3b94EgFrPl7m7u0vzqzk7O9eop1KpUFxc3IBoa+fl5YWDBw/C1dUV06ZNg5eXF7y8vPD+++/fc7m6zvtVf6nr25fq8Q367ItCocDEiROxadMmrFmzBp06dcKAAQNqrfvTTz8hLCwMwO2rJX744QckJydj3rx5em+3rvObdcU4YcIElJSUQKPR3PNcfX3q+7xUVVUhJyenwbHWR9dj2NDPkC7atm2Lvn37om/fvggODsbcuXPxxhtv4D//+Q/2798PQPfvlb7fv9oMHDgQO3fuREVFBZ577jm0bdsWPj4+WmNJ6mNnZ6c1yBS4PeYgLCwMX3zxBebMmYNvvvkGP/30E44dOwag9s+rRqPRem1lZQVnZ2ed9sPCwgIDBw7E/PnzsWvXLly9ehXPPPMMUlJS8PHHHwMA0tLSMGDAAFy5cgXvv/8+vvvuOyQnJ0vjGe6OycnJqcZ2lEpljXKlUgkAWj8qDNmna9eu4datW1AqlbC2ttaasrKyaox5oMZhVqPxLS0tERISgr179yIjIwNt27a9Z/3qhJeZmVmj7tWrV+Hi4mK02GxsbAAApaWlWgMHa/vgDxgwAAMGDEBlZSWOHz+OFStWICoqCm5ubnVexufs7IzMzMwa5VevXgUAo+7LnSZMmID58+djzZo1ePvtt+ust3XrVlhbW+Orr76SjgUA7Ny5U+9t1jbQsS6ZmZmYNm0aevXqhXPnzmHWrFlYvny53tsEtD8vd7t69SosLCzQsmXLBsdaH32OYUM+Qw1V3St0+vRpDB48WOfvVX3HU9fP7PDhwzF8+HCUlpbi2LFjiI2NxdixY9GhQwcEBATUu3xt79HZs2dx+vRpxMXFISIiQiq/dOlSnevJyspCmzZtpNcVFRW4efNmrY2E+tjb22Pu3LnYtm0bzp49C+D2+1xYWIgvvvhC6mEAYNJLChuyTy4uLnB2dq7zqidDLsulhjOrlj0AzJ07F0IIvPDCCygrK6sxv7y8HLt37wYA/P3vfwcAbNq0SatOcnIyLly4II3KNYbqEeU///yzVnl1LLWxtLSEv7+/9Mv9xIkTddYNCQnBoUOHpORe7ZNPPoGdnZ3JLtVr06YNZs+ejaFDh2r9UbybQqGAlZUVLC0tpbLi4mJs3LixRl1j9ZZUVlZizJgxUCgU2Lt3L2JjY7FixQp88cUXDVpf586d0aZNG2zZskVr9HthYSE+//xzaYS+qehzDKvV9RlqSE9OXaqTjaurKwDdv1cBAQGwtbWtUS8jI0M6LVVNl3hVKhWCgoKwaNEiALe7vHVd9m7VPwDuvqJn7dq1dS6zefNmrdfbt29HRUVFvTecqe3HDvC/UwXVvXO1xSSEwLp16+65fkM0ZJ+GDBmCmzdvorKyUuoFunPq3LmzyeKluplVyx64/Qdk9erVmDp1Kvz8/PDSSy+he/fuKC8vx8mTJ/Hhhx/Cx8cHQ4cORefOnfHiiy9ixYoVsLCwQHh4OC5fvow33ngDHh4eeO2114wW12OPPQYnJydERkbizTffhJWVFeLi4pCenq5Vb82aNTh06BAef/xxtGvXDiUlJVI33qBBg+pc/4IFC/DVV1/hkUcewfz58+Hk5ITNmzfj66+/xuLFi6FWq422L3fT5S5fjz/+OJYsWYKxY8fixRdfxM2bN/Huu+/Wenmkr68vtm7dim3btqFjx46wsbFp0Hn2BQsW4LvvvsOBAweg0Wgwc+ZMJCYmIjIyEr1794anp6de67OwsMDixYsxbtw4DBkyBJMnT0ZpaSn+/e9/49atW0a521l1N/HdgoKCdD6GunyGHBwc0L59e3z55ZcICQmBk5MTXFxcpB+ldUlLS5NiLCwsRFJSEmJjY9G+fXuMHDkSAHT+Xj3wwAN444038M9//hPPPfccxowZg5s3b2LhwoWwsbHBggULpO1Wv/+LFi1CeHg4LC0t0aNHD7z11lvIyMhASEgI2rZti1u3buH999+HtbW1dH8ELy8v2NraYvPmzejatStatGgBd3d3rfPWd+vSpQu8vLzwj3/8A0IIODk5Yffu3UhISKhzmS+++AJWVlYIDQ3FuXPn8MYbb6Bnz54YNWrUPY9p9+7dERISgvDwcHh5eaGkpAQ//vgj3nvvPbi5uUk3AQsNDYVSqcSYMWMwZ84clJSUYPXq1TVOHRlTQ/Zp9OjR2Lx5Mx577DG8+uqreOihh2BtbY2MjAwcPnwYw4cPxxNPPGGymKkOTTs+0HROnTolIiIiRLt27YRSqZQuGZk/f77Izs6W6lVWVopFixaJTp06CWtra+Hi4iKeffZZ6dKcakFBQaJ79+41thMRESHat2+vVYZaRuMLIcRPP/0kAgMDhb29vWjTpo1YsGCB+Oijj7RG4yclJYknnnhCtG/fXqhUKuHs7CyCgoLErl27amzj7pHUZ86cEUOHDhVqtVoolUrRs2fPGiOQ6xr1XT3aurYRy3e6czT+vdQ2ov7jjz8WnTt3FiqVSnTs2FHExsaK9evXa+2/EEJcvnxZhIWFCQcHB+nyn3vFfue86tH4Bw4cEBYWFjWO0c2bN0W7du1Ev379RGlpaZ3x32tbO3fuFP7+/sLGxkbY29uLkJAQ8cMPP2jVqR7NfOdlZvdSvb26pur90uUY6voZOnjwoOjdu7dQqVQCgIiIiKgzvtpG49vY2IhOnTqJqKgokZmZqVVf1++VEEJ89NFHokePHkKpVAq1Wi2GDx8uXepYrbS0VEyaNEm0atVKKBQKaX+/+uorER4eLtq0aSOUSqVwdXUVjz32mNZlkELcHiHepUsXYW1trfXdiYiIEPb29rXu8/nz50VoaKhwcHAQLVu2FE8//bRIS0ur8d2rfq9TUlLE0KFDRYsWLYSDg4MYM2aMuHbtWp3HtNratWvFyJEjRceOHYWdnZ1QKpXCy8tLTJkypcbx2r17t+jZs6ewsbERbdq0EbNnzxZ79+6tcSVKXX+v2rdvLx5//PEa5Xf/zdJnn+4ejS+EEOXl5eLdd9+VYm3RooXo0qWLmDx5svjtt9/qPSZkfAoh7robBxER6Sw6OhoLFy7E9evXTTY2prGZ4z7JndmdsyciIiJtTPZERERmjt34REREZo4teyIiIjPHZE9ERGTmmOyJiIjMXLO+qU5VVRWuXr0KBwcHo96WlIiIGocQAvn5+XB3d9d6wJSxlZSU1HpXVX0plUqt21U3F8062V+9erXGU96IiKj5SU9Pr/d5Jg1VUlICWwdnoKKo/sr10Gg0SE1NbXYJv1kn++oHKii7RUBhqWziaIhMI+3Iu00dApHJ5Ofl4UFPD5M+IKesrAyoKIKqWwRgSK6oLEPW+XiUlZUx2Tem6q57haWSyZ7M1t2PXyUyR41yKtbKxqBcIRTNd5hbs072REREOlMAMORHRTMeGsZkT0RE8qCwuD0Zsnwz1XwjJyIiIp2wZU9ERPKgUBjYjd98+/GZ7ImISB7YjU9ERETmii17IiKSB3bjExERmTsDu/GbcWd4842ciIiIdMKWPRERyQO78YmIiMwcR+MTERGRuWLLnoiI5IHd+ERERGZOxt34TPZERCQPMm7ZN9+fKURERKQTtuyJiEge2I1PRERk5hQKA5M9u/GJiIjoPsWWPRERyYOF4vZkyPLNFJM9ERHJg4zP2TffyImIiEgnbNkTEZE8yPg6eyZ7IiKSB3bjExERkbliy56IiOSB3fhERERmTsbd+Ez2REQkDzJu2TffnylERET3uStXruDZZ5+Fs7Mz7Ozs0KtXL6SkpEjzhRCIjo6Gu7s7bG1tERwcjHPnzmmto7S0FNOnT4eLiwvs7e0xbNgwZGRk6BUHkz0REclDdTe+IZMecnJy8PDDD8Pa2hp79+7F+fPn8d577+GBBx6Q6ixevBhLlizBypUrkZycDI1Gg9DQUOTn50t1oqKisGPHDmzduhXff/89CgoKMGTIEFRWVuocC7vxiYhIHhq5G3/RokXw8PDAhg0bpLIOHTpI/xdCYNmyZZg3bx5GjhwJAIiPj4ebmxu2bNmCyZMnIzc3F+vXr8fGjRsxaNAgAMCmTZvg4eGBgwcPYvDgwTrFwpY9ERGRHvLy8rSm0tLSWuvt2rULffv2xdNPPw1XV1f07t0b69atk+anpqYiKysLYWFhUplKpUJQUBCOHj0KAEhJSUF5eblWHXd3d/j4+Eh1dMFkT0REMmFoF/7tlOnh4QG1Wi1NsbGxtW7tjz/+wOrVq+Ht7Y39+/djypQpeOWVV/DJJ58AALKysgAAbm5uWsu5ublJ87KysqBUKtGyZcs66+iC3fhERCQPRurGT09Ph6Ojo1SsUqlqrV5VVYW+ffsiJiYGANC7d2+cO3cOq1evxnPPPXfHarVjEkLUKLubLnXuxJY9ERGRHhwdHbWmupJ969at0a1bN62yrl27Ii0tDQCg0WgAoEYLPTs7W2rtazQalJWVIScnp846umCyJyIieVAoDByNr1+vwMMPP4yLFy9qlf36669o3749AMDT0xMajQYJCQnS/LKyMiQmJiIwMBAA4OfnB2tra606mZmZOHv2rFRHF+zGJyIieWjkO+i99tprCAwMRExMDEaNGoWffvoJH374IT788MPbq1MoEBUVhZiYGHh7e8Pb2xsxMTGws7PD2LFjAQBqtRqRkZGYOXMmnJ2d4eTkhFmzZsHX11cana8LJnsiIiIT6NevH3bs2IG5c+fizTffhKenJ5YtW4Zx48ZJdebMmYPi4mJMnToVOTk58Pf3x4EDB+Dg4CDVWbp0KaysrDBq1CgUFxcjJCQEcXFxsLS01DkWhRBCGHXvGlFeXh7UajVUvi9AYals6nCITCIneWVTh0BkMnl5eXBzViM3N1dr0Juxt6FWq6F69D0orG0bvB5RXozSfTNNGqupsGVPRETywAfhEBERmTk+CIeIiIjMFVv2REQkD+zGJyIiMnPsxiciIiJzxZY9ERHJgkKh0Ot+8rWswHjBNDImeyIikgU5J3t24xMREZk5tuyJiEgeFP+dDFm+mWKyJyIiWWA3PhEREZkttuyJiEgW5NyyZ7InIiJZYLInIiIyc3JO9jxnT0REZObYsiciInngpXdERETmjd34REREZLbYsiciIlm4/YRbQ1r2xoulsTHZExGRLChgYDd+M8727MYnIiIyc2zZExGRLMh5gB6TPRERyYOML71jNz4REZGZY8ueiIjkwcBufMFufCIiovuboefsDRvJ37SY7ImISBbknOx5zp6IiMjMsWVPRETyIOPR+Ez2REQkC+zGJyIiIrPFlj0REcmCnFv2TPZERCQLck727MYnIiIyc2zZExGRLMi5Zc9kT0RE8iDjS+/YjU9ERGTm2LInIiJZYDc+ERGRmWOyJyIiMnNyTvY8Z09ERGTm2LInIiJ5kPFofCZ7IiKSBXbjExERkdlisie0bqXG2jefw+8Ji3DluyX4dvM/0LOLh1adTh3csOW9yfjz8L+RduRdHPh4Jtq6tQQAPOBoh0WznsZPn72BK98twZndb+KdmU/B0d6mKXaHSG89hs1Hy34v15hmLdrW1KGREVW37A2Z9BEdHV1jeY1GI80XQiA6Ohru7u6wtbVFcHAwzp07p7WO0tJSTJ8+HS4uLrC3t8ewYcOQkZGh9743eTf+qlWr8O9//xuZmZno3r07li1bhgEDBjR1WLKhdrDFvo9m4LuU3/D0q6twPScfnm1dkJtfLNXp0MYFe9fNwKZdRxG79mvkFRajcwcNSsrKAdz+saBppcb893fglz+y4NHaCUv+MRqaVmpM+Mf6pto1Ip0dip+Nykohvb7w+1U88fJKjBjUuwmjImNTwMBu/AactO/evTsOHjwovba0tJT+v3jxYixZsgRxcXHo1KkT3nrrLYSGhuLixYtwcHAAAERFRWH37t3YunUrnJ2dMXPmTAwZMgQpKSla66pPkyb7bdu2ISoqCqtWrcLDDz+MtWvXIjw8HOfPn0e7du2aMjTZiIoIxZVrOXj5zU1SWXrmX1p13pg6FAlHz2HBii+lsj+v3JT+f+H3TES8/pH0+vKVG3hr9W6sffM5WFpaoLKyyoR7QGQ4l5YOWq+XxR+AZ1sXPNzHu4kiInNhZWWl1ZqvJoTAsmXLMG/ePIwcORIAEB8fDzc3N2zZsgWTJ09Gbm4u1q9fj40bN2LQoEEAgE2bNsHDwwMHDx7E4MGDdY6jSbvxlyxZgsjISEyaNAldu3bFsmXL4OHhgdWrVzdlWLLy6ABfnLyQhg2xz+PX/bFI3PQ6nhsRKM1XKBQIfbg7LqVl47Pl0/Dr/lgkbJiFx4J63HO9ji1skF9YwkRPzU5ZeQW2703GuGEBzXpAFtXU2N34APDbb7/B3d0dnp6eGD16NP744w8AQGpqKrKyshAWFibVValUCAoKwtGjRwEAKSkpKC8v16rj7u4OHx8fqY6umizZl5WVISUlRWsnACAsLEzvnaCG69DGBc8/OQB/pF/Hk9M/wIbPv8c7M5/CM489BABo5dQCDvY2iIoIxTdJ5zFy+kp8feQ0Ni6ehMA+D9a6zpZqe8yODEfcFz805q4QGcXXR35GbkExxg7xb+pQyNgURpgA5OXlaU2lpaW1bs7f3x+ffPIJ9u/fj3Xr1iErKwuBgYG4efMmsrKyAABubm5ay7i5uUnzsrKyoFQq0bJlyzrr6KrJuvFv3LiBysrKe+7o3UpLS7UOal5enkljlAMLCwVOXUjDv1btBgCc+TUDXTq2xvNPDsC2PT/BQnH79+DexDNY/elhAMDZX6/goR4d8fzIv+HoiUta63Owt8G2pVNwMTUTi9btadydITKCTbuOYlBAN7Ru9UBTh0L3KQ8P7QHMCxYsQHR0dI164eHh0v99fX0REBAALy8vxMfHo3///gBqXs4nhKi3B0GXOndr8tH4+uxobGws1Gq1NN19wEl/127k4Zc/tH9c/Xo5C201t39J3rxVgPKKSvySmqldJ/V/daq1sFPhs+VTUVhcimdnr0MFu/CpmUnL/AtHfrqodSqLzIexuvHT09ORm5srTXPnztVp+/b29vD19cVvv/0mnce/u3GbnZ0tNYI1Gg3KysqQk5NTZx1dNVmyd3FxgaWl5T139G5z587VOsDp6emNEapZ+/H0H/Bu76pV5tXOFRlZtwfplVdU4uT5P+Hd3q1GnfTM/30AHext8PmKl1FWXomxM9aitKzC9METGdmW3Ulo1dIBYQ93b+pQyASMlewdHR21JpVKpdP2S0tLceHCBbRu3Rqenp7QaDRISEiQ5peVlSExMRGBgbd/bPr5+cHa2lqrTmZmJs6ePSvV0VWTJXulUgk/Pz+tnQCAhISEOndCpVLVOMhkmFWfHkJfX0/MmBAGz7YueGpwX0Q88TA++s+3Up3lGw/iidA+eG5EIDzbuuCFpwfi0QE+WP/Z7Tot7FT4fMU02NsqMf1fm+HQwgauzg5wdXaAhQUHOFHzUFVVhc27j2H04/6wstL9kiZqPhQKwyd9zJo1C4mJiUhNTcWPP/6Ip556Cnl5eYiIiIBCoUBUVBRiYmKwY8cOnD17FhMmTICdnR3Gjh0LAFCr1YiMjMTMmTPxzTff4OTJk3j22Wfh6+srjc7XVZNeejdjxgyMHz8effv2RUBAAD788EOkpaVhypQpTRmWrJw8n4bxs9dh/rRhmD0pHH9evYl/Lvkc/9l3XKrz9ZGfMSN2K16bEIZ3Zj6FS2nZeO71j3Ds9O1RpT27tEM/X8/b69sZrbX+HsPm17iUj+h+dOSni8jIysGzw/o3dShkJjIyMjBmzBjcuHEDrVq1Qv/+/XHs2DG0b98eADBnzhwUFxdj6tSpyMnJgb+/Pw4cOCBdYw8AS5cuhZWVFUaNGoXi4mKEhIQgLi5Or2vsAUAhhBD1VzOdVatWYfHixcjMzISPjw+WLl2KgQMH6rRsXl4e1Go1VL4vQGGpNHGkRE0jJ3llU4dAZDJ5eXlwc1YjNzfXZL211bmi4/TPYKGyb/B6qkoL8ceKp0waq6k0+R30pk6diqlTpzZ1GEREZO4a0BV/9/LNVZOPxiciIiLTavKWPRERUWOQ8yNumeyJiEgWGjKi/u7lmyt24xMREZk5tuyJiEgWLCwUBt37QzTj+4Yw2RMRkSywG5+IiIjMFlv2REQkCxyNT0REZObk3I3PZE9ERLIg55Y9z9kTERGZObbsiYhIFuTcsmeyJyIiWZDzOXt24xMREZk5tuyJiEgWFDCwG78ZP+OWyZ6IiGSB3fhERERkttiyJyIiWeBofCIiIjPHbnwiIiIyW2zZExGRLLAbn4iIyMzJuRufyZ6IiGRBzi17nrMnIiIyc2zZExGRPBjYjd+Mb6DHZE9ERPLAbnwiIiIyW2zZExGRLHA0PhERkZljNz4RERGZLbbsiYhIFtiNT0REZObYjU9ERERmiy17IiKSBTm37JnsiYhIFnjOnoiIyMzJuWXPc/ZERERmji17IiKSBXbjExERmTl24xMREZHZYsueiIhkQQEDu/GNFknjY7InIiJZsFAoYGFAtjdk2abGbnwiIiIzx5Y9ERHJAkfjExERmTmOxiciIjJzFgrDp4aKjY2FQqFAVFSUVCaEQHR0NNzd3WFra4vg4GCcO3dOa7nS0lJMnz4dLi4usLe3x7Bhw5CRkaH/vjc8dCIiIqpPcnIyPvzwQ/To0UOrfPHixViyZAlWrlyJ5ORkaDQahIaGIj8/X6oTFRWFHTt2YOvWrfj+++9RUFCAIUOGoLKyUq8YmOyJiEgeFP/rym/I1JBr7woKCjBu3DisW7cOLVu2lMqFEFi2bBnmzZuHkSNHwsfHB/Hx8SgqKsKWLVsAALm5uVi/fj3ee+89DBo0CL1798amTZtw5swZHDx4UK84mOyJiEgWqgfoGTIBQF5entZUWlpa5zanTZuGxx9/HIMGDdIqT01NRVZWFsLCwqQylUqFoKAgHD16FACQkpKC8vJyrTru7u7w8fGR6uiKyZ6IiEgPHh4eUKvV0hQbG1trva1bt+LEiRO1zs/KygIAuLm5aZW7ublJ87KysqBUKrV6BO6uoyuOxiciIllQ/PefIcsDQHp6OhwdHaVylUpVo256ejpeffVVHDhwADY2NnWv864R/kKIekf961LnbmzZExGRLBhrNL6jo6PWVFuyT0lJQXZ2Nvz8/GBlZQUrKyskJiZi+fLlsLKyklr0d7fQs7OzpXkajQZlZWXIycmps47O+65XbSIiIqpXSEgIzpw5g1OnTklT3759MW7cOJw6dQodO3aERqNBQkKCtExZWRkSExMRGBgIAPDz84O1tbVWnczMTJw9e1aqoyt24xMRkSw05k11HBwc4OPjo1Vmb28PZ2dnqTwqKgoxMTHw9vaGt7c3YmJiYGdnh7FjxwIA1Go1IiMjMXPmTDg7O8PJyQmzZs2Cr69vjQF/9dEp2S9fvlznFb7yyit6BUBERNQY7rfb5c6ZMwfFxcWYOnUqcnJy4O/vjwMHDsDBwUGqs3TpUlhZWWHUqFEoLi5GSEgI4uLiYGlpqV/sQghRXyVPT0/dVqZQ4I8//tArAEPk5eVBrVZD5fsCFJbKRtsuUWPKSV7Z1CEQmUxeXh7cnNXIzc3VGvRm7G2o1Wo8tvwwrG1bNHg95cUF2PPKIyaN1VR0atmnpqaaOg4iIiKT4iNuG6CsrAwXL15ERUWFMeMhIiIyCWPdVKc50jvZFxUVITIyEnZ2dujevTvS0tIA3D5X/8477xg9QCIiImMw5Fa5hg7ua2p6J/u5c+fi9OnTOHLkiNaNAgYNGoRt27YZNTgiIiIynN6X3u3cuRPbtm1D//79tX7ldOvWDb///rtRgyMiIjKW+200fmPSO9lfv34drq6uNcoLCwubdRcHERGZNw7Q00O/fv3w9ddfS6+rE/y6desQEBBgvMiIiIjIKPRu2cfGxuLRRx/F+fPnUVFRgffffx/nzp1DUlISEhMTTREjERGRwRRo0CPptZZvrvRu2QcGBuKHH35AUVERvLy8cODAAbi5uSEpKQl+fn6miJGIiMhgch6N36B74/v6+iI+Pt7YsRAREZEJNCjZV1ZWYseOHbhw4QIUCgW6du2K4cOHw8qKz9UhIqL7052PqW3o8s2V3tn57NmzGD58OLKystC5c2cAwK+//opWrVph165d8PX1NXqQREREhmrMp97db/Q+Zz9p0iR0794dGRkZOHHiBE6cOIH09HT06NEDL774oiliJCIiIgPo3bI/ffo0jh8/jpYtW0plLVu2xNtvv41+/foZNTgiIiJjasaNc4Po3bLv3Lkzrl27VqM8OzsbDz74oFGCIiIiMjaOxq9HXl6e9P+YmBi88soriI6ORv/+/QEAx44dw5tvvolFixaZJkoiIiIDcYBePR544AGtXzRCCIwaNUoqE0IAAIYOHYrKykoThElEREQNpVOyP3z4sKnjICIiMik5j8bXKdkHBQWZOg4iIiKTkvPtcht8F5yioiKkpaWhrKxMq7xHjx4GB0VERETG06BH3E6cOBF79+6tdT7P2RMR0f2Ij7jVQ1RUFHJycnDs2DHY2tpi3759iI+Ph7e3N3bt2mWKGImIiAymUBg+NVd6t+wPHTqEL7/8Ev369YOFhQXat2+P0NBQODo6IjY2Fo8//rgp4iQiIqIG0rtlX1hYCFdXVwCAk5MTrl+/DuD2k/BOnDhh3OiIiIiMRM431WnQHfQuXrwIAOjVqxfWrl2LK1euYM2aNWjdurXRAyQiIjIGduPrISoqCpmZmQCABQsWYPDgwdi8eTOUSiXi4uKMHR8REREZSO9kP27cOOn/vXv3xuXLl/HLL7+gXbt2cHFxMWpwRERExiLn0fgNvs6+mp2dHfr06WOMWIiIiEzG0K74ZpzrdUv2M2bM0HmFS5YsaXAwREREpsLb5dbj5MmTOq2sOR8IIiIic2UWD8JJPfRvODo6NnUYRCYxc9f5pg6ByGTKigoabVsWaMAlaHct31wZfM6eiIioOZBzN35z/qFCREREOmDLnoiIZEGhACw4Gp+IiMh8WRiY7A1ZtqmxG5+IiMjMNSjZb9y4EQ8//DDc3d3x559/AgCWLVuGL7/80qjBERERGQsfhKOH1atXY8aMGXjsscdw69YtVFZWAgAeeOABLFu2zNjxERERGUV1N74hU3Old7JfsWIF1q1bh3nz5sHS0lIq79u3L86cOWPU4IiIiMhweg/QS01NRe/evWuUq1QqFBYWGiUoIiIiY5PzvfH1btl7enri1KlTNcr37t2Lbt26GSMmIiIio6t+6p0hU3Old8t+9uzZmDZtGkpKSiCEwE8//YRPP/0UsbGx+Oijj0wRIxERkcF4u1w9TJw4ERUVFZgzZw6KioowduxYtGnTBu+//z5Gjx5tihiJiIjIAA26qc4LL7yAF154ATdu3EBVVRVcXV2NHRcREZFRyfmcvUF30HNxcTFWHERERCZlAcPOu1ug+Wb7Bg3Q69ixY50TERER3b4vTY8ePeDo6AhHR0cEBARg79690nwhBKKjo+Hu7g5bW1sEBwfj3LlzWusoLS3F9OnT4eLiAnt7ewwbNgwZGRl6x6J3yz4qKkrrdXl5OU6ePIl9+/Zh9uzZegdARETUGBq7G79t27Z455138OCDDwIA4uPjMXz4cJw8eRLdu3fH4sWLsWTJEsTFxaFTp0546623EBoaiosXL8LBwQHA7Zy7e/dubN26Fc7Ozpg5cyaGDBmClJQUrXvd1EfvZP/qq6/WWv7BBx/g+PHj+q6OiIioUTT2g3CGDh2q9frtt9/G6tWrcezYMXTr1g3Lli3DvHnzMHLkSAC3fwy4ublhy5YtmDx5MnJzc7F+/Xps3LgRgwYNAgBs2rQJHh4eOHjwIAYPHqx77PqFXrfw8HB8/vnnxlodERHRfSkvL09rKi0trXeZyspKbN26FYWFhQgICEBqaiqysrIQFhYm1VGpVAgKCsLRo0cBACkpKSgvL9eq4+7uDh8fH6mOroyW7D/77DM4OTkZa3VERERGdft59g2/oU51N76HhwfUarU0xcbG1rnNM2fOoEWLFlCpVJgyZQp27NiBbt26ISsrCwDg5uamVd/NzU2al5WVBaVSiZYtW9ZZR1d6d+P37t1b68k/QghkZWXh+vXrWLVqlb6rIyIiahTGOmefnp4OR0dHqVylUtW5TOfOnXHq1CncunULn3/+OSIiIpCYmHjHOrUDEkLU+3Q9XercTe9kP2LECK3XFhYWaNWqFYKDg9GlSxd9V0dERNSsVI+u14VSqZQG6PXt2xfJycl4//338frrrwO43Xpv3bq1VD87O1tq7Ws0GpSVlSEnJ0erdZ+dnY3AwEC9YtYr2VdUVKBDhw4YPHgwNBqNXhsiIiJqSo09QK82QgiUlpbC09MTGo0GCQkJ0sPlysrKkJiYiEWLFgEA/Pz8YG1tjYSEBIwaNQoAkJmZibNnz2Lx4sV6bVevZG9lZYWXXnoJFy5c0GsjRERETU3x33+GLK+Pf/7znwgPD4eHhwfy8/OxdetWHDlyBPv27YNCoUBUVBRiYmLg7e0Nb29vxMTEwM7ODmPHjgUAqNVqREZGYubMmXB2doaTkxNmzZoFX19faXS+rvTuxvf398fJkyfRvn17fRclIiJqMo3dsr927RrGjx+PzMxMqNVq9OjRA/v27UNoaCgAYM6cOSguLsbUqVORk5MDf39/HDhwQLrGHgCWLl0KKysrjBo1CsXFxQgJCUFcXJxe19gDDUj2U6dOxcyZM5GRkQE/Pz/Y29trze/Ro4e+qyQiIjI769evv+d8hUKB6OhoREdH11nHxsYGK1aswIoVKwyKRedk//zzz2PZsmV45plnAACvvPKKNE+hUEijAysrKw0KiIiIyBTuh3P2TUXnZB8fH4933nkHqamppoyHiIjIJBQKhd6XrN29fHOlc7IXQgAAz9UTERE1M3qds2/Ov2qIiEje2I2vo06dOtWb8P/66y+DAiIiIjKFxn7q3f1Er2S/cOFCqNVqU8VCREREJqBXsh89ejRcXV1NFQsREZHJVD/QxpDlmyudkz3P1xMRUXMm53P2Oj/itno0PhERETUvOrfsq6qqTBkHERGRaRk4QM+A2+o3Ob1vl0tERNQcWUABCwMytiHLNjUmeyIikgU5X3qn8zl7IiIiap7YsiciIlmQ82h8JnsiIpIFOV9nz258IiIiM8eWPRERyYKcB+gx2RMRkSxYwMBu/GZ86R278YmIiMwcW/ZERCQL7MYnIiIycxYwrDu7OXeFN+fYiYiISAds2RMRkSwoFAqDHtfenB/1zmRPRESyoIBhD65rvqmeyZ6IiGSCd9AjIiIis8WWPRERyUbzbZsbhsmeiIhkQc7X2bMbn4iIyMyxZU9ERLLAS++IiIjMHO+gR0RERGaLLXsiIpIFduMTERGZOTnfQY/d+ERERGaOLXsiIpIFduMTERGZOTmPxmeyJyIiWZBzy745/1AhIiIiHbBlT0REsiDn0fhM9kREJAt8EA4RERGZLbbsiYhIFiyggIUBnfGGLNvUmOyJiEgW2I1PREREZosteyIikgXFf/8ZsnxzxZY9ERHJQnU3viGTPmJjY9GvXz84ODjA1dUVI0aMwMWLF7XqCCEQHR0Nd3d32NraIjg4GOfOndOqU1paiunTp8PFxQX29vYYNmwYMjIy9IqFyZ6IiMgEEhMTMW3aNBw7dgwJCQmoqKhAWFgYCgsLpTqLFy/GkiVLsHLlSiQnJ0Oj0SA0NBT5+flSnaioKOzYsQNbt27F999/j4KCAgwZMgSVlZU6x8JufCIikgWFgaPx9e3G37dvn9brDRs2wNXVFSkpKRg4cCCEEFi2bBnmzZuHkSNHAgDi4+Ph5uaGLVu2YPLkycjNzcX69euxceNGDBo0CACwadMmeHh44ODBgxg8eLBOsbBlT0REsmCsbvy8vDytqbS0VKft5+bmAgCcnJwAAKmpqcjKykJYWJhUR6VSISgoCEePHgUApKSkoLy8XKuOu7s7fHx8pDq6YLInIiJZMFay9/DwgFqtlqbY2Nh6ty2EwIwZM/C3v/0NPj4+AICsrCwAgJubm1ZdNzc3aV5WVhaUSiVatmxZZx1dsBufiIhID+np6XB0dJReq1Sqepd5+eWX8fPPP+P777+vMe/up+kJIep9wp4ude7Elj0REcmCwgj/AMDR0VFrqi/ZT58+Hbt27cLhw4fRtm1bqVyj0QBAjRZ6dna21NrXaDQoKytDTk5OnXV0wWRPRESyYKEwfNKHEAIvv/wyvvjiCxw6dAienp5a8z09PaHRaJCQkCCVlZWVITExEYGBgQAAPz8/WFtba9XJzMzE2bNnpTq6YDc+ERGRCUybNg1btmzBl19+CQcHB6kFr1arYWtrC4VCgaioKMTExMDb2xve3t6IiYmBnZ0dxo4dK9WNjIzEzJkz4ezsDCcnJ8yaNQu+vr7S6HxdMNkTEZEsNPYd9FavXg0ACA4O1irfsGEDJkyYAACYM2cOiouLMXXqVOTk5MDf3x8HDhyAg4ODVH/p0qWwsrLCqFGjUFxcjJCQEMTFxcHS0lL32IUQQq/o7yN5eXlQq9W4ev2W1mAJInMy56sLTR0CkcmUFRXgo/H+yM3NNdnf8epcsft4KuxbONS/QB0KC/IxtK+nSWM1FZ6zJyIiMnPsxiciIllQwLCH2TTfx+Aw2RMRkUw0ZET93cs3V+zGJyIiMnNs2VMNR09ewspN3+D0L2m4diMPnyyehMeCekrzXfyn17rcgpeHY/p43S8FIWoMAR1aIrBDSzjZWgMAsvJLkfDrDfySXQAACOvcCr3dHaG2tUZllUBGbjH2XriOtFvF0jpeCmyPB13stdZ78kouNqVcabwdIYPJ+Xn2TZrsv/32W/z73/9GSkoKMjMzsWPHDowYMaIpQyIARcWl8PFug7FD/DHhH+trzD+3522t198cPY9X396CoX/v1UgREukut7gcX5/Pxo3CMgBAPw81Jj7kgSWJf+BafimuF5TiizNZuFlUBmtLCwR1dMKLAe0Q+80lFJb97xGiSZdzsP9itvS6vLLZXsgkWw15Jv3dyzdXTZrsCwsL0bNnT0ycOBFPPvlkU4ZCdxgU2B2DArvXOd/NWfuSk73f/oy/+XmjQxsXU4dGpLfz1wq0Xu/95ToCOzihfUtbXMsvxckreVrzvzx3Df7tW8Ld0Qa/3fjfc8fLK6uQX6r788Pp/qOAYYPsmnGub9pkHx4ejvDw8KYMgQyUfTMPCT+cw8oF45s6FKJ6KQD0dHeE0lKBP/8qqjHfUgEEtG+J4vJKXM0r0ZrXp60afm3VyC+twC/ZhThw8TpKK6saKXIiwzSrc/alpaVazw3Oy8u7R21qDFv3/IQW9jYYEtyz/spETUTjoMIrAzxhZaFAWWUVNiRn4FpBmTS/q1sLjPdrC2tLBfJLKrA26U+tLvwTGbn4q6gc+aUV0Dio8FhXV7irVViblNYUu0MNZAEFLAzoi7doxm37ZjUaPzY2VusZwh4eHk0dkuxt2Z2Epwb3hY3KuqlDIarT9YJSvJf4O5Z/l4qjl3Mwprc73Foopfm/3yjEe4m/Y8X3l/FLdgHG+7VFC+X/bkX6Y9ot/HajEFn5pTh1NQ+fHM9Ap1Yt0EZt0xS7Qw2kMMLUXDWrZD937lzk5uZKU3p6elOHJGtJJy/h0p/ZeHZYQFOHQnRPlQK4WViOjNwS7LmQjat5JRjQ0VmaX1YpcLOwHGk5xdh+OhNVQuChdg/Uub6M3BJUVAm0slfWWYfoftKsuvFVKlW9zw2mxrN5dxJ6dvGAT6e29Vcmuo8ooIDVPe6QolAoYGVZd1tI46CClYUCeSUVpgiPTEXGI/SaVbKnxlFQVIrUjOvS6z+v3sSZXzPQ0tEObTVOAID8gmLs+uYUFr76RFOFSaST8C6u+CW7ALeKy6GyskDvNo7wcrHDumNpUFoqEOLdCueu5SO/pAJ2Sks83KEl1DZWOH319pggZztr9GmrxoVrBSgsq4SbgwrDursh41YxUmsZ5Ef3L15n30QKCgpw6dIl6XVqaipOnToFJycntGvXrgkjk7dTF9IwYupy6fUby3YAAEY//hBWzr896v6LhBMQQuDJML8miZFIVw4qS4zt4w5HlRWKK6qQmVeCdcfS8Ov1QlhZKODqoEQ/j7awV1qisLwS6Tkl+OCHy7iWf3swcGWVgLeLPQZ0dILK0gK3Sipw/lo+Dly8Dl5pT81Fkz7i9siRI3jkkUdqlEdERCAuLq7e5fmIW5IDPuKWzFljPuL2m1NpaOHQ8G0U5OchpFe7ZvmI2yZt2QcHB6MJf2sQEZGMyPiUffMajU9ERET64wA9IiKSBxk37ZnsiYhIFjgan4iIyMzJ+al3PGdPRERk5tiyJyIiWZDxKXsmeyIikgkZZ3t24xMREZk5tuyJiEgWOBqfiIjIzHE0PhEREZkttuyJiEgWZDw+j8meiIhkQsbZnt34REREZo4teyIikgWOxiciIjJzch6Nz2RPRESyIONT9jxnT0REZO7YsiciInmQcdOeyZ6IiGRBzgP02I1PRERk5tiyJyIiWeBofCIiIjMn41P27MYnIiIyd2zZExGRPMi4ac9kT0REssDR+ERERGS22LInIiJZ4Gh8IiIiMyfjU/bsxiciIplQGGHSw7fffouhQ4fC3d0dCoUCO3fu1JovhEB0dDTc3d1ha2uL4OBgnDt3TqtOaWkppk+fDhcXF9jb22PYsGHIyMjQc8eZ7ImIiEyisLAQPXv2xMqVK2udv3jxYixZsgQrV65EcnIyNBoNQkNDkZ+fL9WJiorCjh07sHXrVnz//fcoKCjAkCFDUFlZqVcs7MYnIiJZaOzR+OHh4QgPD691nhACy5Ytw7x58zBy5EgAQHx8PNzc3LBlyxZMnjwZubm5WL9+PTZu3IhBgwYBADZt2gQPDw8cPHgQgwcP1jkWtuyJiEgeFP8bpNeQqTrX5+XlaU2lpaV6h5KamoqsrCyEhYVJZSqVCkFBQTh69CgAICUlBeXl5Vp13N3d4ePjI9XRFZM9ERGRHjw8PKBWq6UpNjZW73VkZWUBANzc3LTK3dzcpHlZWVlQKpVo2bJlnXV0xW58IiKSBWONxk9PT4ejo6NUrlKpGr7Ou67nE0LUKLubLnXuxpY9ERHJg5FG4zs6OmpNDUn2Go0GAGq00LOzs6XWvkajQVlZGXJycuqsoysmeyIiokbm6ekJjUaDhIQEqaysrAyJiYkIDAwEAPj5+cHa2lqrTmZmJs6ePSvV0RW78YmISBYaezR+QUEBLl26JL1OTU3FqVOn4OTkhHbt2iEqKgoxMTHw9vaGt7c3YmJiYGdnh7FjxwIA1Go1IiMjMXPmTDg7O8PJyQmzZs2Cr6+vNDpfV0z2REQkC419u9zjx4/jkUcekV7PmDEDABAREYG4uDjMmTMHxcXFmDp1KnJycuDv748DBw7AwcFBWmbp0qWwsrLCqFGjUFxcjJCQEMTFxcHS0lK/2IUQQr/w7x95eXlQq9W4ev2W1mAJInMy56sLTR0CkcmUFRXgo/H+yM3NNdnf8epccfqPa3BwaPg28vPz0LOjm0ljNRW27ImISBbkfG98JnsiIpIHGWd7JnsiIpKFxh6gdz/hpXdERERmji17IiKSBQUMHI1vtEgaH5M9ERHJgoxP2bMbn4iIyNyxZU9ERLLQ2DfVuZ8w2RMRkUzItyOf3fhERERmji17IiKSBXbjExERmTn5duKzG5+IiMjssWVPRESywG58IiIiMyfne+Mz2RMRkTzI+KQ9z9kTERGZObbsiYhIFmTcsGeyJyIieZDzAD124xMREZk5tuyJiEgWOBqfiIjI3Mn4pD278YmIiMwcW/ZERCQLMm7YM9kTEZE8cDQ+ERERmS227ImISCYMG43fnDvymeyJiEgW2I1PREREZovJnoiIyMyxG5+IiGRBzt34TPZERCQLcr5dLrvxiYiIzBxb9kREJAvsxiciIjJzcr5dLrvxiYiIzBxb9kREJA8ybtoz2RMRkSxwND4RERGZLbbsiYhIFjgan4iIyMzJ+JQ9kz0REcmEjLM9z9kTERGZObbsiYhIFuQ8Gp/JnoiIZIED9JopIQQAID8/r4kjITKdsqKCpg6ByGTKim9/vqv/nptSXp5hucLQ5ZtSs072+fn5AIDOHds1cSRERGSI/Px8qNVqk6xbqVRCo9HA29PD4HVpNBoolUojRNW4FKIxfk6ZSFVVFa5evQoHBwcomnP/SjOSl5cHDw8PpKenw9HRsanDITIqfr4bnxAC+fn5cHd3h4WF6caMl5SUoKyszOD1KJVK2NjYGCGixtWsW/YWFhZo27ZtU4chS46OjvxjSGaLn+/GZaoW/Z1sbGyaZZI2Fl56R0REZOaY7ImIiMwckz3pRaVSYcGCBVCpVE0dCpHR8fNN5qpZD9AjIiKi+rFlT0REZOaY7ImIiMwckz0REZGZY7InIiIyc0z2pLNVq1bB09MTNjY28PPzw3fffdfUIREZxbfffouhQ4fC3d0dCoUCO3fubOqQiIyKyZ50sm3bNkRFRWHevHk4efIkBgwYgPDwcKSlpTV1aEQGKywsRM+ePbFy5cqmDoXIJHjpHenE398fffr0werVq6Wyrl27YsSIEYiNjW3CyIiMS6FQYMeOHRgxYkRTh0JkNGzZU73KysqQkpKCsLAwrfKwsDAcPXq0iaIiIiJdMdlTvW7cuIHKykq4ublplbu5uSErK6uJoiIiIl0x2ZPO7n6MsBCCjxYmImoGmOypXi4uLrC0tKzRis/Ozq7R2iciovsPkz3VS6lUws/PDwkJCVrlCQkJCAwMbKKoiIhIV1ZNHQA1DzNmzMD48ePRt29fBAQE4MMPP0RaWhqmTJnS1KERGaygoACXLl2SXqempuLUqVNwcnJCu3btmjAyIuPgpXeks1WrVmHx4sXIzMyEj48Pli5dioEDBzZ1WEQGO3LkCB555JEa5REREYiLi2v8gIiMjMmeiIjIzPGcPRERkZljsiciIjJzTPZERERmjsmeiIjIzDHZExERmTkmeyIiIjPHZE9ERGTmmOyJDBQdHY1evXpJrydMmNAkz0K/fPkyFAoFTp06VWedDh06YNmyZTqvMy4uDg888IDBsSkUCuzcudPg9RBRwzDZk1maMGECFAoFFAoFrK2t0bFjR8yaNQuFhYUm3/b777+v813XdEnQRESG4r3xyWw9+uij2LBhA8rLy/Hdd99h0qRJKCwsxOrVq2vULS8vh7W1tVG2q1arjbIeIiJjYcuezJZKpYJGo4GHhwfGjh2LcePGSV3J1V3vH3/8MTp27AiVSgUhBHJzc/Hiiy/C1dUVjo6O+Pvf/47Tp09rrfedd96Bm5sbHBwcEBkZiZKSEq35d3fjV1VVYdGiRXjwwQehUqnQrl07vP322wAAT09PAEDv3r2hUCgQHBwsLbdhwwZ07doVNjY26NKlC1atWqW1nZ9++gm9e/eGjY0N+vbti5MnT+p9jJYsWQJfX1/Y29vDw8MDU6dORUFBQY16O3fuRKdOnWBjY4PQ0FCkp6drzd+9ezf8/PxgY2ODjh07YuHChaioqNA7HiIyDSZ7kg1bW1uUl5dLry9duoTt27fj888/l7rRH3/8cWRlZWHPnj1ISUlBnz59EBISgr/++gsAsH37dixYsABvv/02jh8/jtatW9dIwnebO3cuFi1ahDfeeAPnz5/Hli1b4ObmBuB2wgaAgwcPIjMzE1988QUAYN26dZg3bx7efvttXLhwATExMXjjjTcQHx8PACgsLMSQIUPQuXNnpKSkIDo6GrNmzdL7mFhYWGD58uU4e/Ys4uPjcejQIcyZM0erTlFREd5++23Ex8fjhx9+QF5eHkaPHi3N379/P5599lm88sorOH/+PNauXYu4uDjpBw0R3QcEkRmKiIgQw4cPl17/+OOPwtnZWYwaNUoIIcSCBQuEtbW1yM7Olup88803wtHRUZSUlGity8vLS6xdu1YIIURAQICYMmWK1nx/f3/Rs2fPWredl5cnVCqVWLduXa1xpqamCgDi5MmTWuUeHh5iy5YtWmX/+te/REBAgBBCiLVr1wonJydRWFgozV+9enWt67pT+/btxdKlS+ucv337duHs7Cy93rBhgwAgjh07JpVduHBBABA//vijEEKIAQMGiJiYGK31bNy4UbRu3Vp6DUDs2LGjzu0SkWnxnD2Zra+++gotWrRARUUFysvLMXz4cKxYsUKa3759e7Rq1Up6nZKSgoKCAjg7O2utp7i4GL///jsA4MKFC5gyZYrW/ICAABw+fLjWGC5cuIDS0lKEhIToHPf169eRnp6OyMhIvPDCC1J5RUWFNB7gwoUL6NmzJ+zs7LTi0Nfhw4cRExOD8+fPIy8vDxUVFSgpKUFhYSHs7e0BAFZWVujbt6+0TJcuXfDAAw/gwoULeOihh5CSkoLk5GStlnxlZSVKSkpQVFSkFSMRNQ0mezJbjzzyCFavXg1ra2u4u7vXGIBXncyqVVVVoXXr1jhy5EiNdTX08jNbW1u9l6mqqgJwuyvf399fa56lpSUAQBjhydR//vknHnvsMUyZMgX/+te/4OTkhO+//x6RkZFapzuA25fO3a26rKqqCgsXLsTIkSNr1LGxsTE4TiIyHJM9mS17e3s8+OCDOtfv06cPsrKyYGVlhQ4dOtRap2vXrjh27Biee+45qezYsWN1rtPb2xu2trb45ptvMGnSpBrzlUolgNst4Wpubm5o06YN/vjjD4wbN67W9Xbr1g0bN25EcXGx9IPiXnHU5vjx46ioqMB7770HC4vbw3e2b99eo15FRQWOHz+Ohx56CABw8eJF3Lp1C126dAFw+7hdvHhRr2NNRI2LyZ7ovwYNGoSAgACMGDECixYtQufOnXH16lXs2bMHI0aMQN++ffHqq68iIiICffv2xd/+9jds3rwZ586dQ8eOHWtdp42NDV5//XXMmTMHSqUSDz/8MK5fv45z584hMjISrq6usLW1xb59+9C2bVvY2NhArVYjOjoar7zyChwdHREeHo7S0lIcP34cOTk5mDFjBsaOHYt58+YhMjIS//d//4fLly/j3Xff1Wt/vby8UFFRgRUrVmDo0KH44YcfsGbNmhr1rK2tMX36dCxfvhzW1tZ4+eWX0b9/fyn5z58/H0OGDIGHhweefvppWFhY4Oeff8aZM2fw1ltv6f9GEJHRcTQ+0X8pFArs2bMHAwcOxPPPP49OnTph9OjRuHz5sjR6/plnnsH8+fPx+uuvw8/PD3/++Sdeeumle673jTfewMyZMzF//nx07doVzzzzDLKzswHcPh++fPlyrF27Fu7u7hg+fDgAYNKkSfjoo48QFxcHX19fBAUFIS4uTrpUr0WLFti9ezfOnz+P3r17Y968eVi0aJFe+9urVy8sWbIEixYtgo+PDzZv3ozY2Nga9ezs7PD6669j7NixCAgIgK2tLbZu3SrNHzx4ML766iskJCSgX79+6N+/P5YsWYL27dvrFQ8RmY5CGOPkHxEREd232LInIiIyc0z2REREZo7JnoiIyMwx2RMREZk5JnsiIiIzx2RPRERk5pjsiYiIzByTPRERkZljsiciIjJzTPZERERmjsmeiIjIzDHZExERmbn/Bx0UIvL1yVvGAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Bootstrapping F1 Scores: [0.9656160458452722, 0.9744318181818182, 0.9746478873239437, 0.949438202247191, 0.9671897289586305]...\n", + "Bootstrapping Precision Scores: [0.9683908045977011, 0.9634831460674157, 0.969187675070028, 0.9602272727272727, 0.9741379310344828]...\n", + "Bootstrapping Recall Scores: [0.9628571428571429, 0.985632183908046, 0.9801699716713881, 0.9388888888888889, 0.9603399433427762]...\n", + "Bootstrapping AUC Scores: [0.9987329931972789, 0.9971851665408172, 0.9991600237169775, 0.9894629094412332, 0.9982609735984174]...\n", + "Mean F1 Score (Bootstrapping): 0.9642962344682645\n", + "Mean AUC Score (Bootstrapping): 0.9966428080006231\n" + ] + } + ], + "source": [ + "n_bootstrap_samples = 50\n", + "f1_scores_bootstrap = []\n", + "precision_scores_bootstrap = []\n", + "recall_scores_bootstrap = []\n", + "auc_scores_bootstrap = []\n", + "\n", + "plt.figure(figsize=(8, 6)) # Set figure size for better visualization\n", + "\n", + "# Store confusion matrices for visualization later\n", + "confusion_matrices = []\n", + "\n", + "for i in range(n_bootstrap_samples):\n", + " # Create Bootstrap Sample\n", + " indices = np.random.choice(range(len(X)), size=len(X), replace=True)\n", + " X_train, y_train = X.iloc[indices], y.iloc[indices]\n", + " \n", + " # Out-of-Bag (OOB) Data\n", + " oob_indices = list(set(range(len(X))) - set(indices))\n", + " if len(oob_indices) == 0 or len(y_train.unique()) < 2:\n", + " continue # Skip iteration if no OOB data or only one class\n", + " X_test, y_test = X.iloc[oob_indices], y.iloc[oob_indices]\n", + " \n", + " # Train the model\n", + " model.fit(X_train, y_train)\n", + " \n", + " # Predictions\n", + " y_pred = model.predict(X_test)\n", + " y_pred_proba = model.predict_proba(X_test)[:, 1]\n", + " \n", + " # Metrics\n", + " f1_scores_bootstrap.append(f1_score(y_test, y_pred))\n", + " precision_scores_bootstrap.append(precision_score(y_test, y_pred))\n", + " recall_scores_bootstrap.append(recall_score(y_test, y_pred))\n", + " auc_scores_bootstrap.append(roc_auc_score(y_test, y_pred_proba))\n", + " \n", + " # Save confusion matrix for the last bootstrap sample\n", + " conf_matrix = confusion_matrix(y_test, y_pred)\n", + " confusion_matrices.append(conf_matrix)\n", + " \n", + " # Plot ROC Curve only for the first iteration with a label\n", + " fpr, tpr, _ = roc_curve(y_test, y_pred_proba)\n", + " if i == 0:\n", + " plt.plot(fpr, tpr, label=\"Bootstrap ROC Curve\", alpha=0.3)\n", + " else:\n", + " plt.plot(fpr, tpr, alpha=0.3)\n", + "\n", + "# Finalize and Display AUC-ROC Plot\n", + "plt.xlabel(\"False Positive Rate\")\n", + "plt.ylabel(\"True Positive Rate\")\n", + "plt.title(\"Bootstrapping AUC-ROC Curve\")\n", + "plt.legend(loc=\"lower right\") # Show single legend\n", + "plt.show()\n", + "\n", + "# Display Confusion Matrix for the last bootstrap sample\n", + "if confusion_matrices:\n", + " disp = ConfusionMatrixDisplay(confusion_matrix=confusion_matrices[-1], display_labels=model.classes_)\n", + " disp.plot(cmap='Blues', values_format='d')\n", + " plt.title(\"Confusion Matrix for Last Bootstrap Sample\")\n", + " plt.show()\n", + "\n", + "# Print Metrics\n", + "print(f\"Bootstrapping F1 Scores: {f1_scores_bootstrap[:5]}...\") # Showing first 5 scores\n", + "print(f\"Bootstrapping Precision Scores: {precision_scores_bootstrap[:5]}...\")\n", + "print(f\"Bootstrapping Recall Scores: {recall_scores_bootstrap[:5]}...\")\n", + "print(f\"Bootstrapping AUC Scores: {auc_scores_bootstrap[:5]}...\")\n", + "print(f\"Mean F1 Score (Bootstrapping): {np.mean(f1_scores_bootstrap)}\")\n", + "print(f\"Mean AUC Score (Bootstrapping): {np.mean(auc_scores_bootstrap)}\")" + ] + }, + { + "cell_type": "markdown", + "id": "80f73a75-87ef-46a3-abdd-f54c6c3bacbe", + "metadata": {}, + "source": [ + "### Feature Importance" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "341b1261-e695-49bd-b17a-5097743ff7e5", + "metadata": {}, + "outputs": [], + "source": [ + "feature_importance = model.feature_importances_\n", + "\n", + "# Match importance scores with feature names\n", + "features = X.columns # Assuming `X` is your input DataFrame with feature names\n", + "importance_df = pd.DataFrame({\n", + " 'Feature': features,\n", + " 'Importance': feature_importance\n", + "}).sort_values(by='Importance', ascending=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "c82d6be2-1632-42db-a503-7e50b76faf5c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Feature Importance\n", + "1 Glucose 0.326323\n", + "5 BMI 0.182679\n", + "6 DiabetesPedigreeFunction 0.128799\n", + "7 Age 0.100334\n", + "2 BloodPressure 0.090225\n", + "0 Pregnancies 0.077337\n", + "4 Insulin 0.047760\n", + "3 SkinThickness 0.046543\n" + ] + } + ], + "source": [ + "print(importance_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "ef4e62ca-5a84-4c33-a46d-75690ac8c4cd", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAIhCAYAAAA7GltoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABr30lEQVR4nO3deZxO9f//8ec16zU7hjGDYTD27GOXfRlLlAoRJksUSZbwEcaSXQlRn4oRIkvJlrKkCFky+GTJThkp21jHLOf3R7+5vl1mhpkxXEfzuN9u53ab633e55zXOe/rqOecZSyGYRgCAAAAAACm4+ToAgAAAAAAQOoI7QAAAAAAmBShHQAAAAAAkyK0AwAAAABgUoR2AAAAAABMitAOAAAAAIBJEdoBAAAAADApQjsAAAAAACZFaAcAAAAAwKQI7QAA04uKipLFYkl1Gjhw4EPZ5sGDBxUZGalTp049lPU/iFOnTslisWjKlCmOLiXTtm3bpsjISF25csXRpWSZzz//XGXKlJGHh4csFouio6MdXdJ97d+/X926dVPRokXl4eEhDw8PFStWTD179tTu3bsfWR2RkZGyWCx2bSEhIYqIiHio283o9zC5zuTJyclJQUFBat68uX788ceHWmt6nDt3TpGRkal+91I7xgAeDy6OLgAAgPSaO3euSpYsadeWL1++h7KtgwcPatSoUapXr55CQkIeyjays23btmnUqFGKiIhQjhw5HF3OA/vzzz/VqVMnhYeHa9asWXJ3d1fx4sUdXdY9ffjhh+rTp49KlCih119/XWXKlJHFYtGhQ4e0aNEiValSRceOHVPRokUdUt+XX34pX1/fh7qNzH4P161bJz8/PyUlJenMmTOaNGmS6tWrp59++kmVKlV6eAXfx7lz5zRq1CiFhISoQoUKdvO6d++u8PBwxxQG4IEQ2gEAj40nnnhCYWFhji7jgcTHx8tiscjFJXv+J/jWrVuyWq2OLiPL/frrr4qPj9eLL76ounXr3rPvzZs35enp+YgqS92PP/6oV199VS1atNCyZcvk5uZmm9egQQP17t1bS5culYeHxz3X8zD3pWLFig9lvVmhcuXKyp07tySpZs2aqlq1qooWLaply5Y5NLTfS4ECBVSgQAFHlwEgE7g9HgDwr/H555+rRo0a8vLykre3t5o2baq9e/fa9dm9e7fat2+vkJAQeXh4KCQkRC+88IJOnz5t6xMVFaXnn39eklS/fn3brbBRUVGS0r5tt169eqpXr57t8+bNm2WxWDR//nwNGDBA+fPnl7u7u44dOyZJ2rBhgxo2bChfX195enqqVq1a2rhxY6b2PfkRgk2bNqlHjx7y9/eXr6+vOnfurBs3buj8+fNq27atcuTIoaCgIA0cOFDx8fG25ZNvuZ80aZLefvttFSxYUFarVWFhYanWtHXrVjVs2FA+Pj7y9PRUzZo1tWbNmlRr+vbbb9W1a1flyZNHnp6eGjp0qAYNGiRJKly4sO34bt68WdLf49ikSRMFBQXJw8NDpUqV0pAhQ3Tjxg279UdERMjb21vHjh1T8+bN5e3treDgYA0YMEBxcXF2fePi4jR69GiVKlVKVqtV/v7+ql+/vrZt22brYxiGZs2apQoVKsjDw0M5c+bUc889pxMnTtzz2EdERKh27dqSpHbt2slisdi+B8k1HjhwQE2aNJGPj48aNmwoSbp06ZJeffVV5c+fX25ubipSpIiGDRuWonaLxaI+ffpo7ty5KlGihDw8PBQWFqYdO3bIMAxNnjxZhQsXlre3txo0aGD7ft3LuHHj5OzsrA8//NAusP/T888/b3cny732Zf369WrdurUKFCggq9Wq0NBQ9ezZU3/99VeK9a5Zs0YVKlSQu7u7ChcunOZjHqmdZ7GxsRo4cKAKFy4sNzc35c+fX/369Uvx3Ug+ZvPnz1epUqXk6emp8uXLa/Xq1bY+kZGR9/weZoSfn58kydXV1a79zJkzevHFFxUQECB3d3eVKlVKU6dOVVJSkl2/9H4Xli5dqmrVqsnPz0+enp4qUqSIunbtKunvf2+qVKkiSXrppZds+xMZGWnb39QeQWjZsqXWrVunSpUqycPDQyVLltScOXNS7OPWrVtVo0YNWa1W5c+fX8OHD9fHH38si8ViyseIgH+T7PlrfgDAYykxMVEJCQl2bclXrMeNG6e33npLL730kt566y3duXNHkydP1pNPPqmdO3eqdOnSkv4OpyVKlFD79u2VK1cuxcTEaPbs2apSpYoOHjyo3Llzq0WLFho3bpz+85//6P3337ddOcvsbcJDhw5VjRo19MEHH8jJyUkBAQFasGCBOnfurNatW2vevHlydXXVhx9+qKZNm+qbb76xhaGM6t69u9q0aaPFixdr7969+s9//qOEhAQdOXJEbdq00csvv6wNGzZo4sSJypcvn/r372+3/MyZM1WoUCFNmzZNSUlJmjRpkpo1a6bvv/9eNWrUkCR9//33aty4scqVK6dPPvlE7u7umjVrlp566iktWrRI7dq1s1tn165d1aJFC82fP183btxQWFiYbt68qRkzZuiLL75QUFCQJNnG6OjRo2revLn69esnLy8vHT58WBMnTtTOnTu1adMmu3XHx8erVatW6tatmwYMGKAffvhBY8aMkZ+fn0aMGCFJSkhIULNmzbRlyxb169dPDRo0UEJCgnbs2KEzZ86oZs2akqSePXsqKipKffv21cSJE3Xp0iWNHj1aNWvW1L59+5Q3b95Uj/nw4cNVtWpV9e7dW+PGjVP9+vXtbuu+c+eOWrVqpZ49e2rIkCFKSEjQ7du3Vb9+fR0/flyjRo1SuXLltGXLFo0fP17R0dEpfgGyevVq7d27VxMmTJDFYtHgwYPVokULdenSRSdOnNDMmTN19epV9e/fX88++6yio6PTfH45MTFR3333ncLCwmzHPr1S2xdJOn78uGrUqKHu3bvLz89Pp06d0jvvvKPatWvrwIEDtjC7ceNGtW7dWjVq1NDixYuVmJioSZMm6Y8//rjvtm/evKm6devqt99+03/+8x+VK1dOv/zyi0aMGKEDBw5ow4YNdvu8Zs0a7dq1S6NHj5a3t7cmTZqkZ555RkeOHFGRIkXUvXt3Xbp0Kc3v4b0k/1uUfHv8W2+9JXd3dz333HO2Pn/++adq1qypO3fuaMyYMQoJCdHq1as1cOBAHT9+XLNmzZKkdH8Xtm/frnbt2qldu3aKjIyU1WrV6dOnbedEpUqVNHfuXNu/gS1atJCk+15d37dvnwYMGKAhQ4Yob968+vjjj9WtWzeFhoaqTp06kv5+90Hjxo1VvHhxzZs3T56envrggw+0YMGC+x4rAFnAAADA5ObOnWtISnWKj483zpw5Y7i4uBivvfaa3XLXrl0zAgMDjbZt26a57oSEBOP69euGl5eX8d5779naly5dakgyvvvuuxTLFCpUyOjSpUuK9rp16xp169a1ff7uu+8MSUadOnXs+t24ccPIlSuX8dRTT9m1JyYmGuXLlzeqVq16j6NhGCdPnjQkGZMnT7a1JR+ju4/B008/bUgy3nnnHbv2ChUqGJUqVUqxznz58hm3bt2ytcfGxhq5cuUyGjVqZGurXr26ERAQYFy7ds3WlpCQYDzxxBNGgQIFjKSkJLuaOnfunGIfJk+ebEgyTp48ec99TUpKMuLj443vv//ekGTs27fPNq9Lly6GJGPJkiV2yzRv3twoUaKE7fOnn35qSDI++uijNLezfft2Q5IxdepUu/azZ88aHh4exptvvnnPOpPHeunSpXbtyTXOmTPHrv2DDz5ItfaJEycakoxvv/3W1ibJCAwMNK5fv25rW7FihSHJqFChgu14G4ZhTJs2zZBk7N+/P81az58/b0gy2rdvn2JeQkKCER8fb5v+ue609uVuyWN2+vRpQ5Lx1Vdf2eZVq1Ytze/Y3f9bevd5Nn78eMPJycnYtWuXXb9ly5YZkoy1a9fa2iQZefPmNWJjY+3228nJyRg/frytLb3fw2QjR45M9d8hX19f44svvrDrO2TIEEOS8dNPP9m1v/LKK4bFYjGOHDliGEb6vwtTpkwxJBlXrlxJs75du3YZkoy5c+emWfs/FSpUyLBarcbp06dtbbdu3TJy5cpl9OzZ09b2/PPPG15eXsaff/5pa0tMTDRKly6doeMHIHO4PR4A8Nj49NNPtWvXLrvJxcVF33zzjRISEtS5c2clJCTYJqvVqrp169rd7nr9+nUNHjxYoaGhcnFxkYuLi7y9vXXjxg0dOnToodT97LPP2n3etm2bLl26pC5dutjVm5SUpPDwcO3atSvF7b7p1bJlS7vPpUqVkiTbVbd/tv/zkYBkbdq0sXvm3MfHR0899ZR++OEHJSYm6saNG/rpp5/03HPPydvb29bP2dlZnTp10m+//aYjR47cc//v58SJE+rQoYMCAwPl7OwsV1dX23Pid4+RxWLRU089ZddWrlw5u337+uuvZbVabbcRp2b16tWyWCx68cUX7cYkMDBQ5cuXz9Qt0/909zHYtGmTvLy87K7MSrLdDn73Iwn169eXl5eX7XPyuDZr1szu6nJye2pjmx6VK1eWq6urbZo6dep990WSLly4oF69eik4OFguLi5ydXVVoUKFJP3fmN24cUO7du1K8zt2P6tXr9YTTzyhChUq2I1R06ZNU72tvX79+vLx8bF9zps3rwICAjJ9bP5pw4YN2rVrl3bu3KnVq1erUaNGat++vb788ktbn02bNql06dKqWrWq3bIREREyDMN2hTy934XkW9/btm2rJUuW6Pfff3/g/ZCkChUqqGDBgrbPVqtVxYsXtztO33//vRo0aGB7jl+SnJyc1LZt2yypAcC9cXs8AOCxUapUqVRfRJd8a23y/9Tezcnp/35H3aFDB23cuFHDhw9XlSpV5OvrK4vFoubNm+vWrVsPpe67b0FOrvfu/0n/p0uXLtmFtPTKlSuX3efk55VTa799+3aK5QMDA1Ntu3Pnjq5fv65r167JMIxUb6tOfv754sWLdu0ZuQX7+vXrevLJJ2W1WjV27FgVL15cnp6eOnv2rNq0aZNijDw9PVO82M7d3d1u3/7880/ly5fP7ntwtz/++EOGYaR5C3yRIkXSvQ938/T0TPEW9IsXLyowMDDFLewBAQFycXFJcQwzMq6SUh3bZLlz55aHh0eq4fWzzz7TzZs3FRMTo1atWqVrX5KSktSkSROdO3dOw4cPV9myZeXl5aWkpCRVr17dNmaXL19WUlJSmt+x+/njjz907NixFM+NJ7v7+Xl/f/8Ufdzd3bPkPC9fvrxdgG3WrJnKli2r3r1765lnnpH09xin9pcn7j5P0vtdqFOnjlasWKHp06erc+fOiouLU5kyZTRs2DC98MILmd6X9BynixcvpnpupHW+AMhahHYAwGMv+X+ely1bZru6l5qrV69q9erVGjlypIYMGWJrj4uL06VLl9K9PavVmuIFUdLfoeGf/yOf7O7/GU/uM2PGDFWvXj3VbTjqf4bPnz+fapubm5u8vb3l4uIiJycnxcTEpOh37tw5SUpxDDLyt6E3bdqkc+fOafPmzXZvYX+Qv+eeJ08ebd26VUlJSWkG99y5c8tisWjLli1yd3dPMT+1tvRKbf/9/f31008/yTAMu/kXLlxQQkJCqt+jrOLs7KwGDRro22+/VUxMjN0vVf757ofUpLYv//vf/7Rv3z5FRUWpS5cutva7X4iXM2dOWSyWNL9j95P8y4bUXpKWPN9RnJycVKZMGS1dulQXLlxQQECA/P3903WeZOS70Lp1a7Vu3VpxcXHasWOHxo8frw4dOigkJMT2zomHwd/fP9X3DqRn3AA8OG6PBwA89po2bSoXFxcdP35cYWFhqU7S34HDMIwUAezjjz9WYmKiXVtyn9SuyoWEhGj//v12bb/++muK28LTUqtWLeXIkUMHDx5Ms9603uj9sH3xxRd2V2mvXbumVatW6cknn5Szs7O8vLxUrVo1ffHFF3bHJikpSQsWLFCBAgXS9ffJ0zq+yaHl7jH68MMPM71PzZo10+3bt21v/09Ny5YtZRiGfv/991THo2zZspnefmoaNmyo69eva8WKFXbtn376qW3+wzR06FAlJiaqV69edn9FIDPSO2ZeXl6qWrVqmt+x+2nZsqWOHz8uf3//VMcotava93Ov8zwjEhMTdeDAAbm7u9vuRGjYsKEOHjyon3/+2a7vp59+KovFovr169v6ZfS74O7urrp162rixImSZPsrGVm1P3erW7euNm3aZHc3Q1JSkpYuXZql2wGQOq60AwAeeyEhIRo9erSGDRumEydOKDw8XDlz5tQff/yhnTt3ysvLS6NGjZKvr6/q1KmjyZMnK3fu3AoJCdH333+vTz75RDly5LBb5xNPPCFJ+u9//ysfHx9ZrVYVLlxY/v7+6tSpk1588UW9+uqrevbZZ3X69GlNmjRJefLkSVe93t7emjFjhrp06aJLly7pueeeU0BAgP7880/t27dPf/75p2bPnp3VhyldnJ2d1bhxY/Xv319JSUmaOHGiYmNjNWrUKFuf8ePHq3Hjxqpfv74GDhwoNzc3zZo1S//73/+0aNGidF1ZTw7B7733nrp06SJXV1eVKFFCNWvWVM6cOdWrVy+NHDlSrq6uWrhwofbt25fpfXrhhRc0d+5c9erVS0eOHFH9+vWVlJSkn376SaVKlVL79u1Vq1Ytvfzyy3rppZe0e/du1alTR15eXoqJidHWrVtVtmxZvfLKK5mu4W6dO3fW+++/ry5duujUqVMqW7astm7dqnHjxql58+Zq1KhRlm0rNbVq1dL777+v1157TZUqVdLLL7+sMmXK2O6iWL58uSSluBU+NSVLllTRokU1ZMgQGYahXLlyadWqVVq/fn2KvmPGjFF4eLgaN26sAQMGKDExURMnTpSXl9d973bp16+fli9frjp16uiNN95QuXLlbG9v//bbbzVgwABVq1YtQ8chre/hP5+FT82ePXtsf+btjz/+0Jw5c3T48GG98cYbtsc13njjDX366adq0aKFRo8erUKFCmnNmjWaNWuWXnnlFdsvt9L7XRgxYoR+++03NWzYUAUKFNCVK1f03nvv2b3zoWjRovLw8NDChQtVqlQpeXt7K1++fHZ/ui8zhg0bplWrVqlhw4YaNmyYPDw89MEHH9jevXGvR08AZAHHvQMPAID0SX4L+d1vjb7bihUrjPr16xu+vr6Gu7u7UahQIeO5554zNmzYYOvz22+/Gc8++6yRM2dOw8fHxwgPDzf+97//pfpG+GnTphmFCxc2nJ2d7d7InJSUZEyaNMkoUqSIYbVajbCwMGPTpk1pvj3+7jeKJ/v++++NFi1aGLly5TJcXV2N/PnzGy1atEizf7J7vT3+7mOU/Mbof7712TD+fhO4l5dXinVOnDjRGDVqlFGgQAHDzc3NqFixovHNN9+kqGHLli1GgwYNDC8vL8PDw8OoXr26sWrVKrs+9xu3oUOHGvny5TOcnJzs3tS/bds2o0aNGoanp6eRJ08eo3v37sbPP/+c4q3Yd+/D3fv8T7du3TJGjBhhFCtWzHBzczP8/f2NBg0aGNu2bbPrN2fOHKNatWq2/SpatKjRuXNnY/fu3anuQ7J7vT0+tRoNwzAuXrxo9OrVywgKCjJcXFyMQoUKGUOHDjVu375t10+S0bt3b7u21L4D96ojLdHR0cZLL71kFC5c2HB3dzesVqsRGhpqdO7c2di4cWO69+XgwYNG48aNDR8fHyNnzpzG888/b5w5c8aQZIwcOdKu78qVK41y5coZbm5uRsGCBY0JEyak+Wbzu8/J69evG2+99ZZRokQJw83NzfDz8zPKli1rvPHGG8b58+dt/VI7ZmmtM63vYWpSe3t8rly5jGrVqhlz5swxEhMT7fqfPn3a6NChg+Hv72+4uroaJUqUMCZPnpyiX3q+C6tXrzaaNWtm5M+f33BzczMCAgKM5s2bG1u2bLFb16JFi4ySJUsarq6udsc/rWPcokWLFPt5979lhvH3OV+tWjXD3d3dCAwMNAYNGmR7w/293mgP4MFZDMMwHtUvCAAAgDmdOnVKhQsX1uTJkzVw4EBHlwPgMdCkSROdOnVKv/76q6NLAf7VuD0eAAAAwD31799fFStWVHBwsC5duqSFCxdq/fr1+uSTTxxdGvCvR2gHAAAAcE+JiYkaMWKEzp8/L4vFotKlS2v+/Pl68cUXHV0a8K/H7fEAAAAAAJgUr3oEAAAAAMCkCO0AAAAAAJgUoR0AAAAAAJPiRXTAI5SUlKRz587Jx8dHFovF0eUAAAAAcBDDMHTt2jXly5dPTk5pX08ntAOP0Llz5xQcHOzoMgAAAACYxNmzZ1WgQIE05xPagUfIx8dH0t8npq+vr4OrAQAAAOAosbGxCg4OtmWEtBDagUco+ZZ4X19fQjsAAACA+z42y4voAAAAAAAwKUI7AAAAAAAmRWgHAAAAAMCkCO0AAAAAAJgUoR0AAAAAAJMitAMAAAAAYFKEdgAAAAAATIrQDgAAAACASRHaAQAAAAAwKUI7AAAAAAAmRWgHAAAAAMCkCO0AAAAAAJgUoR0AAAAAAJMitAMAAAAAYFKEdgAAAAAATIrQDgAAAACASRHaAQAAAAAwKUI7AAAAAAAm5eLoAoDs6J19F2X1vuPoMgAAAIBsY0jF3I4uIVO40g4AAAAAgEkR2gEAAAAAMClCOwAAAAAAJkVoBwAAAADApAjtAAAAAACYFKEdAAAAAACTIrQDAAAAAGBShHYAAAAAAEyK0A4AAAAAgEkR2gEAAAAAMClCOwAAAAAAJkVoBwAAAADApAjtAAAAAACYFKEdAAAAAACTIrQDAAAAAGBShHaYmsVi0YoVKxxdBgAAAAA4BKEdDnP+/Hm9/vrrCg0NldVqVd68eVW7dm198MEHunnzpqPLAwAAAACHc3F0AcieTpw4oVq1ailHjhwaN26cypYtq4SEBP3666+aM2eO8uXLp1atWjm6TAAAAABwKK60wyFeffVVubi4aPfu3Wrbtq1KlSqlsmXL6tlnn9WaNWv01FNPpVhm8+bNslgsunLliq0tOjpaFotFp06dsrX9+OOPqlu3rjw9PZUzZ041bdpUly9fliTFxcWpb9++CggIkNVqVe3atbVr1y7bspcvX1bHjh2VJ08eeXh4qFixYpo7d65t/u+//6527dopZ86c8vf3V+vWre22DQAAAABZidCOR+7ixYv69ttv1bt3b3l5eaXax2KxZGrd0dHRatiwocqUKaPt27dr69ateuqpp5SYmChJevPNN7V8+XLNmzdPP//8s0JDQ9W0aVNdunRJkjR8+HAdPHhQX3/9tQ4dOqTZs2crd+7ckqSbN2+qfv368vb21g8//KCtW7fK29tb4eHhunPnTqr1xMXFKTY21m4CAAAAgPTi9ng8cseOHZNhGCpRooRde+7cuXX79m1JUu/evTVx4sQMr3vSpEkKCwvTrFmzbG1lypSRJN24cUOzZ89WVFSUmjVrJkn66KOPtH79en3yyScaNGiQzpw5o4oVKyosLEySFBISYlvP4sWL5eTkpI8//tj2S4W5c+cqR44c2rx5s5o0aZKinvHjx2vUqFEZ3g8AAAAAkLjSDge6+2r6zp07FR0drTJlyiguLi5T60y+0p6a48ePKz4+XrVq1bK1ubq6qmrVqjp06JAk6ZVXXtHixYtVoUIFvfnmm9q2bZut7549e3Ts2DH5+PjI29tb3t7eypUrl27fvq3jx4+nus2hQ4fq6tWrtuns2bOZ2i8AAAAA2RNX2vHIhYaGymKx6PDhw3btRYoUkSR5eHikupyT09+/YzIMw9YWHx9v1yetZf+53N2/LDAMw9bWrFkznT59WmvWrNGGDRvUsGFD9e7dW1OmTFFSUpIqV66shQsXplh3njx5Ut2mu7u73N3d06wJAAAAAO6FK+145Pz9/dW4cWPNnDlTN27cSPdyycE4JibG1hYdHW3Xp1y5ctq4cWOqy4eGhsrNzU1bt261tcXHx2v37t0qVaqU3XYiIiK0YMECTZs2Tf/9738lSZUqVdLRo0cVEBCg0NBQu8nPzy/d+wEAAAAA6UVoh0PMmjVLCQkJCgsL0+eff65Dhw7pyJEjWrBggQ4fPixnZ+cUy4SGhio4OFiRkZH69ddftWbNGk2dOtWuz9ChQ7Vr1y69+uqr2r9/vw4fPqzZs2frr7/+kpeXl1555RUNGjRI69at08GDB9WjRw/dvHlT3bp1kySNGDFCX331lY4dO6ZffvlFq1evtgX6jh07Knfu3GrdurW2bNmikydP6vvvv9frr7+u33777eEfNAAAAADZDqEdDlG0aFHt3btXjRo10tChQ1W+fHmFhYVpxowZGjhwoMaMGZNiGVdXVy1atEiHDx9W+fLlNXHiRI0dO9auT/HixfXtt99q3759qlq1qmrUqKGvvvpKLi5/PwkyYcIEPfvss+rUqZMqVaqkY8eO6ZtvvlHOnDklSW5ubho6dKjKlSunOnXqyNnZWYsXL5YkeXp66ocfflDBggXVpk0blSpVSl27dtWtW7fk6+v7kI8YAAAAgOzIYvzzAWEAD1VsbKz8/Pw08ocTsnr7OLocAAAAINsYUjG3o0uwk5wNrl69es+LgFxpBwAAAADApAjtAAAAAACYFKEdAAAAAACTIrQDAAAAAGBShHYAAAAAAEyK0A4AAAAAgEkR2gEAAAAAMClCOwAAAAAAJkVoBwAAAADApAjtAAAAAACYFKEdAAAAAACTIrQDAAAAAGBShHYAAAAAAEyK0A4AAAAAgEkR2gEAAAAAMCkXRxcAZEf9y/vL19fX0WUAAAAAMDmutAMAAAAAYFKEdgAAAAAATIrQDgAAAACASRHaAQAAAAAwKUI7AAAAAAAmRWgHAAAAAMCkCO0AAAAAAJgUoR0AAAAAAJMitAMAAAAAYFKEdgAAAAAATMrF0QUA2dE7+y7K6n3H0WUAAP7lhlTM7egSAAAPiCvtAAAAAACYFKEdAAAAAACTIrQDAAAAAGBShHYAAAAAAEyK0A4AAAAAgEkR2gEAAAAAMClCOwAAAAAAJkVoBwAAAADApAjtAAAAAACYFKEdAAAAAACTIrQDAAAAAGBShHYAAAAAAEyK0A4AAAAAgEkR2gEAAAAAMClCOwAAAAAAJkVoBwAAAADApAjtyDYiIiJksVhsk7+/v8LDw7V//35bn+R5O3bssFs2Li5O/v7+slgs2rx5s13/FStWPKI9AAAAAJDdENqRrYSHhysmJkYxMTHauHGjXFxc1LJlS7s+wcHBmjt3rl3bl19+KW9v70dZKgAAAAAQ2pG9uLu7KzAwUIGBgapQoYIGDx6ss2fP6s8//7T16dKlixYvXqxbt27Z2ubMmaMuXbo4omQAAAAA2RihHdnW9evXtXDhQoWGhsrf39/WXrlyZRUuXFjLly+XJJ09e1Y//PCDOnXqlOFtxMXFKTY21m4CAAAAgPQitCNbWb16tby9veXt7S0fHx+tXLlSn3/+uZyc7E+Fl156SXPmzJEkzZ07V82bN1eePHkyvL3x48fLz8/PNgUHB2fJfgAAAADIHgjtyFbq16+v6OhoRUdH66efflKTJk3UrFkznT592q7fiy++qO3bt+vEiROKiopS165dM7W9oUOH6urVq7bp7NmzWbEbAAAAALIJF0cXADxKXl5eCg0NtX2uXLmy/Pz89NFHH2ns2LG2dn9/f7Vs2VLdunXT7du31axZM127di3D23N3d5e7u3uW1A4AAAAg++FKO7I1i8UiJycnu5fOJevatas2b96szp07y9nZ2QHVAQAAAMjuuNKObCUuLk7nz5+XJF2+fFkzZ87U9evX9dRTT6XoGx4erj///FO+vr6PukwAAAAAkERoRzazbt06BQUFSZJ8fHxUsmRJLV26VPXq1UvR12KxKHfu3I+4QgAAAAD4P4R2ZBtRUVGKioq6Zx/DMNKclyNHjhTz79UfAAAAAB4Uz7QDAAAAAGBShHYAAAAAAEyK0A4AAAAAgEkR2gEAAAAAMClCOwAAAAAAJkVoBwAAAADApAjtAAAAAACYFKEdAAAAAACTIrQDAAAAAGBShHYAAAAAAEyK0A4AAAAAgEkR2gEAAAAAMClCOwAAAAAAJkVoBwAAAADApAjtAAAAAACYlIujCwCyo/7l/eXr6+voMgAAAACYHFfaAQAAAAAwKUI7AAAAAAAmRWgHAAAAAMCkCO0AAAAAAJgUoR0AAAAAAJMitAMAAAAAYFKEdgAAAAAATIrQDgAAAACASRHaAQAAAAAwKRdHFwBkR+/suyir9x1HlwEgGxtSMbejSwAAAOnAlXYAAAAAAEyK0A4AAAAAgEkR2gEAAAAAMClCOwAAAAAAJkVoBwAAAADApAjtAAAAAACYFKEdAAAAAACTIrQDAAAAAGBShHYAAAAAAEyK0A4AAAAAgEkR2gEAAAAAMClCOwAAAAAAJkVoBwAAAADApAjtAAAAAACYFKEdAAAAAACTIrQDAAAAAGBSj0Vot1gsWrFiRbr7R0ZGqkKFCg+tHrO5e38jIiL09NNPO6yex0F2+44AAAAAeDw5NLRHRETIYrHIYrHI1dVVefPmVePGjTVnzhwlJSXZ+sXExKhZs2aPtLZTp07JYrEoOjo6S9cbEhJi22dPT0898cQT+vDDD7N0G++9956ioqKydJ2ZtXnzZtv+/nN66623HlkNqf3SZ+DAgdq4ceMjqwEAAAAAMsPF0QWEh4dr7ty5SkxM1B9//KF169bp9ddf17Jly7Ry5Uq5uLgoMDDQ0WVmqdGjR6tHjx66fv26oqKi1KtXL+XIkUPt2rXLkvX7+fk98Dru3LkjNze3LKjmb0eOHJGvr6/ts7e3d5atOzO8vb0dXgMAAAAA3I/Db493d3dXYGCg8ufPr0qVKuk///mPvvrqK3399de2q8V3XykdPHiwihcvLk9PTxUpUkTDhw9XfHx8inV/+OGHCg4Olqenp55//nlduXLFbv7cuXNVqlQpWa1WlSxZUrNmzbLNK1y4sCSpYsWKslgsqlevXrqWu3Pnjvr06aOgoCBZrVaFhIRo/Pjxdtv18fFRYGCgQkNDNXbsWBUrVsy2f1evXtXLL7+sgIAA+fr6qkGDBtq3b5/d8hMmTFDevHnl4+Ojbt266fbt23bz7749/tq1a+rYsaO8vLwUFBSkd999V/Xq1VO/fv1sfUJCQjR27FhFRETIz89PPXr0kCRt27ZNderUkYeHh4KDg9W3b1/duHHDbn/ffPNN5c+fX15eXqpWrZo2b96cYiwCAgIUGBhom7y9vW1X4f85LtHR0bJYLDp16pQkKSoqSjly5NA333yjUqVKydvbW+Hh4YqJibFb/5w5c1SmTBm5u7srKChIffr0se2XJD3zzDOyWCy2z3ffHp+UlKTRo0erQIECcnd3V4UKFbRu3Trb/OQ7L7744gvVr19fnp6eKl++vLZv355iXwEAAAAgqzg8tKemQYMGKl++vL744otU5/v4+CgqKkoHDx7Ue++9p48++kjvvvuuXZ9jx45pyZIlWrVqldatW6fo6Gj17t3bNv+jjz7SsGHD9Pbbb+vQoUMaN26chg8frnnz5kmSdu7cKUnasGGDYmJibLXcb7np06dr5cqVWrJkiY4cOaIFCxbYgmJarFar4uPjZRiGWrRoofPnz2vt2rXas2ePKlWqpIYNG+rSpUuSpCVLlmjkyJF6++23tXv3bgUFBdn90iA1/fv3148//qiVK1dq/fr12rJli37++ecU/SZPnqwnnnhCe/bs0fDhw3XgwAE1bdpUbdq00f79+/X5559r69attkAsSS+99JJ+/PFHLV68WPv379fzzz+v8PBwHT169J41ZcTNmzc1ZcoUzZ8/Xz/88IPOnDmjgQMH2ubPnj1bvXv31ssvv6wDBw5o5cqVCg0NlSTt2rVL0t+/aImJibF9vtt7772nqVOnasqUKdq/f7+aNm2qVq1apdiPYcOGaeDAgYqOjlbx4sX1wgsvKCEhIc3a4+LiFBsbazcBAAAAQHo5/Pb4tJQsWVL79+9Pdd4/n4cOCQnRgAED9Pnnn+vNN9+0td++fVvz5s1TgQIFJEkzZsxQixYtNHXqVAUGBmrMmDGaOnWq2rRpI+nvK+sHDx7Uhx9+qC5duihPnjySJH9/f7vb8++33JkzZ1SsWDHVrl1bFotFhQoVSnMfExIStGDBAh04cECvvPKKvvvuOx04cEAXLlyQu7u7JGnKlClasWKFli1bppdfflnTpk1T165d1b17d0nS2LFjtWHDhhRX25Ndu3ZN8+bN02effaaGDRtK+jvA5suXL0XfBg0a2IXhzp07q0OHDrYr8sWKFdP06dNVt25dzZ49W7///rsWLVqk3377zba+gQMHat26dZo7d67GjRtnW1fyOCQ7ffp0msflbvHx8frggw9UtGhRSVKfPn00evRo2/yxY8dqwIABev31121tVapUkSTbOObIkeOej1lMmTJFgwcPVvv27SVJEydO1Hfffadp06bp/ffft/UbOHCgWrRoIUkaNWqUypQpo2PHjqlkyZKprnf8+PEaNWpUuvcVAAAAAP7JtKHdMAxZLJZU5y1btkzTpk3TsWPHdP36dSUkJNg9Ly1JBQsWtAuKNWrUUFJSko4cOSJnZ2edPXtW3bp1s90GLv0dou/1PPiff/553+UiIiLUuHFjlShRQuHh4WrZsqWaNGlit57BgwfrrbfeUlxcnNzc3DRo0CD17NlTU6dO1fXr1+Xv72/X/9atWzp+/Lgk6dChQ+rVq5fd/Bo1aui7775LteYTJ04oPj5eVatWtbX5+fmpRIkSKfqGhYXZfd6zZ4+OHTumhQsX2toMw1BSUpJOnjyp//3vfzIMQ8WLF7dbLi4uLsU+bNmyRT4+PrbPOXPmTLXe1Hh6etoCuyQFBQXpwoULkqQLFy7o3Llztl9IZEZsbKzOnTunWrVq2bXXqlUrxaMJ5cqVs6sjuYa0QvvQoUPVv39/u20FBwdnulYAAAAA2YtpQ/uhQ4dsz5X/044dO9S+fXuNGjVKTZs2lZ+fnxYvXqypU6fec33JvwCwWCy2N9N/9NFHqlatml0/Z2fnNNeRnuUqVaqkkydP6uuvv9aGDRvUtm1bNWrUSMuWLbP1HTRokCIiIuTp6amgoCBbbUlJSQoKCkr1mfAcOXLcc//SYhiGJKX4BUhy+z95eXnZfU5KSlLPnj3Vt2/fFH0LFiyo/fv3y9nZWXv27Elx3O5+yVvhwoVT7IOTk1OKWlJ7N4Grq6vdZ4vFYlvGw8MjRf/MSu0Y3d32z1r+OW5pcXd3t901AQAAAAAZZcrQvmnTJh04cEBvvPFGink//vijChUqpGHDhtnaUrvV+syZMzp37pzttu3t27fLyclJxYsXV968eZU/f36dOHFCHTt2TLWG5DenJyYm2trSs5wk+fr6ql27dmrXrp2ee+45hYeH69KlS8qVK5ckKXfu3LZnrv+pUqVKOn/+vFxcXNJ8Dr5UqVLasWOHOnfubGvbsWNHmrUULVpUrq6u2rlzp+0Kb2xsrI4ePaq6deumuVxyPb/88kuqtUp/v6QvMTFRFy5c0JNPPnnPdaUm+db1mJgY25X3jP6JPR8fH4WEhGjjxo2qX79+qn1cXV3txvFuvr6+ypcvn7Zu3ao6derY2rdt22Z3hwIAAAAAPGoOD+1xcXE6f/683Z98Gz9+vFq2bGkXTJOFhobqzJkzWrx4sapUqaI1a9boyy+/TNHParWqS5cumjJlimJjY9W3b1+1bdvW9lxzZGSk+vbtK19fXzVr1kxxcXHavXu3Ll++rP79+ysgIEAeHh5at26dChQoIKvVKj8/v/su9+677yooKEgVKlSQk5OTli5dqsDAwHRdKW/UqJFq1Kihp59+WhMnTlSJEiV07tw5rV27Vk8//bTCwsL0+uuvq0uXLgoLC1Pt2rW1cOFC/fLLLypSpEiq6/Tx8VGXLl00aNAg5cqVSwEBARo5cqScnJzSfPwg2eDBg1W9enX17t1bPXr0kJeXlw4dOqT169drxowZKl68uDp27KjOnTtr6tSpqlixov766y9t2rRJZcuWVfPmze+5/tDQUAUHBysyMlJjx47V0aNH73vHRGoiIyPVq1cvBQQEqFmzZrp27Zp+/PFHvfbaa5JkC/W1atWSu7t7qrfmDxo0SCNHjlTRokVVoUIFzZ07V9HR0XaPBgAAAADAo+bwt8evW7dOQUFBCgkJUXh4uL777jtNnz5dX331Vaq3qrdu3VpvvPGG+vTpowoVKmjbtm0aPnx4in6hoaFq06aNmjdvriZNmuiJJ56we8t69+7d9fHHHysqKkply5ZV3bp1FRUVZbsl38XFRdOnT9eHH36ofPnyqXXr1ulaztvbWxMnTlRYWJiqVKmiU6dOae3atbZbwe/FYrFo7dq1qlOnjrp27arixYurffv2OnXqlPLmzStJateunUaMGKHBgwercuXKOn36tF555ZV7rvedd95RjRo11LJlSzVq1Ei1atWy/cm6eylXrpy+//57HT16VE8++aQqVqyo4cOH257llv5+qV3nzp01YMAAlShRQq1atdJPP/2Urue2XV1dtWjRIh0+fFjly5fXxIkTNXbs2Psud7cuXbpo2rRpmjVrlsqUKaOWLVvavfV96tSpWr9+vYKDg1WxYsVU19G3b18NGDBAAwYMUNmyZbVu3TqtXLlSxYoVy3A9AAAAAJBVLEZqDzfjX+3GjRvKnz+/pk6dqm7dujm6nGwlNjZWfn5+GvnDCVm9fe6/AAA8JEMq5nZ0CQAAZGvJ2eDq1aspXqz+Tw6/PR4P3969e3X48GFVrVpVV69etf25tOS7BwAAAAAA5kRozyamTJmiI0eOyM3NTZUrV9aWLVuUOzdXWQAAAADAzAjt2UDFihW1Z88eR5cBAAAAAMggh7+IDgAAAAAApI7QDgAAAACASRHaAQAAAAAwKUI7AAAAAAAmRWgHAAAAAMCkCO0AAAAAAJgUoR0AAAAAAJMitAMAAAAAYFKEdgAAAAAATIrQDgAAAACASRHaAQAAAAAwKRdHFwBkR/3L+8vX19fRZQAAAAAwOa60AwAAAABgUoR2AAAAAABMitAOAAAAAIBJEdoBAAAAADApQjsAAAAAACZFaAcAAAAAwKQI7QAAAAAAmBShHQAAAAAAkyK0AwAAAABgUoR2AAAAAABMysXRBQDZ0Tv7LsrqfcfRZQDZ2pCKuR1dAgAAwH1xpR0AAAAAAJMitAMAAAAAYFKEdgAAAAAATIrQDgAAAACASRHaAQAAAAAwKUI7AAAAAAAmRWgHAAAAAMCkCO0AAAAAAJgUoR0AAAAAAJMitAMAAAAAYFKEdgAAAAAATIrQDgAAAACASRHaAQAAAAAwKUI7AAAAAAAmRWgHAAAAAMCkCO0AAAAAAJgUoR0AAAAAAJMitCPb2LZtm5ydnRUeHu7oUgAAAAAgXQjtyDbmzJmj1157TVu3btWZM2ccXQ4AAAAA3BehHdnCjRs3tGTJEr3yyitq2bKloqKi7OavXLlSxYoVk4eHh+rXr6958+bJYrHoypUrtj7btm1TnTp15OHhoeDgYPXt21c3btx4tDsCAAAAIFshtCNb+Pzzz1WiRAmVKFFCL774oubOnSvDMCRJp06d0nPPPaenn35a0dHR6tmzp4YNG2a3/IEDB9S0aVO1adNG+/fv1+eff66tW7eqT58+99xuXFycYmNj7SYAAAAASK8sC+3/vCIJmM0nn3yiF198UZIUHh6u69eva+PGjZKkDz74QCVKlNDkyZNVokQJtW/fXhEREXbLT548WR06dFC/fv1UrFgx1axZU9OnT9enn36q27dvp7nd8ePHy8/PzzYFBwc/tH0EAAAA8O+TqdA+ceJEff7557bPbdu2lb+/v/Lnz699+/ZlWXFAVjhy5Ih27typ9u3bS5JcXFzUrl07zZkzxza/SpUqdstUrVrV7vOePXsUFRUlb29v29S0aVMlJSXp5MmTaW576NChunr1qm06e/ZsFu8dAAAAgH8zl8ws9OGHH2rBggWSpPXr12v9+vX6+uuvtWTJEg0aNEjffvttlhYJPIhPPvlECQkJyp8/v63NMAy5urrq8uXLMgxDFovFbpnkW+eTJSUlqWfPnurbt2+K9RcsWDDNbbu7u8vd3f0B9wAAAABAdpWp0B4TE2O7zXf16tVq27atmjRpopCQEFWrVi1LCwQeREJCgj799FNNnTpVTZo0sZv37LPPauHChSpZsqTWrl1rN2/37t12nytVqqRffvlFoaGhD71mAAAAAEiWqdvjc+bMabvNd926dWrUqJGkv69OJiYmZl11wANavXq1Ll++rG7duumJJ56wm5577jl98skn6tmzpw4fPqzBgwfr119/1ZIlS2xvl0++Aj948GBt375dvXv3VnR0tI4ePaqVK1fqtddec+DeAQAAAPi3y1Rob9OmjTp06KDGjRvr4sWLatasmSQpOjqaK5EwlU8++USNGjWSn59finnPPvusoqOjdfnyZS1btkxffPGFypUrp9mzZ9veHp98a3u5cuX0/fff6+jRo3ryySdVsWJFDR8+XEFBQY90fwAAAABkL5m6Pf7dd99VSEiIzp49q0mTJsnb21vS37fNv/rqq1laIPAgVq1alea8SpUq2Z5dr1Spklq1amWb9/bbb6tAgQKyWq22tipVqvC+BgAAAACPVKZCu6urqwYOHJiivV+/fg9aD+AQs2bNUpUqVeTv768ff/xRkydPvu/fYAcAAACAhy3Tf6d9/vz5ql27tvLly6fTp09LkqZNm6avvvoqy4oDHpWjR4+qdevWKl26tMaMGaMBAwYoMjLS0WUBAAAAyOYyFdpnz56t/v37q1mzZrpy5Yrt5XM5cuTQtGnTsrI+4JF49913de7cOd2+fVu//vqrhg8fLheXTN2IAgAAAABZJlOhfcaMGfroo480bNgwOTs729rDwsJ04MCBLCsOAAAAAIDsLFOh/eTJk6pYsWKKdnd3d924ceOBiwIAAAAAAJkM7YULF1Z0dHSK9q+//lqlS5d+0JoAAAAAAIAy+fb4QYMGqXfv3rp9+7YMw9DOnTu1aNEijR8/Xh9//HFW1wgAAAAAQLaUqdD+0ksvKSEhQW+++aZu3rypDh06KH/+/HrvvffUvn37rK4RAAAAAIBsKcOhPSEhQQsXLtRTTz2lHj166K+//lJSUpICAgIeRn0AAAAAAGRbGX6m3cXFRa+88ori4uIkSblz5yawAwAAAADwEGTqRXTVqlXT3r17s7oWAAAAAADwD5l6pv3VV1/VgAED9Ntvv6ly5cry8vKym1+uXLksKQ4AAAAAgOwsU6G9Xbt2kqS+ffva2iwWiwzDkMViUWJiYtZUBwAAAABANpap0H7y5MmsrgMAAAAAANwlU6G9UKFCWV0HkK30L+8vX19fR5cBAAAAwOQyFdo//fTTe87v3LlzpooBAAAAAAD/x2IYhpHRhXLmzGn3OT4+Xjdv3pSbm5s8PT116dKlLCsQ+DeJjY2Vn5+frl69ypV2AAAAIBtLbzbI1J98u3z5st10/fp1HTlyRLVr19aiRYsyXTQAAAAAAPg/mQrtqSlWrJgmTJig119/PatWCQAAAABAtpZloV2SnJ2dde7cuaxcJQAAAAAA2VamXkS3cuVKu8+GYSgmJkYzZ85UrVq1sqQwAAAAAACyu0yF9qefftrus8ViUZ48edSgQQNNnTo1K+oCAAAAACDby1RoT0pKyuo6AAAAAADAXTL1TPvo0aN18+bNFO23bt3S6NGjH7goAAAAAACQyb/T7uzsrJiYGAUEBNi1X7x4UQEBAUpMTMyyAoF/E/5OOwAAAAAp/dkgU7fHG4Yhi8WSon3fvn3KlStXZlYJZCvv7Lsoq/cdR5cBmN6QirkdXQIAAIBDZSi058yZUxaLRRaLRcWLF7cL7omJibp+/bp69eqV5UUCAAAAAJAdZSi0T5s2TYZhqGvXrho1apT8/Pxs89zc3BQSEqIaNWpkeZEAAAAAAGRHGQrtXbp0kSQVLlxYNWvWlKur60MpCgAAAAAAZPKZ9rp169p+vnXrluLj4+3m84ItAAAAAAAeXKb+5NvNmzfVp08fBQQEyNvbWzlz5rSbAAAAAADAg8tUaB80aJA2bdqkWbNmyd3dXR9//LFGjRqlfPny6dNPP83qGgEAAAAAyJYydXv8qlWr9Omnn6pevXrq2rWrnnzySYWGhqpQoUJauHChOnbsmNV1AgAAAACQ7WTqSvulS5dUuHBhSX8/v37p0iVJUu3atfXDDz9kXXUAAAAAAGRjmQrtRYoU0alTpyRJpUuX1pIlSyT9fQU+R44cWVUbAAAAAADZWqZC+0svvaR9+/ZJkoYOHWp7tv2NN97QoEGDsrRAAAAAAACyq0w90/7GG2/Yfq5fv74OHz6s3bt3q2jRoipfvnyWFQcAAAAAQHaWqdD+T7dv31bBggVVsGDBrKgHAAAAAAD8f5m6PT4xMVFjxoxR/vz55e3trRMnTkiShg8frk8++SRLCwQAAAAAILvKVGh/++23FRUVpUmTJsnNzc3WXrZsWX388cdZVhwAAAAAANlZpkL7p59+qv/+97/q2LGjnJ2dbe3lypXT4cOHs6w4AAAAAACys0yF9t9//12hoaEp2pOSkhQfH//ARQEAAAAAgEyG9jJlymjLli0p2pcuXaqKFSs+cFHIeqdOnZLFYlF0dPRD3c7mzZtlsVh05cqVh7odAAAAAMgOMhXaR44cqT59+mjixIlKSkrSF198oR49emjcuHEaMWJEVteIdIiIiJDFYrFN/v7+Cg8P1/79+x1aV3KIT57y5MmjZs2aad++fQ6tCwAAAAAeBxkK7SdOnJBhGHrqqaf0+eefa+3atbJYLBoxYoQOHTqkVatWqXHjxg+rVtxHeHi4YmJiFBMTo40bN8rFxUUtW7Z0dFmSpCNHjigmJkZr1qzR5cuXFR4erqtXr6ba14yPWJixJgAAAAD/fhkK7cWKFdOff/4pSWratKkCAwN17Ngx3bx5U1u3blWTJk0eSpFIH3d3dwUGBiowMFAVKlTQ4MGDdfbsWduY3e37779X1apV5e7urqCgIA0ZMkQJCQm2+XFxcerbt68CAgJktVpVu3Zt7dq1y24da9euVfHixeXh4aH69evr1KlTqW4rICBAgYGBqlq1qqZOnarz589rx44dttv2lyxZonr16slqtWrBggWSpLlz56pUqVKyWq0qWbKkZs2aZVvfnTt31KdPHwUFBclqtSokJETjx4+3zY+MjFTBggXl7u6ufPnyqW/fvrZ5FotFK1assKsvR44cioqKkqRM1wQAAAAAWc0lI50Nw7D7/PXXX9sFJZjH9evXtXDhQoWGhsrf3183btywm//777+refPmioiI0KeffqrDhw+rR48eslqtioyMlCS9+eabWr58uebNm6dChQpp0qRJatq0qY4dO6ZcuXLp7NmzatOmjXr16qVXXnlFu3fv1oABA+5bm4eHhyT7q9eDBw/W1KlTNXfuXLm7u+ujjz7SyJEjNXPmTFWsWFF79+5Vjx495OXlpS5dumj69OlauXKllixZooIFC+rs2bM6e/asJGnZsmV69913tXjxYpUpU0bnz5/P1O34Ga0pNXFxcYqLi7N9jo2NzXAdAAAAALKvDIX2u90d4uFYq1evlre3tyTpxo0bCgoK0urVq+XklPKGilmzZik4OFgzZ86UxWJRyZIlde7cOQ0ePFgjRozQrVu3NHv2bEVFRalZs2aSpI8++kjr16/XJ598okGDBmn27NkqUqSI3n33XVksFpUoUUIHDhzQxIkT06zx4sWLGjVqlHx8fFS1alXdvHlTktSvXz+1adPG1m/MmDGaOnWqra1w4cI6ePCgPvzwQ3Xp0kVnzpxRsWLFVLt2bVksFhUqVMi27JkzZxQYGKhGjRrJ1dVVBQsWVNWqVTN8PDNaU2rGjx+vUaNGZXjbAAAAACBl8Pb45JeJ3d0Gc6hfv76io6MVHR2tn376SU2aNFGzZs10+vTpFH0PHTqkGjVq2I1frVq1dP36df322286fvy44uPjVatWLdt8V1dXVa1aVYcOHbKto3r16nbrqFGjRqq1FShQQN7e3sqdO7cOHTqkpUuXKiAgwDY/LCzM9vOff/6ps2fPqlu3bvL29rZNY8eO1fHjxyX9/eK96OholShRQn379tW3335rW/7555/XrVu3VKRIEfXo0UNffvml3W3/6ZXRmlIzdOhQXb161TYl3w0AAAAAAOmR4dvjIyIi5O7uLkm6ffu2evXqJS8vL7t+X3zxRdZViHTz8vJSaGio7XPlypXl5+enjz76SN27d7fraxhGil+4JN85YbFY7H5Oa7mM3GmxZcsW+fr6Kk+ePPL19U219mRJSUmS/r6yX61aNbt+zs7OkqRKlSrp5MmT+vrrr7Vhwwa1bdtWjRo10rJlyxQcHKwjR45o/fr12rBhg1599VVNnjxZ33//vVxdXe32L1lqL5rLaE2pcXd3t50vAAAAAJBRGQrtd98C/OKLL2ZpMchaFotFTk5OunXrVop5pUuX1vLly+1C+LZt2+Tj46P8+fMrV65ccnNz09atW9WhQwdJfwfb3bt3q1+/frZ13P1Ctx07dqRaS+HChZUjR4501Z03b17lz59fJ06cUMeOHdPs5+vrq3bt2qldu3Z67rnnFB4erkuXLilXrlzy8PBQq1at1KpVK/Xu3VslS5bUgQMHVKlSJeXJk0cxMTG29Rw9etR2m/6D1gQAAAAAWSlDoX3u3LkPqw5kgbi4OJ0/f16SdPnyZc2cOVPXr1/XU089laLvq6++qmnTpum1115Tnz59dOTIEY0cOVL9+/eXk5OTvLy89Morr2jQoEHKlSuXChYsqEmTJunmzZvq1q2bJKlXr16aOnWq+vfvr549e2rPnj22N7A/qMjISPXt21e+vr5q1qyZ4uLitHv3bl2+fFn9+/fXu+++q6CgIFWoUEFOTk5aunSpAgMDbW+BT0xMVLVq1eTp6an58+fLw8PD9tx7gwYNNHPmTFWvXl1JSUkaPHiwXF1dH7gmAAAAAMhqD/QiOpjLunXrFBQUJEny8fFRyZIltXTpUtWrVy/Fn2LLnz+/1q5dq0GDBql8+fLKlSuXunXrprfeesvWZ8KECUpKSlKnTp107do1hYWF6ZtvvlHOnDklSQULFtTy5cv1xhtvaNasWapatarGjRunrl27PvC+dO/eXZ6enpo8ebLefPNNeXl5qWzZsrar/N7e3po4caKOHj0qZ2dnValSRWvXrpWTk5Ny5MihCRMmqH///kpMTFTZsmW1atUq+fv7S5KmTp2ql156SXXq1FG+fPn03nvvac+ePQ9cEwAAAABkNYvBK+CBRyY2NlZ+fn4a+cMJWb19HF0OYHpDKuZ2dAkAAAAPRXI2uHr1aqrv/UqWobfHAwAAAACAR4fQDgAAAACASRHaAQAAAAAwKUI7AAAAAAAmRWgHAAAAAMCkCO0AAAAAAJgUoR0AAAAAAJMitAMAAAAAYFKEdgAAAAAATIrQDgAAAACASRHaAQAAAAAwKUI7AAAAAAAmRWgHAAAAAMCkCO0AAAAAAJiUi6MLALKj/uX95evr6+gyAAAAAJgcV9oBAAAAADApQjsAAAAAACZFaAcAAAAAwKQI7QAAAAAAmBShHQAAAAAAkyK0AwAAAABgUoR2AAAAAABMitAOAAAAAIBJEdoBAAAAADApQjsAAAAAACbl4ugCgOzonX0XZfW+4+gygAwZUjG3o0sAAADIdrjSDgAAAACASRHaAQAAAAAwKUI7AAAAAAAmRWgHAAAAAMCkCO0AAAAAAJgUoR0AAAAAAJMitAMAAAAAYFKEdgAAAAAATIrQDgAAAACASRHaAQAAAAAwKUI7AAAAAAAmRWgHAAAAAMCkCO0AAAAAAJgUoR0AAAAAAJMitAMAAAAAYFKEdgAAAAAATIrQjmwtJCRE06ZNc3QZAAAAAJAqQns2FxERIYvFIovFIldXVxUpUkQDBw7UjRs3HF3aI7Fr1y69/PLLji4DAAAAAFLl4ugC4Hjh4eGaO3eu4uPjtWXLFnXv3l03btzQ7Nmz7frFx8fL1dXVQVU+HHny5HF0CQAAAACQJq60Q+7u7goMDFRwcLA6dOigjh07asWKFYqMjFSFChU0Z84cFSlSRO7u7jIMQ1evXtXLL7+sgIAA+fr6qkGDBtq3b5/dOseOHauAgAD5+Pioe/fuGjJkiCpUqGCbHxERoaefflpTpkxRUFCQ/P391bt3b8XHx9v6LFiwQGFhYfLx8VFgYKA6dOigCxcu2OZv3rxZFotFGzduVFhYmDw9PVWzZk0dOXLErpaVK1cqLCxMVqtVuXPnVps2bWzz7r49/n77tm/fPtWvX18+Pj7y9fVV5cqVtXv37jSPbVxcnGJjY+0mAAAAAEgvQjtS8PDwsIXnY8eOacmSJVq+fLmio6MlSS1atND58+e1du1a7dmzR5UqVVLDhg116dIlSdLChQv19ttva+LEidqzZ48KFiyY4qq9JH333Xc6fvy4vvvuO82bN09RUVGKioqyzb9z547GjBmjffv2acWKFTp58qQiIiJSrGfYsGGaOnWqdu/eLRcXF3Xt2tU2b82aNWrTpo1atGihvXv32gJ+agzDuO++dezYUQUKFNCuXbu0Z88eDRky5J53H4wfP15+fn62KTg4+J7HHgAAAAD+yWIYhuHoIuA4ERERunLlilasWCFJ2rlzp5o3b66GDRuqVKlSGjdunH7//XfbbeSbNm3SM888owsXLsjd3d22ntDQUL355pt6+eWXVb16dYWFhWnmzJm2+bVr19b169dtwT8iIkKbN2/W8ePH5ezsLElq27atnJyctHjx4lRr3bVrl6pWrapr167J29tbmzdvVv369bVhwwY1bNhQkrR27Vq1aNFCt27dktVqVc2aNVWkSBEtWLAg1XWGhISoX79+6tevX7r2zdfXVzNmzFCXLl3SdXzj4uIUFxdn+xwbG6vg4GCN/OGErN4+6VoHYBZDKuZ2dAkAAAD/GrGxsfLz89PVq1fl6+ubZj+utEOrV6+Wt7e3rFaratSooTp16mjGjBmSpEKFCtk9971nzx5dv35d/v7+8vb2tk0nT57U8ePHJUlHjhxR1apV7bZx92dJKlOmjC2wS1JQUJDd7e979+5V69atVahQIfn4+KhevXqSpDNnztitp1y5cnbrkGRbT3R0tC3Q30969q1///7q3r27GjVqpAkTJtja0+Lu7i5fX1+7CQAAAADSixfRQfXr19fs2bPl6uqqfPny2d3u7eXlZdc3KSlJQUFB2rx5c4r15MiRw/azxWKxm5faDR1331ZusViUlJQkSbpx44aaNGmiJk2aaMGCBcqTJ4/OnDmjpk2b6s6dO2muJ3m7yevx8PBIa7dTSM++RUZGqkOHDlqzZo2+/vprjRw5UosXL9YzzzyT7u0AAAAAQHoR2iEvLy+Fhoamq2+lSpV0/vx5ubi4KCQkJNU+JUqU0M6dO9WpUydb271e1paaw4cP66+//tKECRNsz4FndB3S31fhN27cqJdeeum+fdOzb5JUvHhxFS9eXG+88YZeeOEFzZ07l9AOAAAA4KHg9nhkSKNGjVSjRg09/fTT+uabb3Tq1Clt27ZNb731li1Uv/baa/rkk080b948HT16VGPHjtX+/ftTXH2/l4IFC8rNzU0zZszQiRMntHLlSo0ZMybD9Y4cOVKLFi3SyJEjdejQIR04cECTJk3K1L7dunVLffr00ebNm3X69Gn9+OOP2rVrl0qVKpXhugAAAAAgPQjtyBCLxaK1a9eqTp066tq1q4oXL6727dvr1KlTyps3r6S/37A+dOhQDRw4UJUqVbK99d1qtaZ7O3ny5FFUVJSWLl2q0qVLa8KECZoyZUqG661Xr56WLl2qlStXqkKFCmrQoIF++umnTO2bs7OzLl68qM6dO6t48eJq27atmjVrplGjRmW4LgAAAABID94ej0eicePGCgwM1Pz58x1dikMlvyGSt8fjccTb4wEAALJOet8ezzPtyHI3b97UBx98oKZNm8rZ2VmLFi3Shg0btH79ekeXBgAAAACPFUI7slzybeZjx45VXFycSpQooeXLl6tRo0aOLg0AAAAAHiuEdmQ5Dw8PbdiwwdFlAAAAAMBjjxfRAQAAAABgUoR2AAAAAABMitAOAAAAAIBJEdoBAAAAADApQjsAAAAAACZFaAcAAAAAwKQI7QAAAAAAmBShHQAAAAAAkyK0AwAAAABgUoR2AAAAAABMitAOAAAAAIBJuTi6ACA76l/eX76+vo4uAwAAAIDJcaUdAAAAAACTIrQDAAAAAGBShHYAAAAAAEyK0A4AAAAAgEkR2gEAAAAAMClCOwAAAAAAJkVoBwAAAADApAjtAAAAAACYFKEdAAAAAACTIrQDAAAAAGBSLo4uAMiO3tl3UVbvO44uA+kwpGJuR5cAAACAbIwr7QAAAAAAmBShHQAAAAAAkyK0AwAAAABgUoR2AAAAAABMitAOAAAAAIBJEdoBAAAAADApQjsAAAAAACZFaAcAAAAAwKQI7QAAAAAAmBShHQAAAAAAkyK0AwAAAABgUoR2AAAAAABMitAOAAAAAIBJEdoBAAAAADApQjsAAAAAACZFaAcknTp1ShaLRdHR0ZKkzZs3y2Kx6MqVKw6tCwAAAED2RmiHaUVEROjpp592yLZr1qypmJgY+fn5OWT7AAAAACBJLo4uADAjNzc3BQYGOroMAAAAANkcV9rxWKhXr5769u2rN998U7ly5VJgYKAiIyPt+kRGRqpgwYJyd3dXvnz51LdvX9s8i8WiFStW2PXPkSOHoqKiUt3e3bfHR0VFKUeOHPrmm29UqlQpeXt7Kzw8XDExMVm4lwAAAABgj9COx8a8efPk5eWln376SZMmTdLo0aO1fv16SdKyZcv07rvv6sMPP9TRo0e1YsUKlS1bNku3f/PmTU2ZMkXz58/XDz/8oDNnzmjgwIH3XCYuLk6xsbF2EwAAAACkF7fH47FRrlw5jRw5UpJUrFgxzZw5Uxs3blTjxo115swZBQYGqlGjRnJ1dVXBggVVtWrVLN1+fHy8PvjgAxUtWlSS1KdPH40ePfqey4wfP16jRo3K0joAAAAAZB9cacdjo1y5cnafg4KCdOHCBUnS888/r1u3bqlIkSLq0aOHvvzySyUkJGTp9j09PW2B/e7tp2Xo0KG6evWqbTp79myW1gQAAADg343QjseGq6ur3WeLxaKkpCRJUnBwsI4cOaL3339fHh4eevXVV1WnTh3Fx8fb+hqGYbd88rwH2f7d67ybu7u7fH197SYAAAAASC9CO/41PDw81KpVK02fPl2bN2/W9u3bdeDAAUlSnjx57F4ad/ToUd28edNRpQIAAABAuvBMO/4VoqKilJiYqGrVqsnT01Pz58+Xh4eHChUqJElq0KCBZs6cqerVqyspKUmDBw9OceUcAAAAAMyGK+34V8iRI4c++ugj1apVS+XKldPGjRu1atUq+fv7S5KmTp2q4OBg1alTRx06dNDAgQPl6enp4KoBAAAA4N4sxv0eygWQZWJjY+Xn56eRP5yQ1dvH0eUgHYZUzO3oEgAAAPAvlJwNrl69es93X3GlHQAAAAAAkyK0AwAAAABgUoR2AAAAAABMitAOAAAAAIBJEdoBAAAAADApQjsAAAAAACZFaAcAAAAAwKQI7QAAAAAAmBShHQAAAAAAkyK0AwAAAABgUoR2AAAAAABMitAOAAAAAIBJEdoBAAAAADApQjsAAAAAACZFaAcAAAAAwKRcHF0AkB31L+8vX19fR5cBAAAAwOS40g4AAAAAgEkR2gEAAAAAMClCOwAAAAAAJkVoBwAAAADApAjtAAAAAACYFKEdAAAAAACTIrQDAAAAAGBShHYAAAAAAEyK0A4AAAAAgEkR2gEAAAAAMCkXRxcAZEfv7Lsoq/cdR5eBNAypmNvRJQAAAACSuNIOAAAAAIBpEdoBAAAAADApQjsAAAAAACZFaAcAAAAAwKQI7QAAAAAAmBShHQAAAAAAkyK0AwAAAABgUoR2AAAAAABMitAOAAAAAIBJEdoBAAAAADApQjsAAAAAACZFaAcAAAAAwKQI7QAAAAAAmBShHQAAAAAAkyK0AwAAAABgUoT2bMRisWjFihVpzg8JCdG0adOydJsRERF6+umn79knI9uNiopSjhw5HrguAAAAAHgcENr/RS5cuKCePXuqYMGCcnd3V2BgoJo2bart27ena/ldu3bp5ZdfTlffyMhIWSyWe06nTp3K8u0CAAAAQHbi4ugCkHWeffZZxcfHa968eSpSpIj++OMPbdy4UZcuXUrX8nny5En3tgYOHKhevXrZPlepUkUvv/yyevTokeH1ZWS7AAAAAJCdcKX9X+LKlSvaunWrJk6cqPr166tQoUKqWrWqhg4dqhYtWqS6zOjRo5U3b15FR0dLSnmbusVi0ccff6xnnnlGnp6eKlasmFauXClJ8vb2VmBgoG1ydnaWj49PirZkU6ZMUVBQkPz9/dW7d2/Fx8fb5t293StXrujll19W3rx5ZbVa9cQTT2j16tWp7sPFixdVtWpVtWrVSrdv39bmzZtlsVi0ceNGhYWFydPTUzVr1tSRI0fsllu1apUqV64sq9WqIkWKaNSoUUpISLDNj4yMtN2xkC9fPvXt29c2b9asWSpWrJisVqvy5s2r55577t6DAwAAAACZxJX2fwlvb295e3trxYoVql69utzd3dPsaxiG+vXrpxUrVmjr1q0qVqxYmn1HjRqlSZMmafLkyZoxY4Y6duyo06dPK1euXOmu7bvvvlNQUJC+++47HTt2TO3atVOFChXsrsonS0pKUrNmzXTt2jUtWLBARYsW1cGDB+1+AZDst99+U5MmTRQWFqY5c+bIxeX/vs7Dhg3T1KlTlSdPHvXq1Utdu3bVjz/+KEn65ptv9OKLL2r69Ol68skndfz4cdvt+SNHjtSyZcv07rvvavHixSpTpozOnz+vffv2SZJ2796tvn37av78+apZs6YuXbqkLVu2pLnvcXFxiouLs32OjY1N93EDAAAAAEL7v4SLi4uioqLUo0cPffDBB6pUqZLq1q2r9u3bq1y5crZ+CQkJ6ty5s3bv3q0ff/xRBQoUuOd6IyIi9MILL0iSxo0bpxkzZmjnzp0KDw9Pd205c+bUzJkz5ezsrJIlS6pFixbauHFjqqF9w4YN2rlzpw4dOqTixYtLkooUKZKi36+//qrGjRurdevWeu+992SxWOzmv/3226pbt64kaciQIWrRooVu374tq9Wqt99+W0OGDFGXLl1s6x8zZozefPNNjRw5UmfOnFFgYKAaNWokV1dXFSxYUFWrVpUknTlzRl5eXmrZsqV8fHxUqFAhVaxYMc19Hz9+vEaNGpXuYwUAAAAA/8Tt8f8izz77rM6dO6eVK1eqadOm2rx5sypVqqSoqChbnzfeeEPbt2/Xli1b7hvYJdkFfi8vL/n4+OjChQsZqqtMmTJ2V8qDgoLSXEd0dLQKFChgC+ypuXXrlmrXrq2nn35a06dPTxHY7647KChIkmzb3LNnj0aPHm27O8Hb21s9evRQTEyMbt68qeeff163bt1SkSJF1KNHD3355Ze2W+cbN26sQoUKqUiRIurUqZMWLlyomzdvplnr0KFDdfXqVdt09uzZexwpAAAAALBHaP+XsVqtaty4sUaMGKFt27YpIiJCI0eOtM1v3Lixfv/9d33zzTfpWp+rq6vdZ4vFoqSkpAzVlJF1eHh43Hd97u7uatSokdasWaPffvvtvttMDvXJ20xKStKoUaMUHR1tmw4cOKCjR4/KarUqODhYR44c0fvvvy8PDw+9+uqrqlOnjuLj4+Xj46Off/5ZixYtUlBQkEaMGKHy5cvrypUradbq6+trNwEAAABAehHa/+VKly6tGzdu2D63atVKn332mbp3767Fixc7sLLUlStXTr/99pt+/fXXNPs4OTlp/vz5qly5sho0aKBz585laBuVKlXSkSNHFBoammJycvr7lPDw8FCrVq00ffp0bd68Wdu3b9eBAwck/f0oQqNGjTRp0iTt379fp06d0qZNmzK/0wAAAACQBp5p/5e4ePGinn/+eXXt2lXlypWTj4+Pdu/erUmTJql169Z2fZ955hnNnz9fnTp1kouLi6nefl63bl3VqVNHzz77rN555x2Fhobq8OHDslgsds/ROzs7a+HChXrhhRfUoEEDbd68WYGBgenaxogRI9SyZUsFBwfr+eefl5OTk/bv368DBw5o7NixioqKUmJioqpVqyZPT0/Nnz9fHh4eKlSokFavXq0TJ06oTp06ypkzp9auXaukpCSVKFHiYR0SAAAAANkYof1fwtvbW9WqVdO7776r48ePKz4+XsHBwerRo4f+85//pOj/3HPPKSkpSZ06dZKTk5PatGnjgKpTt3z5cg0cOFAvvPCCbty4odDQUE2YMCFFPxcXFy1atEjt2rWzBff0aNq0qVavXq3Ro0dr0qRJcnV1VcmSJdW9e3dJUo4cOTRhwgT1799fiYmJKlu2rFatWiV/f3/lyJFDX3zxhSIjI3X79m0VK1ZMixYtUpkyZbLyEAAAAACAJMliGIbh6CKA7CI2NlZ+fn4a+cMJWb19HF0O0jCkYm5HlwAAAIB/ueRscPXq1Xu++4pn2gEAAAAAMClCOwAAAAAAJkVoBwAAAADApAjtAAAAAACYFKEdAAAAAACTIrQDAAAAAGBShHYAAAAAAEyK0A4AAAAAgEkR2gEAAAAAMClCOwAAAAAAJkVoBwAAAADApAjtAAAAAACYFKEdAAAAAACTIrQDAAAAAGBShHYAAAAAAEzKxdEFANlR//L+8vX1dXQZAAAAAEyOK+0AAAAAAJgUoR0AAAAAAJMitAMAAAAAYFKEdgAAAAAATIrQDgAAAACASRHaAQAAAAAwKUI7AAAAAAAmRWgHAAAAAMCkCO0AAAAAAJgUoR0AAAAAAJMitAMAAAAAYFKEdgAAAAAATIrQDgAAAACASRHaAQAAAAAwKUI7AAAAAAAmRWgHAAAAAMCkCO0AAAAAAJgUoR0AAAAAAJMitAMAAAAAYFIuji4AyE4Mw5AkxcbGOrgSAAAAAI6UnAmSM0JaCO3AI3Tx4kVJUnBwsIMrAQAAAGAG165dk5+fX5rzCe3AI5QrVy5J0pkzZ+55YsK8YmNjFRwcrLNnz8rX19fR5SATGMPHH2P4+GMMH3+M4eOPMXQ8wzB07do15cuX7579CO3AI+Tk9PdrJPz8/PjH8THn6+vLGD7mGMPHH2P4+GMMH3+M4eOPMXSs9FzI40V0AAAAAACYFKEdAAAAAACTIrQDj5C7u7tGjhwpd3d3R5eCTGIMH3+M4eOPMXz8MYaPP8bw8ccYPj4sxv3eLw8AAAAAAByCK+0AAAAAAJgUoR0AAAAAAJMitAMAAAAAYFKEdgAAAAAATIrQDjyAWbNmqXDhwrJarapcubK2bNlyz/7ff/+9KleuLKvVqiJFiuiDDz5I0Wf58uUqXbq03N3dVbp0aX355ZcPq3wo68cwKipKFoslxXT79u2HuRvZWkbGMCYmRh06dFCJEiXk5OSkfv36pdqP8/DRyuox5Dx89DIyhl988YUaN26sPHnyyNfXVzVq1NA333yToh/n4aOV1WPIeegYGRnHrVu3qlatWvL395eHh4dKliypd999N0U/zkXHI7QDmfT555+rX79+GjZsmPbu3asnn3xSzZo105kzZ1Ltf/LkSTVv3lxPPvmk9u7dq//85z/q27evli9fbuuzfft2tWvXTp06ddK+ffvUqVMntW3bVj/99NOj2q1s5WGMoST5+voqJibGbrJarY9il7KdjI5hXFyc8uTJo2HDhql8+fKp9uE8fLQexhhKnIePUkbH8IcfflDjxo21du1a7dmzR/Xr19dTTz2lvXv32vpwHj5aD2MMJc7DRy2j4+jl5aU+ffrohx9+0KFDh/TWW2/prbfe0n//+19bH85FkzAAZErVqlWNXr162bWVLFnSGDJkSKr933zzTaNkyZJ2bT179jSqV69u+9y2bVsjPDzcrk/Tpk2N9u3bZ1HV+KeHMYZz5841/Pz8srxWpC6jY/hPdevWNV5//fUU7ZyHj9bDGEPOw0frQcYwWenSpY1Ro0bZPnMePloPYww5Dx+9rBjHZ555xnjxxRdtnzkXzYEr7UAm3LlzR3v27FGTJk3s2ps0aaJt27alusz27dtT9G/atKl2796t+Pj4e/ZJa53IvIc1hpJ0/fp1FSpUSAUKFFDLli1TXHlA1sjMGKYH5+Gj87DGUOI8fFSyYgyTkpJ07do15cqVy9bGefjoPKwxlDgPH6WsGMe9e/dq27Ztqlu3rq2Nc9EcCO1AJvz1119KTExU3rx57drz5s2r8+fPp7rM+fPnU+2fkJCgv/7665590lonMu9hjWHJkiUVFRWllStXatGiRbJarapVq5aOHj36cHYkG8vMGKYH5+Gj87DGkPPw0cmKMZw6dapu3Lihtm3b2to4Dx+dhzWGnIeP1oOMY4ECBeTu7q6wsDD17t1b3bt3t83jXDQHF0cXADzOLBaL3WfDMFK03a//3e0ZXSceTFaPYfXq1VW9enXb/Fq1aqlSpUqaMWOGpk+fnlVl4x8exjnDefhoZfXx5jx89DI7hosWLVJkZKS++uorBQQEZMk6kTlZPYach46RmXHcsmWLrl+/rh07dmjIkCEKDQ3VCy+88EDrRNYitAOZkDt3bjk7O6f4LeOFCxdS/DYyWWBgYKr9XVxc5O/vf88+aa0TmfewxvBuTk5OqlKlClcWHoLMjGF6cB4+Og9rDO/GefjwPMgYfv755+rWrZuWLl2qRo0a2c3jPHx0HtYY3o3z8OF6kHEsXLiwJKls2bL6448/FBkZaQvtnIvmwO3xQCa4ubmpcuXKWr9+vV37+vXrVbNmzVSXqVGjRor+3377rcLCwuTq6nrPPmmtE5n3sMbwboZhKDo6WkFBQVlTOGwyM4bpwXn46DysMbwb5+HDk9kxXLRokSIiIvTZZ5+pRYsWKeZzHj46D2sM78Z5+HBl1b+nhmEoLi7O9plz0SQe+avvgH+JxYsXG66ursYnn3xiHDx40OjXr5/h5eVlnDp1yjAMwxgyZIjRqVMnW/8TJ04Ynp6exhtvvGEcPHjQ+OSTTwxXV1dj2bJltj4//vij4ezsbEyYMME4dOiQMWHCBMPFxcXYsWPHI9+/7OBhjGFkZKSxbt064/jx48bevXuNl156yXBxcTF++umnR75/2UFGx9AwDGPv3r3G3r17jcqVKxsdOnQw9u7da/zyyy+2+ZyHj9bDGEPOw0cro2P42WefGS4uLsb7779vxMTE2KYrV67Y+nAePloPYww5Dx+9jI7jzJkzjZUrVxq//vqr8euvvxpz5swxfH19jWHDhtn6cC6aA6EdeADvv/++UahQIcPNzc2oVKmS8f3339vmdenSxahbt65d/82bNxsVK1Y03NzcjJCQEGP27Nkp1rl06VKjRIkShqurq1GyZElj+fLlD3s3srWsHsN+/foZBQsWNNzc3Iw8efIYTZo0MbZt2/YodiXbyugYSkoxFSpUyK4P5+GjldVjyHn46GVkDOvWrZvqGHbp0sVunZyHj1ZWjyHnoWNkZBynT59ulClTxvD09DR8fX2NihUrGrNmzTISExPt1sm56HgWw/j/b1ECAAAAAACmwjPtAAAAAACYFKEdAAAAAACTIrQDAAAAAGBShHYAAAAAAEyK0A4AAAAAgEkR2gEAAAAAMClCOwAAAAAAJkVoBwAAAADApAjtAAAAAACYFKEdAAA8EhEREbJYLCmmY8eOZcn6o6KilCNHjixZV2ZFRETo6aefdmgN93Lq1ClZLBZFR0c7uhQAQDq5OLoAAACQfYSHh2vu3Ll2bXny5HFQNWmLj4+Xq6uro8vIUnfu3HF0CQCATOBKOwAAeGTc3d0VGBhoNzk7O0uSVq1apcqVK8tqtapIkSIaNWqUEhISbMu+8847Klu2rLy8vBQcHKxXX31V169flyRt3rxZL730kq5evWq7gh8ZGSlJslgsWrFihV0dOXLkUFRUlKT/u/q8ZMkS1atXT1arVQsWLJAkzZ07V6VKlZLValXJkiU1a9asDO1vvXr19Nprr6lfv37KmTOn8ubNq//+97+6ceOGXnrpJfn4+Kho0aL6+uuvbcts3rxZFotFa9asUfny5WW1WlWtWjUdOHDAbt3Lly9XmTJl5O7urpCQEE2dOtVufkhIiMaOHauIiAj5+fmpR48eKly4sCSpYsWKslgsqlevniRp165daty4sXLnzi0/Pz/VrVtXP//8s936LBaLPv74Yz3zzDPy9PRUsWLFtHLlSrs+v/zyi1q0aCFfX1/5+PjoySef1PHjx23zH/R4AkB2RGgHAAAO98033+jFF19U3759dfDgQX344YeKiorS22+/bevj5OSk6dOn63//+5/mzZunTZs26c0335Qk1axZU9OmTZOvr69iYmIUExOjgQMHZqiGwYMHq2/fvjp06JCaNm2qjz76SMOGDdPbb7+tQ4cOady4cRo+fLjmzZuXofXOmzdPuXPn1s6dO/Xaa6/plVde0fPPP6+aNWvq559/VtOmTdWpUyfdvHnTbrlBgwZpypQp2rVrlwICAtSqVSvFx8dLkvbs2aO2bduqffv2OnDggCIjIzV8+HDbLyKSTZ48WU888YT27Nmj4cOHa+fOnZKkDRs2KCYmRl988YUk6dq1a+rSpYu2bNmiHTt2qFixYmrevLmuXbtmt75Ro0apbdu22r9/v5o3b66OHTvq0qVLkqTff/9dderUkdVq1aZNm7Rnzx517drV9ouXrDqeAJDtGAAAAI9Aly5dDGdnZ8PLy8s2Pffcc4ZhGMaTTz5pjBs3zq7//PnzjaCgoDTXt2TJEsPf39/2ee7cuYafn1+KfpKML7/80q7Nz8/PmDt3rmEYhnHy5ElDkjFt2jS7PsHBwcZnn31m1zZmzBijRo0a99zH1q1b2z7XrVvXqF27tu1zQkKC4eXlZXTq1MnWFhMTY0gytm/fbhiGYXz33XeGJGPx4sW2PhcvXjQ8PDyMzz//3DAMw+jQoYPRuHFju20PGjTIKF26tO1zoUKFjKefftquT/K+7t27N819SK7Tx8fHWLVqla1NkvHWW2/ZPl+/ft2wWCzG119/bRiGYQwdOtQoXLiwcefOnVTXmZnjCQAwDJ5pBwAAj0z9+vU1e/Zs22cvLy9Jf1853rVrl92V9cTERN2+fVs3b96Up6envvvuO40bN04HDx5UbGysEhISdPv2bd24ccO2ngcRFhZm+/nPP//U2bNn1a1bN/Xo0cPWnpCQID8/vwytt1y5crafnZ2d5e/vr7Jly9ra8ubNK0m6cOGC3XI1atSw/ZwrVy6VKFFChw4dkiQdOnRIrVu3tutfq1YtTZs2TYmJibZHDv65T/dy4cIFjRgxQps2bdIff/yhxMRE3bx5U2fOnElzX7y8vOTj42OrOzo6Wk8++WSq7wLIyuMJANkNoR0AADwyXl5eCg0NTdGelJSkUaNGqU2bNinmWa1WnT59Ws2bN1evXr00ZswY5cqVS1u3blW3bt1st4ynxWKxyDAMu7bUlvln8E9KSpL09y3d1apVs+uXHIjT6+4Qa7FY7NosFovdNu8lua9hGLafk929j5LS/cuMiIgI/fnnn5o2bZoKFSokd3d31ahRI8XL61Lbl+S6PTw80lx/Vh5PAMhuCO0AAMDhKlWqpCNHjqQa6CVp9+7dSkhI0NSpU+Xk9PcreZYsWWLXx83NTYmJiSmWzZMnj2JiYmyfjx49muL58bvlzZtX+fPn14kTJ9SxY8eM7k6W2LFjhwoWLChJunz5sn799VeVLFlSklS6dGlt3brVrv+2bdtUvHjxe4ZgNzc3SUpxnLZs2aJZs2apefPmkqSzZ8/qr7/+ylC95cqV07x581J9874ZjicAPK4I7QAAwOFGjBihli1bKjg4WM8//7ycnJy0f/9+HThwQGPHjlXRokWVkJCgGTNm6KmnntKPP/6oDz74wG4dISEhun79ujZu3Kjy5cvL09NTnp6eatCggWbOnKnq1asrKSlJgwcPTtefc4uMjFTfvn3l6+urZs2aKS4uTrt379bly5fVv3//h3UobEaPHi1/f3/lzZtXw4YNU+7cuW1/A37AgAGqUqWKxowZo3bt2mn79u2aOXPmfd/GHhAQIA8PD61bt04FChSQ1WqVn5+fQkNDNX/+fIWFhSk2NlaDBg2655Xz1PTp00czZsxQ+/btNXToUPn5+WnHjh2qWrWqSpQo4fDjCQCPK94eDwAAHK5p06ZavXq11q9frypVqqh69ep65513VKhQIUlShQoV9M4772jixIl64okntHDhQo0fP95uHTVr1lSvXr3Url075cmTR5MmTZIkTZ06VcHBwapTp446dOiggQMHytPT8741de/eXR9//LGioqJUtmxZ1a1bV1FRUbY/m/awTZgwQa+//roqV66smJgYrVy50nalvFKlSlqyZIkWL16sJ554QiNGjNDo0aMVERFxz3W6uLho+vTp+vDDD5UvXz7bc/Fz5szR5cuXVbFiRXXq1El9+/ZVQEBAhur19/fXpk2bdP36ddWtW1eVK1fWRx99ZPsFiaOPJwA8rixGag9AAQAAwCE2b96s+vXr6/Lly8qRI4ejywEAOBhX2gEAAAAAMClCOwAAAAAAJsXt8QAAAAAAmBRX2gEAAAAAMClCOwAAAAAAJkVoBwAAAADApAjtAAAAAACYFKEdAAAAAACTIrQDAAAAAGBShHYAAAAAAEyK0A4AAAAAgEn9PzP5QtloYKxoAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10, 6))\n", + "plt.barh(importance_df['Feature'], importance_df['Importance'], color='skyblue')\n", + "plt.xlabel('Feature Importance')\n", + "plt.ylabel('Features')\n", + "plt.title('Feature Importance from Gradient Boosting')\n", + "plt.gca().invert_yaxis() # Invert y-axis to show the most important feature at the top\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 47d25f8913d51159963aca7f4b00deb5a30175ae Mon Sep 17 00:00:00 2001 From: avr-lab Date: Thu, 21 Nov 2024 23:31:00 -0600 Subject: [PATCH 2/7] Add files via upload --- Requirement.txt | 6 ++++++ 1 file changed, 6 insertions(+) create mode 100644 Requirement.txt diff --git a/Requirement.txt b/Requirement.txt new file mode 100644 index 0000000..cc4ffde --- /dev/null +++ b/Requirement.txt @@ -0,0 +1,6 @@ +pandas +numpy +dtale +scikit-learn +matplotlib +optuna From 9f1d7e674600b2b91fe2d052a5a0ade71ce5600c Mon Sep 17 00:00:00 2001 From: avr-lab Date: Thu, 21 Nov 2024 23:33:18 -0600 Subject: [PATCH 3/7] Add files via upload --- Healthcare.html | 8529 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 8529 insertions(+) create mode 100644 Healthcare.html diff --git a/Healthcare.html b/Healthcare.html new file mode 100644 index 0000000..c4df98d --- /dev/null +++ b/Healthcare.html @@ -0,0 +1,8529 @@ + + + + + +Healthcare + + + + + + + + + + + + +
+ + + + + + + +
+ + From 70bccec761654ec8d32b62d2907aa01c9825c355 Mon Sep 17 00:00:00 2001 From: avr-lab Date: Thu, 21 Nov 2024 23:49:49 -0600 Subject: [PATCH 4/7] Delete Healthcare.html --- Healthcare.html | 8529 ----------------------------------------------- 1 file changed, 8529 deletions(-) delete mode 100644 Healthcare.html diff --git a/Healthcare.html b/Healthcare.html deleted file mode 100644 index c4df98d..0000000 --- a/Healthcare.html +++ /dev/null @@ -1,8529 +0,0 @@ - - - - - -Healthcare - - - - - - - - - - - - -
- - - - - - - -
- - From 758cbc0bf7077a9738f70eb84102ddf0c5becdd2 Mon Sep 17 00:00:00 2001 From: avr-lab Date: Thu, 21 Nov 2024 23:58:37 -0600 Subject: [PATCH 5/7] Add files via upload --- Fullprojectoutput.pdf | Bin 0 -> 534745 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 Fullprojectoutput.pdf diff --git a/Fullprojectoutput.pdf b/Fullprojectoutput.pdf new file mode 100644 index 0000000000000000000000000000000000000000..cd3a3ebedd5984a2e30a2da587779d94fe342f74 GIT binary patch literal 534745 zcmeEv1z1(v*7l}5r9nbKO1fJbL?lGIyIUIRP60u>rMp48qy(h9LmHG&>famVsK;}^ zbMJY+``vSY_ru!kwfBlS=U8jJYrG>Sxs0$VEh8NZJb7DsTLwHMF$1xsjtM*u4?MlR zv7MPdF(nl|y^xK*wwC%mHS=cT0d3Ko4L5AOAj-1fERWP~VoA8MuMmH#@NWZU+%ZJF$m$ zz!SpLKNKLgvv~~qAVthT$G`+nud7YWNXG!|tH7uK0um324YbW{ueZ^*H6^BhU}>TM zTYFePA6^xBdOJIP8w+B3VSRgJU41z*LG>?ANp} zJ2oSzFJHuPy&o$BBPSaJI|s{`{l59)oBe*@XC-MJ6MbDfU`HS8*j*2sggJ1y;OP~O z_3Vs@*?>J3*EcpavLj{&4#M?sQlQ>`8XaMMT}wTEVpZT}p$<=fU*EzIxDO+!>vHh) zqQ+*xeiPG+ngNIO)0Uv&x3vRaE#~l!iMm=ilK=o1@DDT`pTGVr&Ff=;ddSH1Wvm$4 zzUj35byNSj#tRzT*~;kK2w9q20VQQ&N6Y~nV@oqjn}=4~y1?t@t9an)ue-pI;At1nk zjfH}Q1a9pH{2c&^28B+-C;)v!RvYG)H3pOC(==F8!O|8?xuJbBW*r+ZICv~<99%r| z+Z2>k)GVxQ>>Qk2Lc$`VV&W3_9?CybP*hS@(bdy8Ff=kYv9)__@8IaYCcR*0%PJ&aPM8J#U6bM#sh{CZ`scmRDBS z);Hd69vr@Ve{_6u`r#v}Utj=;Pu=?3vmg3}2J9C&PzI1NpnidYI{+65G)O2CMrd>a zSr~2W8@HG|VKD@srj@q9kuuBeW9rxp!DErJERr99x^~^OKi4s@f2n6*JN8?@rT~Z# zU_jwPpaJ*+m+l+sK>*5suv|_4OHrh_V-BFz1 z-%)?0D0T*T5d>s$nh&}pagd<9x6O4?yLGI0*aKf_$?|zDPTlFr+ck)=)MhyaIFwL! z7_ln9j3#^Cl5^R#$eI1{>NV%BQyS$q2EhR_%=#yBrDf9XmeU%Kr<3-&4%SI~;e*~| zca;Rt)FBwry{4tlh$CbpG~cV*ZX2&{sA`FRp)M8lKy-Gjs*a5+Bc?7i+Rj|w@8;wD zL#c$#2C3|XjE9cH3Q5Dx#6*{8J@Ko1s+MP|F7NVv;uarU0^uD5m6A1SI{;CfQ;+N|CtkVArRNt0l z>m1@3k97|3i{LC1m5veXxMX~M#hRz6s0f&M#ns9}-ggsLCTO&s!8u0K!##O}Cv~w_ zY?xszGd&ahp{RJd!cRQpJ|?~kWz@-wTc~=gLb|JD04K!&9_}1RX~kISQ8Rj$-cz;@ zRpVAH%wn}dbSql0JrSZ}#NP5-TSSwKt(>dan@PW_HtztXTQSSX-y3g z-HT_9oTT;WSdY-V2((9EDd=RNgt#W%#UIy%KbO{BGIc|DM>ZYYVt*Q^RpQ3?s4fY5 zyR1{u7Uk&&2qGG1yvMPvmY60g7HLlAiz%pT%5PCv9EQ8H?;lLE&@?`J=Cue<-`7%F zVPi$}7A0h=swvIAMMQ3Ui`gh%|7E;cq?A)$Q3_F9`w z+yz>Cg)4y172w!s)Vy)Xc2P=EcwB?~Ov3eoX;VkR$RmbH$5;Wkdpc=@OzUnp2H4>! z=A7%@6zQl1_qLI$%KaI|gDZfsTbU_MR+MZCJ3{%6b-+lM?-Eb_uG-V;EGs*JtOy2Z z0n1uS!QCR{7(w4t9eqrzv&qp;#dw03v{D$op{nQlvZS3y zWPMFcAaQWQ*d1ojbhM(K`aHXIf=Tb*8Y>~kOJj!-XJBF|K!JRNa@QHEVt<2|ar8I{ zEl2|z`h}?pLjxMh{@YQ#jS!*X>9H2TFwLrubTOikBz)dnVpfP%Lk$4AfiXb|cfq;R zro<%4{bUQ%^p3OpOrs5Xq^E~Fqd>ooBu*6hA`&0FE_f)a5Ka^)nNJ{DLx$D@7~nLO zoBH=yecknI8E~?Gd5&WGD;CzD7r{4BeJ%8Fp!x^n>+fo%;QWH>Ur_yj3e`6$&Z&xV z+*<`MqOJh2*@66(PX>;gO0NJ0(#PQx_5vG$C~%<=jut(usdT=p4GmO!{3 zFwW!|njaucViwaIEc&3JfZ#*wET_v$Nn+BbyhMuozUNGADK_*h zO?>!9kc@8WY)1M?#IA`1p?ilpv#C& zQFmLBbskOs_wXfHj0iyg4!iO+rYp*qzJadMga)mf^!JOSZ}2rRA<|N9SnLk?zwLl3 z+0tLr(Nc;=7|ws@{b=jFUb9$9cXPG2e!WkFQ1G$?k~NqX7YB#j*W-SS5Bup%2po$b zqW1l@2-Mq=@58)2VE`Z2x!Zn%U|*O3M$X@a@Ryi?Km8E#ErNl>{tbftzzY0AuwOhI zkU{*v<=Ot0#^yDGVFS(7A0W*A6N1fOBiJsxF77f*ue47xP1EoZehm-f67G(jLp;rg zjNunX+sT--Og$}DeypqBx<)HYjX9^Wi%l4tn$;8ml?X8LrxTMZB8F*1=#pu3rZI0+ z^&?;36);MV=OmAyf$B3)EbXAHb#Pdc4kaS2oV~5QcYZU+k!cNT#B8Sjh1zU~wy6(# zk&dyf`swRc1hD}Da;96^KsEqf(9cF(t(?HFo3E13 z_W-}04|{O;eLu6tnB5M$jG}73r0S%$*9w=J)kXoPH${&PvKUMdWh$ZxWx5CdPqFI@ zM+d|%#xK~#{8vaiMi$0@$@pUaftULu@Y)$_k_6W#=sFn4)gQrBk>Ib%jbR{A^Aaaf zOD8d^A)yONHIgvC5j@R=hp&Ph+p2;W`GTQt4G%sWIz!yZI^fc8mn#`z>46ajU-4pZ z+q-?g^+m9p^2|zEhno@GwMItG@8hw+TK&)tr4iOF+Cm4`cXGEB9>1)5_eSi8w zj>fMIoCVi5uu-Q$EwN%M(bm4yEcC^!=#s{c6~e3J1pxu$a+=3c(jp=WbIy2ZJNJh3 zlN@12B(opyoex{2D4dCKCm)!=GauF^k@S(aB!e6E;(~=806dn#;+x*Mu)d zGL@hovF;bg1bq9-dFTcaRxKg+d&s;Va*)x-%=p#lWBx04_dg-~Z!q)va{CQ4nSZdt z|E`!B`pfG3@3Hze*E|<@ggTrn6!6qT*RtHLQ>drLu;Pswvcg7XBwD>5z}%I3SZsL_ zigos=;$Sy?(J3^x{ido2LfXtls-Ozx3c7l;Pa>QKIg~1{CRKu~7FH?>)`;C!D5*^H zn_aj+z6t~4r{<%;bxsV2iS&55RRiZijOddq~>o!N2+{L+wvc>U~FY0UYz zA46vdaSjlV>$v+d&xhU)v)D_+@5bqC)d=Aof_PqQO?g+z{rRBB^wUx8D!$(Ru4ZP1 zx5@{@1IY*XSbL3W%eoDTi7RBK2qIr$dabd&R$7WxtFJ$x=nM~6*^Rn$a)~^`gKG=E z$!1|NOlPrFQrQZp$jFjYbZ%(lZxP1=c2M~LHOc!^lJ#1vej-_a3qxT3_b`0l8L7Z< zknj9&e}wZt8mZv2Ok;?M+spMfRLo$r|JyoWAd2 zsK_MVVr?8{Tz-svpPtS`oxUkpa>kAMxke#Dfy(;)g>whqLwZ!yMa}y%M_ z1O3nMlD4CE>LJ5v-;&s)#Bl@w%!PRF{RC&f5(FGyO;hH74?plN%zhsN!u$hS@OOpT zU*zhS(3W3*(ElSpC|*-r6RM+oJ64^@rEh`KX7w~*zrM9TnIbm+M7mjMG_!@4yq1l? zO_P2QKyKna$#8)2;}PP05%x~ZoyFO%|7KKc{R?F!I@He3)av-h>;N9-g_KiDtcJqV zJ>}T@Y%wtkb9iCLROf#0(&QuMqo3@MioT29`@nvGC*qZqwFdgIp=H1opn|Y4eRkgD z5^>ZH$+$Bc68(0PwWHuY9h5#xGC?OyaSCcl`kwb-hgts_5D6q|S%Kv0&mrq8qsIu0 z*ZUky$NcZ1^uC9zA6UG91X-jo6QUB$llMc2-`I*`1Vok^e5O^$%6Ol#FUH4mc)W_o z10(K!c?AyvknI$9s4q?O~cj zFHaJCzBV{qzZeXKgrr(FFPVnJEqPRDQbMiae7h7+5hON|E0amohbSFrELi<$-SdK#s{rzvD&Uw~yce3*}s+;Mo zMXE;jJMKO$?T)*HO^AqhT8ZT%kVxc!=tmc~4;`LR3i#Hu=)na5Oz=y*{t5VfVHlX$ zz7h;9e}!Q9^W^xq;P-tH5X%o_!!Pjr#moMm^RgT14b{gSs`Uu;geG%%m0bSqHz~xF zS!i_4%C`fvsxy>a#uWCIZn1)<0s3)W9=jvu)rx~g8JpEDCy-W&_HO*4(J7ck|I z1D7V&@F%(xOwfK+Z(P zRgPXb#0m2Yq6CYHKRQmynp2vdn{Cn0F*|$o(w3>iwq#do6B*x_EX3Q(F)v#7?oEmg zqTsn(r$fbUd5#G(mv5S?t5wBU4{!OK3B-9VvC2F#)Qw~w(0JzFl2Snt!bjxFH_Ahk zX$n2v_HiKPxRe;&Xq-yk4uIYlDoD;Wx$j zSJ*e8^YLGaTxI!zZ~I5+_I=a~!|}eA_V2ugz^E7dzCB}ot>3#1#kU7Nt*#MmamYm{ zZwHf9zQNGmzxC)ho2(c)r3FIhxds)5tFu0iik!@QZ~^zvHW?{5#Igqe_cqz|MbbDH z6Z#?j?HpyZ?&juOZ4i28WG`FR4eqC+>A>nT`TH0sx zza9jTG?*B^QlTt=#XA1;!uSTISU}?cjR|G>!Bqacq7?ZrCiK6D3H^I|4@pkhmkyRt zwo^_;cqA_JkKHRT!q1r8E1bBioEkM|r`cWWf6ri!{V{{7ZL)vbNk8qrbaO5$b;dE) z&`+znsx(TOORwLQs#3v48I}wxS~5m3uSj(r9aC}foG499cX>Wsu@Spw>_{4H&QVuh zWMn1Mczd@vhBDKRxn%lIfI)&OdY|lxg;vLNh}C=l8P3DbbPsr-^YF*zr_RJ{ef0^_ zSlGT8Y%G6;=wf6A=4|~7*%&N8kXwI*X*&ZAl5KYhIu9r+*}SqUa)=`(u&HQqAO#AD zMM{vlL?Xlm21|>w1Vw{`7x3yZG!;4|GRWZm#t*3W3GY2=N&R&qT1JM~e z4{doorDoDHs?Yrp(ezfeIr_n|i|KN#(QSMZGa1)l#s;Q9Zt z8&Uim|G@D8=2-gtRx;V;=o$aiW!FU<{}fNsG|xP}#ZE$_`b4K=Khy9cMbO^+3(;K^ zL`OeU^_y!!mqzd3#&c8nI@~WSQ6mX;(wdm!MlrPGN_E6%I7WcK?m<4? zn6P>ceJJ@Ttjuk{c@~w6U!@4gj7l(k<6YFh>S{sd$9#cZ?9TX}DREpsr`YrDXirPt zT<;p-vzWWq9kdH7=e zD}2JgM6_ND|2Gqs^#^j{?~1~|yo|rRjQ;`Ima_UwE^g?SNL$}!TP`W<($xCDI`<5J z)_|mB>6OeRsV-={NPh#?F6jzj5%Jb`r+gCU+4*oaTos!lcd0LNGP3E88~4Mo>Ek!2 z3C3>P1twfaCw_~B_*Hn`N(j^P)hO1MmWo+xq0l*|Ks^_h~V=UpO_A@%ikxc49UV9t3Z zO*N4^+=-53r*D_lDYN3fv#RGC#|gdfs6pD>xY~{HtO)ZpBN9)8>L9svIaGk|s6kO~ zj4mTYFiKOMw>`ik5`#HXaP|4}3yGuL_w)gCB>Rp24lj)3kIS=->%8h_RaEAB5wS^z zb^S%O3UK)zM%Zxh0Mj;fK?$5cBVn)A(8tI+`tRZWzQ?a0sJ=goUpiV~@Gd!w zB?He}yi_gM-cayv<_NN~f+G^}^74*H;o#^K+Afq%EWt(uu$l#mZuEmaG&^zfT!Dzt z0Hft`mcC!vpyTs`-3|=mzGXXvt1~Mu*Ye=|-7^2JXEv?bihgP2P>+h2%tdQ7)Bv$_ zF)GkC-$cX&YpiwIz&6yJ2g8|QskT19182Eki+jV!2dDLU9|_5QvbQ&(GPHoyYYR9a zc!4ASCz$m$GKTXj2hRFe2!nr#cD)w(H<j#~6RL`OBPn;obznR$-ef?(h4eX=yR6=28 zv~{K~-&wy%g(<6}K3AfH;=o4Q%_{)DtD%!&o`^Lz~!t&+0|Mw~sR5uJ%J-SEp7*DwhzwMGB6 zq8Tx0cd>`s#GeBiKh-&7C;qIqKdl1Gid|P0yRMS85xOzf1f`y5i@>r(1DKexf;RsVI<6f1--6odI5(_!W>xS=DNqPobD;&g3pHC=Z4otPU&bGMz1sD%{9TIxI0*sHj4w3n^!a{uQiTt#}L3~ZE zUatVHyK4jQ(+V5$HF92e7}&ti@lw~41BpPD_-m!MYjJ-O%jb$Qk>&qD}u3}!W0b6e}K1>EGD=?RQ|wi;p|2UD=S z_(%v6xf~6V@5R~fM>)S2d-))ppMNNW|JxUhMuJsV*AihT4QNEmi7&TuZb0MBu2Ro$Ihvta5L9ZXUfd`3EC zK3R)cwc^y#CUPOVpuGdxs_TSmSZtT>)E+JfxvJ#IHX3gYl4vJT40$S1j}b4mIJlZy3RJXiU~dWkNPbzTYKgWeA7eG8E= zuJtgVk4IL{+F?s9?5B#WeD^Ely>~xKaS^b(Yz&!=EvKH8c9l%xh~=ZY5EQhE@*=b8 z=A03jb+W04Vd-z%l*@)48|>##A8{yUw6ysbIun?WDz(&4-Vcj0!^xb_>l%8E1kcnp zMv)%jX=tl*c^`vmA+h|?fG`Q#dI78RZTLVA!<~L+*?{r@5vSYmxKE43-x^`wdZV1b ze;)(g`t{}ov+OH|Q|10Az#n0ghGz}aBLouJn4M)Ec8JjvL`ihRfp0?L(_i24#Ynp7 z*h2-kan8+feGz#r@O?wfX4&9zVQP&rn5bXX$p$>KIil2SueAZTMU5LC*Q)5IFCvFx zxL}yLVwfOwrl}YS#Oun82ui5Ie)=K}-`SGMb@p%1yTePEwnwIT7FZ#1EpD-T_skC}J zb7cc6O{J+a8j^a;59mbH8<%m$69(grrBfcAuV&THHTr4Mqxc7i6{+xcI;pqHYfiNAkX!F#3>&!@ zKF@jJwVt<(5!Fgbew*40cxSCCTDVvR-wwXLHMFap)r8h(P1u%ie1gp}$J-9P^9Um` zBcJ(}E$N>>r0|t5<@Ecgvbo_vF{`=YbTU@nTj`970`2d(!L~&BFmDCdbRA0yOG<&X zC^t6KO_ymNr&ezeZ%N@KN(9UI4m=zcoU!4g@jx7kz^SnTaSJnRNh?$C;{_gU2gKyX zw>iSiam$aprz{@bvf8yic+j-&OAam+4j!_S_@VVY`0d)pkNl_ zHrr)OhfA0+K|1Q&{tN877#(+tlN8nSw;b$(5dvF9qD-Q!Oi81KFn_P#%t}x_^b)+Q z9>$Tu(a--Lr1SmUNW+38RTgCy<Y+G_YbX?SEs62jE(;B2!Z*2}Vnilf*7dJ`=(i0$y8VhtE z7Gd86KRdNJpUg!)Y(lD8^|kvgpeXYK;Qbx*CXrp8lI~(?2{^!2q$0>u$~;w{ zabei;(@E|cc(!U{g9PJYn73RRK!dW_r?=|aN|Ib8$as^DZv3U4GO7%e`o}C}ear+! z%`xp`=OGeQYNY;TQ(7m&ATUR)AgBH~%zHN_Ie`O#d?2rD#SYtnm>u7bW#=ha8ng}4 zpX?YA{04atz!44McQVcfUQo9$7O*C?p5*-wlPYj4wxgxbxx`5dQW6h=+7L-c zz8Mi)=j8>&!nG_yI|*mJx=xnDv$yIFmp$Q<3t68<^ijPncr_l4!_y{YQ7l$Hp4}J~ z5jm}ToEm^}-|=QE*++&?#NTp-e}9LMAe#14oZx6{Voi7ybVhdHZ| zevGomBDQeWeNPvC5_lI_e18{c1{d)W(d-4PN;ODHVP%Qh)Q>x$%h|Z}j->WF7&$M2 z?jo#)eDSh3aRr0#29KzKs2*u(7Vz~-8w>vFm6oKRUGGX*M`6KwgvX#9jn}=SF)tzB zy+bSK&8K;}5qQ0Sxc&Tvq&*o;!z*~+SE?z3ETVKyoqjbUQ6f>J0j8V!4HM7%*hT4Z zEBtCkFZ7;@kOT_~-V>Zsw67b0adKHwcqm;QDU$niX7?z`CwgY?7VE~lgW=?w(GliY zJy{d7Y8N*O67uS5air$(I6Q#k3+QF(QGTBB8`X90Mu)@a>rL)gXVMmTWgoOab@=bi z@m)<3rE_2H?!ho#b{lqGxw7-@7oenwD7c<1FY>4B1zhpCp1eyKyia4ewAV&-Q*~v+ z#uz}mc^axE8|2qHl0JmxT{Tgv&oN?gF*r;*U!#lQaf+rB$EvWl47&kqeSQktbhp+k zd>JBWXL*!kKer6A7RlI3^k74F62yk9wC6RSRm^DMDQe*g#YlN z);UY!2VG+K{xNHrdi3>4sxtp}bJlVWHdQDWvT(^1YbpPJb&((%-RG%AP&>&YmXC@v z5izNw<&WFn!eI8uQ%Qsh-44_Q8=Y?JHBmp<8ppJ!T-`uYmDd0uDhtIS8R(6p^g(%!~;bgN&5@rk{+y$*kjzV~kTHWN}avv^Hns#7|? zJ@y_LKg6mkUB7xa*TaEYF9bHu5>tKJo{P4P3TD-qcLK_l(#qre32-G76L; zDm^U&uT+-RhbUJBrv^4X5N@m=dC4B7!!LZ@4~Zt++A7cV;RoIK%LF3)4(TcF>0IyG zf}fyUH;C|aKyk1o!f>#$JSMlQbvMc?H?(N|$cdKAd>rvQ)AwDpQV?&@Y<)CUsd56+ z!=P;8HD3nu=Aw$8A)Un*9Bh3&u}oZp}?^sT=cB z4xVNiRhfoOdcAnQ^Pn$AN#4JqSEou?&5{wHP;yZLDOTQ zPucm9vM#^G*E1dRMvj^MMGr}%nF>o~Bo&-yf{_WP+#6nN0(LPdd{z+ww%we2G1~cD zrit9_j#ifS1#JARejnO)GBMWX5#NCYZw?yatU)ZzNj-P>W>Xut&iC{0s0l5|^q4v1 zmQ#6J>p8hZqeFFvE{vxo+4*q{e9<((+Hn)*q`oFGnxK+86>t)cp*<7AkeLm;{J`fa zu*Y)-Xri~mZiP79)b6`yEV6bxnBhgcoKNXJAK8Sgo?9WpGkF~^*w4A?C{ACPN$_)b zp*^EOA8vPu7B6@(s&&iS<&mlbm=$TqL>N2{<9Z^#A{eO!$3erR=2!B<&>UgG22oHn zBILcr6ZRTwq>8*nax1(|MxAy_{D!^w>^HFp%8FjwaaiTxSrI5opBoUt-@q<$vzMBv zN#$l=_cKAWE2i`J0JF{~WPVBV+L51p&Q={oWRnv!rul=~-O(y%=-qXeROBPX)-qW& zLbVReQR0|HvkdUCvK>rw%AwjfMKCq0%Rz-MTeL4#AyEA-wK49DTD*cQN~+<*oEdOx z!(5hAw5bMb#QXqHxJ}E$6rlIski7m@`E4QbxLIMd;&EyHX_`vqBr_LsG{sa>C7Vom zB9m3O`u*3E7zG8AOy%gl!ZY<$vZ>_{s&9onc+J&ssxGp2Bl&UNtr&${riqX9ULUrW zKM1Tz$9KDj>>RyuUYA{UaN~+Q(=64wd3$<&yH9X8|tkr5Mj#k|9ZG zP7EZO0bjPG=q zNzGzZ4nfau>h-xtPRe(!1Lkm%y+VQ z^i_9xG6KU>UG+ZPFynKn6p<3l?DYaGJNtRVwMiRWoR)aiL)e5BHebKgBVD6tFKm-rfEgz6LW z)v*(=r!~r8W04QC1TeF<_Am+WNS>udPCiW>uVsl%btQO?%}cSq`^=^h@x$_wqLvJl zqS*X%T{XHMNe!TclX{__b-Q7tLp>5sk1xt}7a`-)-`dr_5h8rU8Y(M`old4pb;@mH zGlyJ(y|Z*G;~r&LU~Q<_GY0tw-qcPxX~Z2z+un4~&g4&3EOd5VUB^P&LyET}t(7Nh z^wM1EJIN7N>AhRo%gEySV^7&Pz;UkDprJOvm7W-NZW9Q7(6cl_UgcG{_!uPfq-SiF zR1Sw*J)pjHqH~=-uOS4gxE4b!q4yG-^I9k}~T%M#pM|9E=g;ZhUR!?f#f z-LC2G*#u9BXxl1rbJ6wV);ONVU*7=YsGd_Co?JuBSI$kARt>H5B%)^IY8Rmhg%o)fD* zQPab@)qPE-nwUOOJ&iCSX-5X&R%wSUI0m7?S2%{V^TBYBgf#>q*`TL+NL?(9Wej)K zUtx@Uf%Wln%tl~%vUHyp$Vc7=YhUawspX2l=L@ID)iO9W_sX-rT@kNLAqc+OmK=L_ zIhb&T!NVN92Lfm;gnAq5O7RNOG}}d+@MB1ZG156_J7= zk?$^nv6#?MO>OmR-Rq}g4?e)UE<#cwir>=6QYPFydffetw{G68qt@~=`VRzsi?g(KYR)M$n5)0c64f6;ze=37HANkV47aH20GtQ5tZ z8W3@-Rk4fXHRIbvROee`aLIv{f%EXVvGmSmVj<1UJUe1O++XZGUAuvs*woN&z^7E8 zEZy{0zdV%{k+sGPScl}0;b|dzvHQsT4}{eC_;j_W>%^oK!Nt=&eZp()$87BH+!0cv zONLJ>U>kHo@yy@P+ARpZxJo9IBMGvmCz=q3OOe%mc1hOklpXA14Iz4xW0Z(35jvN1 z_=%FA-msOLNkB~r=bNN}GxVE-ics4h@GjOMK88+4@CKQ#jYRWibG2C274O%TxrOnb z${b(?Ru$w^aFiclxz_E;mh_LjrEH*B^nFOd(5cQA5ktvnf=(yKRjkU=!|{?x-rGVZ zG$G$cV8UQCWH2PW`jTg(Wl^b| zRXn1G8Dsi-sv|K=Goo%4l&BwvYnA$=dCW)nvnXryJ4+Ys3D?00r=uMKiQHg2FypCS z;%__eEbuh*uE%`jcxgzm&GMRWbgvJNjqkB4mpJ_}=i|G_Ff8wd*3UX;Fnyk6$I1w2 z?ou|Nm53n@l%`B(tXTjwgCWDQm=B|n4KZFe8|Y$)!(kZ*dSMsbkcCe#UbcwH!zJvC zL-Vb|Afi%xPmVQZR#Y zFc{E(Tyn?pp+gMi#Nd1V-8-@+Swc6Nh8BZh>Y$esI17dGi;nT*OZ$wa^bNzRurp~0 zZBzoQ8WP7yXIj=P__A47H<T0K!yb8Uzk zzK8LWxM4p6_}{E1zI#k75Zo2Xuf81VLriVCFe^|KT9&FmNI>4Sp@bc*%IfuaU`hm^ z3fy|(LB3vAW!g*q2c|tkl?p14^iY|ySt|p%hhsPka|@^DjFp|7?)mL4SD-_w;&E(L z0HC-Ffp0aYQ&t@S^&6>$bIvfKHm4{OdO}C4h_4W;M!|C46``A-Wla|tu`avq88u@ zOcsYG{PLc0)(NvVidB<{F^k0-c?~l^YW+BercSDbE|LG*1^3cvI_^_i@ zm&ZeObZ9dU+c*SQVQe0MNAU#}DPLfwItJeA8aiw}JCi zpS=;_Xuljh6eH5Rf;3=hFR+M;GJ9%s(uv)ruR%UL5K6CQbTM-Z4(&U)?yyXUbKZ%4 zPAKf0n`(b{j~-K|rcxcC&4DmN;PMlaP~`$L`R}LVO~c(n)?GnvCa-wwq~d zPWGV6$B_JAznk)c956vBV7Sk1>cgqW3JD|{$|cP`S$G_a1lxIdbP4Y`Xc+SIm+Chl zet0ec&n}6OSeua5Qk`_*ziq)Y>CYeRzaBGaHn@sjM;`uR5rtxjv;%>DpWztXQH~q#?r4{UxNlp%1k~Ui`BG4?_poYGl(p>LO(&g_@x5rged*_NH1)2&lza zoBB^9&Af1XuDzA^+AuxQVDn|Awf3U!fbb~YAzz|}(2m54w{A9q#$xLJ$4VEAmrx|n zmZNfq<1(xJ@RWlFRSlxU9S`8A?-BA>Ydo-z0`T0};-I$2Q@Gs-?Ax#_pAL$}klv6U z?-cJu=gs&AM!A5kU1_VAAil=X@sr%(DZ|R;nDG;36f>HdKXYMDDIE@NeJO&jJgolN zW&3tCl`@i;wCO94YPoO^d zR%HbIKz@mvmLviZYNLQ(ImSG6eOEHIh>yyq#am6^+0kWK1Zbc9Wh4=ihKoAuW+a1U zS`L(ZloRT%xvRW6R)gzlOJH=)ceh1Lf-LjXR!L9$@f`VUs=IO<(RzwaQSGrcO`Kq; z3EEdL4SAA$gIxpp+uWQz1tv6wbFy}0E*~jZyEA*g}Zx;@j%77x?)-E0|s2T3HgtT zTaV>1f~0Tq$=_R*kzA#{$S>h;S}wXbR#`K(e5Zq!jW8xEHx)}xTiCa)mTOBC35#%H zsp}pBJPn2g^*&sy(0n8ky%p?sl6riVwC9Nn9xdb91%u0piDMm0Vb8D%Z!V5?K8g28 zuRwdJPZ6Vygt&zGwEh{*NHfyY7$nA#o>4%vEi0_-j4s34s4x=nDQWoS(1f?@f*dpZ z<+eQRhb&`2vU>cQm+oygNcUHCVnV>1pZAsh3E%A&{h9=IllOwRIjTB~v%%Pzcv*DW z>E!Aij+7DD$6=S_jug)$>UNaFV%!oVUFAhoX`$AAEX)RGXkzY&2Nm~lI!2+5pbUk~ zMn2sLd0!llrJwuevZDbmceq`=aGfCV(DvPu1}A-Q#60e^r?z3j>0y~Gf*v=jZW~PI zbBd+!nyJ@xf%eV+FO#lmwL?$blv#qE5?r$!-P zNV+n^=B04~cwnA#xh47AVcO)!ElRxEs~}z=5@K;jL@n`$QQsu`OqChMyJ{Ho%KlZVR zPOF$ufRGgAVv(F>zxKlft<{IDbu%lxz9yMP)gIDsb#&@AGTL;fvbGoQQUu?DSH?h> zLx1zSY&e;j$ZLPN@2;1jiI%Uv+*Y#_-7ZM;Hx5mBs#*Px71h>f zy~U;}%h4`mocQfEILJL!X`6rMP|=-kN7vFYG2dy>fL+xj2&9~wS_ybP3~SG1N$?yU zEso#KH(gz1_bI!>~m9i0M-14fXqx}2rmEyMSLH-g3aI7$;C-_@R`FE2skd5U%! z1Gwl%Lyi5Ui(t&vD+NV-bZ|*lTGtP71QX@^tJ#p6>#Nz|d_1?9JLw{DjRnsK_V+SI z+Ht%yUu-O55Z|0^qXIPcv{BJV#!pP5mkxQ4Y?Kcgp~w6C-gdDEz=|Dj13Zckx0~~Q zI(bM~l6}^+)4GeKD&IL+={nd8@%uEd7fZQ48>}H02pw$8ZfgqHxv`9oo{(+|Y#`o*De>_>?pBbN@Wh7iH3Xt*wR)zT*63_M}#`90BuW#l${qt#D-(@7QeF=>G z9|8hF8Fk+mJ%b2_LH&}FU^&2hzwdZu8V-9lBp3@--uo} zU`e}VY_*7kKVJ|xhaKilhkXjRINx>Q&KHU+P!K}fu6{Q_Ge{J$aod_hE; z95nw#@mW9b^aO6YW#Kf^$d=s`e_VO`ce6&M94*O-`t8^X&;}D+-L0i%WMUFG)RTHsn z)_ZhvH2L#ah!!3=bZXwb?YFixes_$AJa@iLJ2cOaL#HZ8kezK34-r`K4AFUo+5_yc zACzdY{~{&R73I_=Pj$l~2K!?ZFgcDDmqO8B{%{xbVXpuU#^J~gr}*Im(cMbm#72rQ zIhV{OTc+Ao!k*@68mst#jd3S%&cS6MXW_ue!6Fv)SUDkz2?3`o?3HpplYX;z$9&IX zp=^ZBEpLu9PN#Ol;r0;>QbnYwKnu^Kdz7ijQA^<+duXmk-?i^yK4<}jctq!U-cq8D7+r@<^Qf;{0`gLKiAp%@-+UBvh7Hr zzn$n$>+rse-p@*&tjR>^hv)}qtQ`yb|Af+<1D9~4Zn;xWM)36P5g04#%4>t=CXtV@ zmY5bwTP7N9+TK~e9v$fS0$Yq$9B+cTL{mC<8m41K2~xqzvR$@BbBvLKSDn<5V%vHk z{06H10kKSJ3<7Gi(Y}M11DN+ACICZm-r2r7SNhE4Tz&*!rpD-;eUWmT*6jUJ;1PS6 zu-DcFA(q^28cN%DeqgJC;=~@Dnm109uK)t47iR*e7Coywb~NEI>YK&-I0$HUruh0! z9uWT4G<&4@hX{I}9w@;%Memkid|56?fpg!^%FPSCENL1A7L0D3%<1NO$(0>zm6xmn zr<5I&ZQLUkX~X`w2>EN-FK!~7%RxS-gZa?ybBP?&lMIdFoy%@>HzTYbBc0x)JZ-p; z4`FbdLTHKB5B3dr;Ff_|H7J$R@Ne;2s`f9-*DuQY3$>r=ze`8$5wN?HmGKBy4t5H* z1s6Em`!dK<`k5uf4pIal?ZnCcH8q?4pXPDC(M~L^|57b6_8+L5e*_jn2;WwJj(8iF z`l`8^PZt`&qEO$3+On0E-Wu=}l%9=fi=8z)`e|mphcwFwvVO-*ew2jJrs}&v@5-s8 zJ)Lbm(4|Fiodw=sr)rxyi)b(~w7)jwAZZ(nY&9uo9v4N;t1g^<7Xc5-+%|K5w#&@m zQ{cPdTaTOh8=6eKKWxy|5>IZiQu9m06rrESNA`O|_gsTuA&;&tUCHmJA0obov*Cx< z_hs%&`Z;gCuS=4QU#umYZzB#>kL^HjKIUp_L)=_Dlr$}-TsonLfCy#?z|a#47`amg z8L1Z8{K^0bI$ixr9-;vxA>9P%t-_IWz*?K4EtEJ=86JcHK##hV&`-eUOO7JbZ<8Xh z{}ns;&x`k4@Bv*=-+<2#M(^Jhd}x0a4f|Cz?7v{{Az40n#~vxC_gVX~feG?q(>sL* zEVccuEic8^qNi(aA7a}xMnc=ls+^M^s9*SfnpT0eDD0hxJCiYR-XZ!Q<{dH?S{FLA zbQO2W53W5@4M)f-_O~;p(<_To3{4G_z#3a87O7HF(?=GPAPqmV5Th-eQ+JGA7V9c> zk%(Ek0<_fmd(&yDiw^bG>G#hlu+<1quibuzxw1?i&2876iV|uBL|Dj=t|<_ggjtov zeoIZ^XOcTn%IbIGLq61~rqh3XY20U-_E&zZ@eVk}7CU0Y;KjK5iAe}$=HWc}0ArhaFVas0qe{X>-f zZtiuh<4{zcpP6Ja1JsSp1HU)PARyKyMg6F{@4o)73Q9rjIu(SFH2ZIbP$G_)whQ4K zxzJuH_Q0iRfTmu+XyD=GTwP^oaJ&f4jeY95Q$u*aSOHm~@ZH{%2Axn5%ZuHuM~FV3 zDx!c(NU#yNMD9bUBrtmZ3>`tWQNBXuKUzUF2LK@U`L0D|YiFacZT^K;ydJk}8;

zA? zCR4_xH*dtSJH6)Q;$Sx0xvk6d(3}tLwCJ);w%)sqkR*Ow%qhJoo|nrYtYcAq_)Y;f ztgeO<8(Y`|nyo7Unx@94d)0dAIit%J01hhNF;=2fiuvKN#d7(GnYRC{Na?a(mLRBF zZL2p0_qIFPNS-LN`a2b=InFP`bPb>x4Y<24^zOlGD2EDSM7$kWj5)UNE|CbQodt`s zfa6ws_Cb{lV!7@=x_0%CwXFZQ*MC|o`&vVOLf+qeL>&Jf^6h)z{ef@$hrkQ@8y5;5 zX|ii}_YDs^WjDycWow9&OnIM^0Y5qd%fKMN{eilrIl?Y=o0|T5lA{7FRRS>dQa{=u z*al9mO*ol7DRRHKz`MuS5M1!N5Ls^Q5rV&k!ZieMU)LgIID&5|<&S2#0fONAYY4vI z5HkN92VPa%+4>aQU&Bv`4N>)_mUE@eV8!dEv!ftZtOjkxC-XV_B{fxstjrdl3Tj%h zm7_+0=+W8#$KHEDMYUyJqeYM$L^4QFk`g6HK}2#Akeoy$gGG`gPzVA_R1lCXK|pdw zVoAqzRiTxYT`g2bFm7$9LPL23a^{oG0 z#rt2giif;1TDcQx`7m%~1i!d=Kij|}go2NCppzg!E2ix&=z5HUYI`~fQg-piv*&Y! z2E+362P}K1+Q!~9F7?k&=*w!|qLM?4bYMGkoy&w&qx=4y{xxLD4$+lGHSgG$%8=un zEUk|ZxG`76Y5M)ZaNN#mp0m9hD@AVlV+~Bp=_E!7U`Kf?RZ>*0!)Jr=$)$=ORz{1% zxm7(H3_3ND*~KIf;;^!~fws`l%X-ErS>;>Ca0%<3X8+UT>WVMi1ck4hEDvQs8*5-W z)95{8%cXwF(*QVy|1~G!N}QP6PEqLsy$%V1qHh%*#SyLxA`4nBhd?w8HPOk&(Wh#N zo71NKYbjiL_D@ZCx~ppf5B5TL_YY$})4yDg^RTGI$79A3!dUfWBJ@?a`;olUoW!Bb zLDVJjap?wIlpHM|Oxu8-A7%qsKJ zckku8(n2#4PaK&Q8+IYO1dTYpR9wCrc6T6k8B9L!D-f;`_Cki@!LwXwK>eWAy5emv z)_zv?js2eQyj{kmQ4R)8b#R#uaJ12BEKffg6!e@FXLhDI%f6pC(an=MGH;U2q+=wr zA?0Z)$s7hyM7QeyCKsAs++f5>_yUpfW~_bP`)T3q5L<4>t?6-U$?{%WN!=#TRU%~n zwrysBpo7hQMC39P;ijjLbz+Hwghz57SJBv~qTSMFR|XL=cRhmU*fnunmZ0{3RwMAI zIsCvJG&+5;;~@KY;hV}Mtg{ua_F_B*Zc zpE%Ab5C{le#P|aj^H=`;TjT#7_Wh&r|7xV-&))j0gAxB75&uthFwFm@ZvT6z+a|C^ z^v@#d{z%*UIgx*u1`*-k){n&h9cARt=a&6DfGz$zE##lri7Rry2iSLF{5puJ9DM{6 zq_?ybDf2&*J${@wd8CV}AkZVV{?)#$os5~xVe(q!P%>6dni6vtE^{NMk-6^EN(ZCN+s6ob(P)_%Q5zYLFa2cm#Wa(`k4* zfqfl&9eiP0bz>_*=UT-B?6O#LmC^x?*#lV?OdO?;r13wZEB@8BpUPrin?f_hlZ6M# zy5Dk!i&zC^AD?NAm)6e38+1<>9YL9G*1cT%Ft2Hi|XM6uLR(3Q2B4RspVb8kDF4pg(Ts=5>ZEvo^lO8CWs$PLmU2as= z_y*=d3NF*`356y}eqR~QvE5CgT;S|!b`GZgMYcLO+h1p*MEW8e{Jh~z@*_^}Xb_&E zF(Tw#h9a~31?#ntFBRS&Q^f7)9(=Ef2-yD=;gxSj3}*`Szu`5y5*_xO;cnrvpLq*4 ztZUk@t6>C*aQb+){q*%zM!fsWLuXe}XwSzu5EG}?|3%#yI};!VqY>8L^hTuMvwD`1 zl67G7erl10TRnGKY?bkb|GmM!`J4*dkC@f&f3ot7o-hRnh=u>}>)-2xKdjvI)0_O{ zo5FuxKNI;uwSRp0*S!S)wC;iUU!oTNTK53hb@xj^;9m+K@Zb3hd;b?JAN+EjUz_s( z$jI#r^^hl%2%HnSr0boB$9Fe(DB4zXqU|pTOmJMGbx#l^?zP zH&qRO4(6{t{+BouV4uk^=lwtJ^w_&QQ@kP)bFjg6EOn2oK?jqH(D7L~!($x0k*`uj z>o=4HB=PDhW+aLG4)~mEi#QG0rYarFdej2;rH}ay3ndG}+DlMJo#{zvl+DqYs0<2x zbhLE<_V?9sI<`lYh$GP?B*z;N(Ny6ganukJ3E$H>+S&`PVH!zKA0hG!5LAO`Kv7o1 z7K`aJXw>N#Xkg~f;fg54f3zPu0!2-JSl8S-SV)4R)P?)`a&<|d$8esIp?uzc`jKd+ z#b~3Grbr38gpRS}&Q?D3${ruY)?X%&Ud~3cBuM-vA;cfI$%k(-eZYL86TLJ6e#PR{ zoj7#tcO3E$(GrP#M_$+^-rVyh^KJq~6X|-BA6)eBN{GP59usw=1 zE1yV%Gwa&2#0fSRWP5AZzn6Qk%$uuS8~waPNRX<+oNpT>!<*h@Q~$bC=A#R_(T3CYj%KNEVksLM z@}+mR(sS4=wQ)~9l=~blm%A2&#`=SwxN#ZbG1nXC`%1lUojntC58fGct!8VXt*q0% z(XIL6^`uyoJa_6!{p0tkVb_F7HptxDX0gC=j&Y7Pe55VAq0y2KCPN9m=^a~ZOFyoZ z>#Dw%`^a)n#~;SSwI*JyYs|v&5*+M*XwxH&H7}&VeUIs!Sic?_RaP z-p|rN)S74MGbUQMkU?T;au*uXLId7UTLFcJh;`j+`;wAf*^onF@ha|Gs?*+*hgZs@ zClM=o*H{cDLU=bb_WgkYQ#_*hpy>C6O<@@fDQp|^<7vNTe9!*2!V*Dcij%T4UQk6* zHU7GC6**1kO{$n%w0pU_>Z@WYigj|fE&k7IH`)&laWCq3T%(<54HI7QE86AjhOyq~ z@cq{UF7B1if558o0?OQx~tFe z9X74m&Nw}FOPkG=6$57zi92k!-?-cq1I9qn$Gtr*MwfT@s%aVh(;i2rgLIbW3=9I- zOs-LJ70CjncMq;!zMihksp(OFb~ng{!c?3)D{lWqP}VKr{&K%o3=3v)olbuIDl#y( zsWN=1mBsbzv^Xw4nWq)p^1$hM_uB5jGWirpXT9hr*n zh&bOSb+&!=>Ut>5HGYJmkiz>FZ}M4@FuSd&3x21|>a`rJ`^jI+sOtT{i6!OU3r49W z41M;$1=SwV%PqCV|EyuLME7$f2;|*~twK|FCKln+3T$8d=uUXD0zZWDEb8h*1M=Ud zOg!y1al}Z-5#YSB?M4+RQZt&=(-sk zJV>w7wfPTCQaaDCQhzm9;(KJx`!;dv=2q~uxJrvLn=#wWUN7{a;Bk+z_LrO{+*UcI zNlY`R+o}z^<+|l%g4QvE*^X?1KpU=T{ty5D!uSH!u=$l3nBD^GVl%rV2INNL!^GNq z*4E*yU9gq~*0--ja~M_&NR}}Xgj>NqeOCkojag+osOBe3fzzEX6id7&{F~XqT694q zxoQH%iIy&i0|`1P?Y=R6(}49Z*TG=Ny+Vb&Y5*N4!^%JOU8lJJap1m zJbwR*q<2BrXLfWIK6C%-gr!Xt;TUhJzN)SjMc1$0Y(H_Ll00LllRmrH90qi~we94M zjo|l?F?QW#*a&-^CE=<;wNl_E=Bt|VgjY4xKCUaHh!ef!c{_$67Bn%(VDMpwRg*vZ zbnMJXbXw#9J-@kf{~!c95AhxC`ILTcn{);hLdSpTL%%pe)znOSOe2n0;1f~lnqCrannq+5Y6k->rF5=U_+ImV+b$702=?hsyFL>j$<(;qcEmMgQjniCVWqEnO z%qDi3H>(^B-`}vv;Ir&QKfp{@9iPPzVm$S%NQe&IM(d&v_yd_6nzLAc4)9zPlCVm# z#Dpc-!E7`5gXWPr8acXQzH*l%bELgZRtilE#0R7yy|`ml{f zXcWoY$qdiBfFKU#Zp`8>P21~F@4!s?G7;-M+s*)DxXVMN_WF(?Krs?15R%qR*mZUsvm^r%%=ld!FY&H)o|3% z3zP=mTjvQ-G$pTxxz*z?o5w%ub-c>vt8EkxDjEWs!|I?gz2+pbp_C- zjvL}-j&x&4n8=6jZcc4JrMOF#5ndJG%amFaKyHZ?8z&vTBmV_*0yZ9yEs=w8WQnmVQrR}}z-)02xG9+4UggG~v%{Zvm$5!Qr|aZ0 z4|=&dG39jwOP1v>%c#qfm3jf|nar+&YDtqY9U2{W;?v*h;pIbjM1YM`TmBsE%>V!FfQFJ$)l%jwK@jbsgp|&+! za4_QiNEBn=#$o(ImiP$gyv{UywxH9kbht%@x@<_A_^$DQc;?gRvOaG-in0r@k3Gv| znhSmxYgk99ME0^#$%R_2MA6eCSg)NvvWdww%!MyE{64u+`^M0AwN?C?jjki^lHx_d zL@L!>dR6b02Cv!A&or3qZW9}%km&EQL<#IhB#&y{=j-Ku-0OoIDTs zZTHLXdKE6|Ob#NxwCJ81)X0nS@*a<>(Vft2{Q~SdCk8r6aY@tG=d!vgR6=-|zHQ|y z-OYV#U#R(YRT!;#ZGMc^txVtGXVX=9U)+m3nybi?wP!^N7{vP0&T_Z(?2q3?d3XtM zx=`=xMzv?xrqAE@6Edt1?dnx;J<+gX6r-#=+Hf&B5bA+B4Q5hm%2UKk9Jn?ezGtD- zGO+*l=;Yb`Mj)NYn^y@!xUjAp@2%^SEKd*LSxj@uDniq~_J7vyev7MqblWdkTrqm6 z=Bu6ICt(0_yt~Sc@Bp5}`}HNGWlv_BaK$D2n}r)mOxNV~V~0O8PNzL}J_vN&Smepo zZ^?P|5v$Aaq+F;NO1*p|O-&JUQr|fiH!bnS_#sW-re6Ay7K>&nQBe{j_`aGNWjoa7 z%_HEhtM9fb&&1Wbo5CGKZgw_)2^~}4yvIM`4Iwns^^daCSSpt900%wZ+afaCFm_*RoR!EygQM%xW1E-iBg)d-Z|)YQyH8eQ<`F=ms4wQarK@D#9n}j^rV06e0^IEdud4W(F}G)OCYGDjQLd?OyPx$_xle3?8EbMdrsQW zT%$eO*+^hVj_B9D6SZJMTueN_y~qJB)?RT=OI1zK~RC^$C6Ti#_V(9X|>H%+w zEk4OJ&%>}Pt*;jZksn6m;BDk^poZ4IyM|Me&#A9%>}w zUqr9GzRW6j+87CBuy*?a0B@Uo!J2;(D8}g&Yue!8eTP)INpwoOA98u5nGT6OOPoyX zj$*HJh{$AtjHemDB9{JAT_miSZs9Hvg7g4*i#Ugk{u8lw`%yZpVNVTjg+1egDB_Y% zO&lAAod=;Sa0?R~XSI>CmQ>zajVGiV-5r_{nIEMaS^3Z2+>j|_C9%Z|IZBbv+90?- zB>Cw^fYvyzzD)=++TDo}I=f%z>r^xL{Bv=y+~i&Mxy?vIi{;uNm%e@8?232g{2G&~ z0DHr8H3jf?*Mp8A+T9{oMjMG{u^xBE_+gc^#%5Y|*Xsj1f~nq#8uWweH=#V-<$1z* zMv>0t5#08ZAINv*RRYMYK5YE3B6nU8Ej9@D4u+C0y^ws2)-DIrHPyHg`%%+9EM8ml zx)Sl6l+Ggh16iz}AZ+ZT3xuf73^u}?H#ZZ;#%0R>kOvd?D%*rkwhHgwy0TN(@jhPX zMa3;JiPu4g-X4*#u!@2?BFyc5`U!%#KAv~eaHBv(<4o&g@51J+mqKW8Fp9bIKJyK+ zH+Laa(y6KS&vF!T-MTvL_5%0XL?H*IXII(b_`2NQtQBuxI?_&3c^VeZti5@*Ri<`1if?TeeYo^ z;&i(n(rYevAe80es3+(|XP-psN~c`%oV9K%wovdqmM)C%0hNGlo%6ehj%Fi08!nPJ z_m?p^g12Yu5TiQNiY|KteBaqBS0_6$h$%@mc5PQFgS>gqnvqH&s~#N zt%RBl-u6aJ;8B^~?b2Ej2M3HwvYl1H_W7NZ?6N+|Bm|dM zJM0l%QIT2u7|y~n8*iz+H{?wA;mYl^hr{pu<_d3#fo@-tm@e3q0SHXo0`;WuAgGc)Y8 zq{7n51Di`N{)xEIhYL%orMlpdCPWgse19#eJQp;=zT`^YL|_sro+(8$(dO9BI}U>o zrBLePX7=nhg<-2&%A0Y;ro-)DT=?RT`P)qJrM66|$Ab)MjliGBh5^~t@m zd`ccqM=LKV!KT5Ih1V%i6gJV-MJ{%*rWfh>feOr2hs(S@r45xFA<>OUtP$3yl#LsexF2tP6lcxamEQ1o9;k9=DX6g%g9e=z%7No?jqkTs)rHvln}xi@`u!#us&@jZ~Fm!K%jv+42XliA+L0ezi^ zCv(b_xKR5wJ+2Rk3eLJzY-epFS-LuJ?8Vt*GgUpCm+BW3tM2-VC-1`axk^_pvvWV( zAH1QYU3$*~vP}1~XUkEZP*LlN4z_%uhZD3gY|6`PJYabwym9E!1|MP*^HK9*G_Mqf z*g=D9f2iCN14Aj~HV&R}d~H}$^q29j-rFv8l`uLN_H`fbIzHk3!2!50yfV-;4_o5x zz^TLhJzD2FF^8=;x9&|ztu;F&+(Rj++F3ovAxbQY5SP39aIUdFbd}IM zmk;&)V%Oz0pp8+H}Cgdt~KEjep=h5idPH)Q6hQW8q`Tm)!i40_X1Fm(%n& zSJD(mMy2ih(?B+7`@a5HrrEMvwWQCO`!$O>Sa4DSlC0vd=FPd(BZk^A`T zwO#oz1w{1AXqx5lTWqY)R*LOT`)r-67S(mQ`w@uV!bbE}-iW6*b1IcW6>TSy2Sf-jJH!>j3&Y&bP1Gv!PUfzk>FZ@-OV3_A zHn0PIksqh6t=QpFzf#xe(P(oXJ2xLHSNag|f#kL7JDenQd3+z@6J@X@^@19e;O%8l z5mf-DJ@B8vvpH#}_M+C?1+E5fUz+K93|YHaZl}L0l9sMx-xnV##k`)f_(;@xs^fCZ zt>v=O1EXfB(PN7`baTS?)299-XybAx!-y1%OLeBG@EY;+DVEvu7a`Yo#tIj(3gSl5 z{khmHPQ4@x5`~991@(RAy{%4Cm||%e=~e=V45R;dCNSi?+|k8+@6IpkIJ?h;&jCqp zv{2QKQEsLO!*w*Mv+Ar&{Z#~eWRQ2Bi;(8&{*j^mO@h|0=mq3=by2hm`rOhoN#+w2 z;s6xj854r0Os&-JICU8eVx{oJfL?I+oe&7t?^!xDOysnxsYf0>!1L&;^^e?~mfoH} zixqwiR|#;%ds{tUJ6~Y7P>zG35^iF7Hzh!6{I#IiA4B)Xl!L`@(p|BR=DlHGR?1O^ zf=uuHw-lPmA4;#qRU3VZCZ|g&A5c$_i5~531==a5d7@sBVPW@&niD2+_geaDYha;mEumd9jN8O$^1iSjcJ*}_*DzP zANQxU@W*%lMhidLeOO%2rd$UIBKGYnBJodO+@Q`gDz>l9C*Zyc=6g_`ACym$-)E9& zNTS7fQ!Lf4@yJy4aY)BhqnbIG#i5L_45Eu!I@Z&4_zEmmXbR`8Z8Iw)c?>-(*6_O@c)wn3 zYn$wmv|iPFdm zwW=KP1H+Wx14H>J$f%ekrfnhSxu|j4TQxv&9pGhfrL~y_{Nw&zuFh9_(kNaVlcaXPliMjZ&QJZIfse~GM8?~ zSPBm~Y)zMeI5wS^L^q4}*Pz{etpfr;$AB^zNo@7l?lTAG{p#Jo{^Q5JyqVw4JbH_X zq)b|c?8>+%*@;#Tu9-b@TRmhMJ&v<0E{?dbF8wu?{@W^61bAe1MOH1As@FQnmTT0c zUnozS!TcND&gh$P)2WlK=qGdq;Ky_uqv>1G0oaQERSGMa_#kxf}g;M^h)O`it~R%|^;yrLWbE>#^u zG1_MQp@UJwf85t1X`8^tIs)YOF#%}1MJQCq=iKsfQd3<^qL$Xz>$f;1 zqOz1N9=)eA_d5XV;`xY3glEol9@_b14?W{qsT`H!$jC{|Rp!mjH@P3yYf0JO7Rqhp zy=p;ZQwQ>o)iTlFg)eGSAw>|fS$2$)@cxB1FjX_vo~Bv4dex}>Y@g?ysQGE3D6#jc zdAV+TSZ?)J(HkS?jTC&`I8#JsbL%7>cl!qnl3ka^zKz|yo(Gfmt&h9=eQQB|0A#GP4;u3SX&Y3(q^wwvqttc`RUxBZ+0Nm;X0(n@b?-UE|)EluYz&kP;)?8$10LQ}Hsi2eG zd3kWc9@mAB|KL0WV$d7jV;)q!aCKM59JUbDAhX27rBgm~ zJk^JUvB&KumYlFEL~wjl#q#v<=r zqsF4tvB}5>BXZ>Rl`a+goDsW^t`c5p+GAfu3162J#p%r&QYzJOpq*d1NI zE86PA9t)p1{m?jql+2OKo9Vqw$TBf$<({C+e*5g2aDxX-YKID$E^;GAKz(64VVS8D zj9{Ax6w(Y&yN&1-?MM$f_piydOOqTCPAA-|)9pyMdGVYw_cSD#CqnCvt##7P$6tae(gj`O)z(4gq_O6oS?Kl7Sz(29u`a|#2bSUC(5?1VI4 z0n=2+k`(00oz|{~^lFp^`hJZO3o$ga)0QWo;M@=%@e1!ii2!rb#g`Zn2j^HmXeYK@ z;Rujo%1pJO@G{pdg)@}BP8Y{A7H-Vm?9sR7f6()2ZBn!c<9Lm7U4|NBe?WqyhC^FY zaUYeB7xPKqaftkAJLo{9Nm;pL;o@twSQ(}(RbYqnP<-~0C3fi{6F#Kb04W2PTZTmY zaxA95LWAfU9P*F?aN&dC26>lHwx>6HI@Tw#8Z?Dh?QV9bzq?wQ1?s+T-_?h4Vnun> zQ2@+hA;fc=i>nC1mHxPz*C**jNLjy|6S5=RPK$o_s59-_uyK0I;B^DkP^^-k{E>6h zBPc&%zf1%KrejXxD}tz4j>hoDbI#^OrzNk^C2m$Q!VYXerwK)*^&)y9b%Qk=3q!4@ZdXyST@+ zG_JG;IC|Ju@ov`T|I=-J|MM2VhMCjY%R*oJ3l2L*#(Maxw3{-pxNYcUl6rCIQoo#e zV^jTw(3yfzby=WY6mwPDeUHc7j>;4mTSEE+=CI?E5a=Zy}i+A=4G zY#LpDl!0}64WdDD?ij~Tlt&53yIe~pmxSh(xG0(fS~TdeI2z%j-)eqN1+^tb^3MyR zL2ITUKYDrJH8hA+1>t}O-JjUQK!ZXgJ0Qq{EEHoLYyuTrGL3}>5qUBlZMD*gMYG0>cR6yh*FvgP^?LOvXp(+R z@k-OXKkBmKKN^XTL%`Do2%PtwB?A5JTtHR>jpQB zUECaUXXb?ys}dh6u_RHv6}P-e{e8LyNltyLGv0*hD~5>1jcVY@-J0&Gh3mKbvyCPx zRM*Ei5ccaige$jp4A%HM7E-=`K0x~jZu}>w+Tyul3wWCPR3!E^7$zEkBArBP4>#RG zv>L$^LZmdLG%a$bZATpliiDd!gPnK8RlU#R9G)ikz0P04D;f+~fN3mH`wu|q(V(Zq zBJ(nP2L!&92%QpyWShjXC;$BdKj)v^GL%LG$6phR^t(j&NXy<&D0N3DmBA=gQ%?BdVO8go7!Oy6*?ijn^k_I-JV zo;Ck%VRH7-YYfuug|<|%K5U}3@r4!)70&VcWQSN{c|(0fds)(Bj8~i8wx}(pydy-B zAUQQoVK)ZE-XQn~PmSU~K8XR+_YhXV)L}rRu0RnS@%1o3dI5}lnV<={XWyiU7>XYe^@Fl+2=VJ+> zmUXYck0>~OOrqg^tI`*|_KMb0m!$rl))D&~U!irU53lpMu#nwfm>B& z$a`~YItQm-bgn#t#n%+tlXY9b*;{)1Yr>2}gFnSjnoSN^y50OX525dPw|w!ro%OZJ<$1S$GMXi$Y`oB3-rh`h4VTnq6MwoV$N6&@U|JhC?N zajc5g0zV;sbp{JeP9ISP#{$@+JqRnZ2*7b88Zn(8Y1;RwT*TGF|a~0zjZhR3{TX ziry<|$z29#ufcSQK9!|)u-GeRQ0E)(3BJ~8;!3HY?3KFGh-c(odyP@;Ge;hfe>5w9 zR9cVVUykl4ZV^P*{nSBrLXF&_0bbZKplS6gi?a&9j#|Xdi!Ay`#li z@Bf6I-F7gB(loRZ(ku+MNvA>$PMBA+ASx70nNZ}=h-ow^-2Dmf~SZ zgsP)8!V{jq(d@cKeQmn=N_*8_toc;)EmEA-FA?20BFAVU9#toQU;_W>QTBk8)_jc= zJ+--vMKUa=aM*OfZ=wsCyT)r9E)yWbK<-dt%IrIf)%W>@)UX`0^iu zxVF)tmokf=(usT_aMczRamd7Se0Z@}&!MS|BI8Yj)v`L~`028w;r={ZZBtpuRg`?? zK1GvKWGTrltcASa(q`)i4JVK9gWdjguDgkP0yBnzNAWDuWJ0^*|7tI(lg`4H4k^uU{T_ifi|}N zqNfp;nf@HxkgAYanC0TR7rDm73M{2bXhIlDZD?vfWn`3GQf@Te4tA0v8R_R7P>Z}} zFoNmPWdOoBj`Ll+c!mab_n^Aapi^Bi^n?h0*TcNDbC1vM!o?vltIdS(mC&ZLC>cDjnA?m7Pu`_cK6O{%1`+j;vOdI}q0o{C{cA51n|3s4 znzV%pW2F>KX}_Y18WkY4IJL78*qy0=J@y*Q^`z5itz)GWAtBKAWLqJHr6K#9c71uh zhsxf}x2@*IGMc(x(%_(!`Qb39daio5f>Cq1ip&OM6eBGx6cthfq#HKf0LWD~;4?#z zH<*ruYfuCSGKeuRnH?wzz$E;bko2S|r8Ajt1I%d9N4f!3lan)aCu`Y1;FA9vI7>)il;>USSp zdMq8BlV$-4sVsnrfP0?U#&nEj447O^H0a&k{4lsV!VBEObWRVT-7B8yNc-sDzdxA? zg>FhmqliP%AXcVro2!r^Vla|Y2KC@HpQ|0Rv;@V2Y&rs;%tPS$GQWHKf9M8mxG0ih zVKMiWqu%;O`=KKFmk7!cFikvj%47Mo0F-Vp;Eeqc0RNNw1QdwigChDpA1+JfG~E4k zU00lU+rU^p_4)0JzK=RBuS7#ur>iB zB?M_*@CQMLw%h>Mt9pPEG=?|#gO(1U zAel|~TA+{F&d?xQppP$LSg26dbmTR22s}xqx*Ql(prJ^7$OlNFxc(*fC>r#21!Xfz zp%0u9cD4|}bSz;4jAG0M8Wb`1L1wWKidmd_O@4W%MqyJS(o67ryXhAqdG6I`Ov>*DaYN z!q(d!?+n${yvp(`PJ+(cXh*6*t{a`OmZU(P7QTy{Pcfl-iq23OX&fb44jX(ko+u6d zQ$;kWya147^K9Piq;#E&{3T5}W@e*Z%z&liJ7s6G2vwH%3XaY+0ZO#n_r#8cc_=X8 z3A?p0)zdVD`Gu^nD?IvjgE)+CfGK>!dB(U#4(f{Y6FQ(0(XLOkv1@K1Tb_|=9qkeNSllu(X&$twqbIfSx*step#WN zRg=acgVpe}G7W*@^3_Ygczbi~@?Qwe{%|7|R4*4(<@7_%#~0Hs^v0`hJ-#FF_t~Dh zVqspH?wU%+GhVC7?3k;!IBtGPpLsHJOU5pG>PF11;pleb-MEMNXi%77+t_jBA9JBsSTy1` zZabI`DGbwWO(wQ*8fVhW12oLg^EmtpqlpKDeG-o+J0{zNb{{G zI-~@QBT~u^Zrcq9cL6y0_%&$hkrZdH>uvLxa>#8ffOhpR`0U&EYWG)W!$0NUUO*n46q%n}tg z(Q1yo?T7{;)|g;3Xb_IfX3-CgswEy!$)fZ(#sSB4h3+y5DU&~IFy}uACDPs=>(kEP zdfP=7sufqpym(G`^a7AwrLo{PAyR_iMJ~Qje?fpArke2x@ZrnCCN#^a<{j#?F3TNc z$!N(UJdRv7D3hA5ncZ}rQ&te86HA&<-@55DmVPbyH@7EcCo!iN+(XpKH+M6v+B z#Xts;kAN<*2f?G4CR+Do6u+TCmVBg$r1K%=^=5R-bv(-_YEAGjg@$J;AK|Tttij7%|#b-9!Rg zJr4utjOLJ#QPPVs&YK0M&$i;7SDXb=o3L+f~Dz)pHx-}$$`Td?ANW(w|i(zLiNfh-n_Kxv^i zMUYk*QYk?=q@{^>OufNFB0HXciYL$bLz?D-yrjglH>R$*aMyd?c~CnDCc=1eqPfV@ z6c)Ot3fF8yagM5C&M2oZb9=sVHnUxMOOr{kS4BG$)G?ceQ6w{6acTh%-G#!iOyILk z5-|VDx?8}Ml+_GPQX}S%_gcd8)|&}p*X;4pe`N$%d;vgK%WbQfE(!OiLR4Rtuo}h? z<919dMB=DQDmO~i$`XG8v5*C0ff)IZznI-Fh=*FeId#>lti7dBIa`}#hRoII5eZl3 zc{cUk{wwSgcl)D`C)+(PS_!aRp_unY`y=7{v5nu8MmX|)pN&beWFoR!>NHB2KkI@p5g#5T=C^17%35rqMY+`K;aLrK%yDN z;Uu|`MF;>ZFondL`jYe_feZ;6FPHU_&z`DvJboEEkkRz4$r|+C)rSe;mQw`)kBL?$ zq#zwNLjS8?hYJa3qnb*Ap@Qa|mUEyo8v_gbrveTA7)`Tr=?VN! zDYx8I=Y6Uq-o=b`b5Le#em?xv^(K8eYYR;cGTpEW||Q6?4$~`MKxvo>uVD zJ+fDDDU}|$gi^41#KuROK|8>eV~<~!3Y+Q;obN1ygEksRYcAuL&B=F2d8*-6r~I$t zX2rxh6phZgmKJuI;Gs)Y0q!LPzFxypf}bjj#4AUdXzlczX=y+M+5*%r1Q=q2SR*Bq zkY;ILm*paRG)NoXxkm}t*KVjiY{P2xBwV`i($&YklMy4J+1r!viZA)5>vYT7u>KR> zb6sU&hw3e(okwS}jU&~`+ulIFC-Q=ZN1x)K!h%IJHy-WB74ENS%{6r!8#4iVJb+0Y z2hX|usR83w0Zf$@-A+U=3UB8^!|TG(Nl_PG((17D{ob|N+3o4zwvhmk=^#%9|5p%+ zkNy+{wg){gUZ_+=Q88WSM?uLmXh>qMhLH@%PGxI*u} zAr-euR5{La5@BaZajesD09n^8fl)Z7kV6J0*edBXA1Y)a7>b|;piI~EGg71^7*$ZS zM}`IkhoV9DSttfzn(NN|FcB@SXi$~j!VU=pc_IUQ3hCNFgUkeF&Z&ODx-|err;|XD zWQ3>T54e4eVKtzqXi(0N%lNh~MZYws_jSu`&$pGPgfli~&kDZgtGvWqU!GoZpm-8h z`qsHe_Lw;+kn0o#JUk*VX=E56wt=LV8o+HfhMsyM$g=za$cS4B!QLb{pS3f(mCzl3 zDj(xb6w^>>ke`3KMV}ePZ`iQ%dgqby6C0J=l1;YVHJ|Ey7FM4iYDC*~l`ZVF0yPfi zlfkNdk%q=e0Oo_$qi8)(fhnKqw*p48?E}82oe9n8TKcI&!@p%I5gXF$uOg^L#gXi%;>g4Y~bit>jnB|vP=&pGCSRl63m0|3S9%Px{mF`d4Ihm=_^ z4a0T}Dr(1t@ot)$>kO6bWtQsH()U5Q6-tpyb76v{+)m8T^e)#kGjmw(er8l&7v@>B zg*FJU)BV2AF^Lcd#lXF!8UlrJ-7HlHE@*!r>tiVRmoigWxJl#JLV85GVu zuw=yJ|7BPoH3b-@H~?G&DNg!MpyRaw9lI-22SFx&=g)*RQ$cL+a_Lvsrt2dlKeu9s z9oV@+@(M*kj9Psjn@gHe3=SS6p1gusXBL#Tf)Xu9o;G8d20r; z)7Ph}cm)d7jl}F_#JW+gHtUdoJVJ3P9Z43{-Xx58=kgrRq6Le7B_+(5x@J7(E7Mq) zWLS(GdQdKsOVP#`Z*sM0Ob6uK4prPN(&J)G0#oXuL9@#K5p^lxFz5F-LbIsGia+N} z}e2~^x9JuqHWlt2g9TXX?h!pEx8oVSmCx^mV)Bz62d0`Z`a3M#J2FYwg z7Q2DYQH({EuUvEjAOe`ItE6F&r4Dlv$fge>73fboFdB42_mU8W*SutoUzw|bsDiiN z7X{%%%TH#EnPi@M92`37dkDCstZ*=>`$fxJyeTm!Qy(eOa}A#p?=PvXP%+U@)K0i7 z-Yz_*lar2$@eN-}N8A+s8ZP#14bGmroX+S#J)!yBrNE(yx%T2|AEL|h*-(Kie(&uk z25ZqEJAh`yL9I*9Ia~o=CHom@u)Lq9ymvTP^Cz$sQ!PX63W_}zdKzrCny=0mqt4n8 zQ+5P?30ZsxsaR-*(Ak+Wk4S--$J|xF92Bl47=GhW%83kOp@{KNXazZcjgrtGN{5AS zr5}@&0*@*%H3%Bz-L+b^vWrwWrQfi$_Z>BK@~7BaQ*P+C8;bX6+j*GuPi6rwpeYfc z=R2fGTuoROip)UmEL6W|tpI1~EEwKB~zmnO-+avS$mz7zf9+lZ-04R6B7K+j* zj63jOKSu)&4la<}M)FEalj~&-WOWVl6mr2?vv3~bmDUvbj|}6Z;&A2fbQWO6bq}z^ z99$QG?VQpD81Og2wv%J0KMTGoHQOXE(}UgV=X4&XIu#0SGH$QyVZY9j=k9+QJ*0;^oICuH0tQAfK~0(@d4hImW1Ef%>?053)A;w;tc4 z>Py`sR+7FCt}um4^EsH~`D($r+M8HoTTW37Fstzb%PfS=!@5$Bx-hCQ@^y;XSP@x! zj>vor8df;)xN9HGkT*jBu5Kg4(n7brO_!7Cclq&2OpjNrqsM4~ai6>%{gkxH>c%H` za{n&#O3n7cAjni2|7G^$(&%4O*JzCb`?q zi(**d|V<@We~wKS93700%D1#lb1B3eFZa-#DrhW5jxtbzJ~Ul8uf<} zuEn%hm2~=WIX!Bui~Dd1t!U%HdO37quWt49?B%g}QeA#GIxywyn^0vkRE%^}i{;IT z9cq(b;ZPAQ(USk%tQTRU!C4SNEy|)X$6+5)V@BERerq$LKi{{e6}cyDO{w_UXc#dh?+ z?MpD^PILVKu=n0!P4#QmFbaq?=^!;KARUx0AhA#c#E1o?Mn!5UA|e4oA}C!zKtMr= zQbeRFRa!zvsnQ|TB!Yqj5>VJc65svI%=gWl^E~s;b*=c_o@ac7FRV>t1W! z>r-Ow_kIwhA3xA2ZzqKxCv5!6I4aq9!^}zhxqLJUeVbFqwHsU&c9J>&n??AivmOZ( zmD~=Aa^OoVcKW{j&cVB)+__tYRXpo}MIIkddHwfB&3*3d=mdf6#g9S1P=`c=Bp%pZ zi40vwyIhwHn&|mP-l-7T3mtyxHCEvOv(vE&G+bBe(XGpwrUcg0{OQ8KS5-` z2%<-qFT}cLdTDkZ2vI8|skYkPPd;(Im;V4vE@BSn1X^9jK|T2h2Z1VbOpAY9=vJC* z9(bm`2$&d@-dl6Q9)-;-c52E(8%^gevd%9QglfSzwL5p`De~Y4Gagoi!y~2c zw^|FyuJ8*i!Yl_^%HuEs)odeT!GJa=sA2Ct<#}kNI`|p`omwxyIaxtsFS$yTd)O1k%!IS8n znzFO$vA+(W1Ss$e5C8aFdGYJ*H{Szc440R;!dFxAGojBfHgZPc$GptM<};LBrd@h3 z=f$hMUHuk4+7A31BF-}s8F)l z4R2B1;0n=~8&iDxPKHN>IwM8C)c%6#`T3LPA69b@#^I^8WJaDFkVrcZYx>amzE=>K%#fUk7DOIZV;cU(2$~tm>52ts#Ukj>5D9u1QO(?R4DYE?y`0rwkP-Y8!ZxLl zEgWkza_{4oHV?qORfE5 z;+j~WapSY0ZyoRapf~&q;MFe`#Cx7Oe6tjIn^$CP(G%dGZfeF9-;=?#Lg*@_Y*9z+C6!rb67(W=h;nQS6)9k104> zouhDNBIr@6_q~VxjOxaleB~7t{j-D4MtN5vsZbJ!RNw2ya5g6dR+UqD--^y(7GD(jL7Y0^L7r%LhIGjs8uw{B zPs~B@3%vE#LHB#PkUY$Zzx9!d3QJE<&zU3ObmmWx@!v#_Qg|#@KpXmaj&rohf@FPZ z#O%w@SnJNk#a>F1uvEB(+(Y3zAC9nC?0;5}_p)F$x!f^KlT6a;77xhtmiV@Mnz~#wpGYvq%VY2cdpsUXG89ghncVR*pgX@sUjJ+pkqR6{i9%Q=2N3?Zs3cax!F-NbI1f1HMfUoKN=(Y~m<_J+ib_Ka9b_r90WiSa2l?4IDI z)Ca*xEKZd11}))*6=`yB2wKV{ArNnGQ|Gda)Kh#twC&vY=_AbI(5t)~s@|N>)9RxU ztN2LBhvatusostWgTY5l`r0{`Ym-yGr*QQjk00w!>hvs?d_d{n=l+^CeD zO8mT8=-s*}QjgD=*BHmEJl}cx_xbIA`td)LFKP3DVsLu}Kgxv>fz}1CwgvR+#T!{I zoc6aGz8y=lD1Y-lS3d=Id!Xml7Fb!oeZ@Bb;Y5#tfbee?PdGtg>*fR+vSQPlPv@p4 z;meUbud35w5kEKc&Aqkv7N;7xAKjIOy2UZQQsGh#NeTuUwa(AuECb5~`M2}QBdVD0c} z*DZ(f8tfBruOL1A%{=|`X#S&f6ROqvKH5u|gUFOI5<<;jZlO~7`9$A~t_k1PY#!s8 zKVQ;UeEFXLMpaPR3}kZE?cE;SGkZth4}{;$)MXx_S!X`}MG3xKldf8(L0D0!i&lF2 zQb1KOj@#_s2jiB>8Dj#YQX$NLN|N*>rP2Ht5_ZkaOwn=8&;HJEQ4ZYq+{-s zNUAXS&fvzH!ijK+AD5lH&s^-;>QmR4y>svL!JDt@1jO;`siWm%XA(iN76EL9w8A*utW2$YDBnXwL*`>>mNGoM=ye^g%D` zexfmquZOVo_REEgt@ewNl8td>f%5g7R6DuX?h3C|t&#ASifK4;5QM#5ezQDQY1xG( z<79zelE^4ps4{7KPxJn8dCLVktKuUnJYf+q#dMV=!E7<`f;!4=$3EmfOWaosZ04y)Awdao*b*s4=Ym9uU_l| z*;#0AAbBf{kzgcA)DWF4e?j8aq9g`+D#5wd?ek6|2d=S=?;* zezRO26q*>S`KwI%6J(4F+nizlkAMCOw+NSnpF&ULH}2spp^S9Lb;fxk*dLtme=)_q zNjCusiP*;uEMq7;lC)5}furSn?q=Iv6@3Xaws#yU4`1f&BmdX}gLKL@zIYA>+I$NhY9oci;DcLI;-y@C@})&|-5lV^Kb zYvNk=Hw*%bgPkxw^aQ3BWY!f@nb|>PXT28Yp~~9fU)Ee-S9CA;WxjWTp_fDn@8yJM z&UCC_CR((%!ft}c6h)V*0p^Jshmcm6$LME^JRQoT-XaKzZ*oF!$1_*d{KBqz**rSh zaiR@>A2O>na1S;}+Vmp6zwu;{^OBBteLLSJO+ea0Pe-Y-;(mf8+5# ze7sO0Akga1sAL{P_u|;CAkmpF!b3sJC^6EY z^vhUMB#~av^^nE5J+BG2U`~-NL0K{0F_n;l->}?&dA%QOi>6fevUlZ6({hIc zKNhF3muj)>Pm%r_!Vwu>`LAu`Usc5amoBv;3A6B;$yNzW?fEc!acneJ>tLdq-PQ45 z2*!zY1Y)Pu_gL;eRUfW~Z=w9=O4{)!KW6Po;7|N!@qs{Jnk`SLue(0ui>u`)(W+z4YT>q4sqj#4^GTn<>v4ElM+q(qeyD_<(DMm0d z=BBP?7J#_%?aBwK`lL~0(vgVQSx2Vi{B~MqKMHJftg7r8A{~iEtrZ+VCTy6!DE1eI zm!QV@T%U3NI6zKmvAtcAaT$Ht0F;@`f55l-I(B2Jmn~Fv>^VB%yk1#L#qSUj*k=T_+eAnjc@=)%;=o^;XUrG?7Hy-nF) z(+j~;Ot8^QvEmts)`k|n{Kt54|0s{{-~azVfd#|ClDO3jXY7gL$9v5REmS1q-SM&W zVoY(}sCV8D&uVkIm?KHwEQo+I6)a$d zGdXh#+leLXl3vD#0O?{nFL2)DK-R8wQcb@38-zqxIRzPHSe)*j{x!Kr!dott*ejQ> z`a0m3FG>k4x&mlyxTCb~&Z+8Tar#{lJbw7KhDvX6FQOeIUkUliFn!%*5dC7mi@7+X zRkUxdBz0n+c=qQ5xF4_f|G~)lGu-o+p!>g;Rz69`5}*IPY>hsRIuGoH)2`ox8Z>Oyq>VH+Z!3K&V!$Ru@`` z=Az3nup0N1BQbnUHl;APkUZd5jqrz>BzvRpqCF4HH}&@g%HCmDI3gJE(k>zEHZl6` z2a)AH%lpN4C5jY`hvgN!A0E^x9h(2^Z7IXZlK9WG8%8>c18|onMRzo!S`P;FL?X z=nqW~ckzuago`LY6M3Cyp#nZ9*C6jJW`f2<6(an6yCpI8Lm%UAG@y4*i>Mv9AN34bd`KFwL9i**yI@C=L)CY^!ctBVYyI{f*S_w!|xQzi>zCjx?R6N5m35C(&T>vmiUr?v&7|!(&pP|Md+tJ$kwtp zH6Rr0s@$f2v>B1$Rkmg_=+9H?B2`-4%q4hlUm^HI=|E#4%7>AL(kk^jfqd8RD~}uU z_i3_vXIxz3wLPv^H8nf!iy%og3Hl5m2M@bFQ zd5IVN$V1h)v`RBG)dGWpjW#U;0s@W7HZ8PAdR5E2OFnh87KWJrc_R34r8d7eeuKOI zH%qxSJrRAB*-KDJK&zub4p78_eCeg+g&*1BP^1~m%1$E(F<~w(v zFVsRkjZYwVyNR$ie<2|Ms$=vB>Quq3cd*rdj`X}}(Ui9RXVjwf*^EPHm(vg08 ztR@H6%F9N$=QSrwJAgegj~_^~mY7<*BgNy3T&Ff)`uffDE6`+R`%=>=)M`6j>D|fU zbw*y9fwju&%$>1aNC8#0<7zxOlleFvWi~fopC6k;rvw$f*j*P~O+358BD|tl;YpwT zuK>sY$$$UH!AqPdcr~V&y>n`ed=%eJ951yzktXW^XGeCokE4YeM=7dn<3Fywk0kJV ze{t6A*qAcd@y)QkQNzhqyDG~Vfu96(v;|t+6EAij%lW+yQ&qO!ortzje>1d3!q*Jl zrlwV-%6N?BUaSA0>331mG}UgyanVo_8LusX6v65Bwd0ZdpnaLABQ6`mQ?;WW7ZCqWhr|P!DHFX9*2X z(xb~8xL4_v=1NkBM*V_D7QTP6`eqW8P@M#FPWtD?w2o}hlQRtmjI;lV47-7yu47(I z1LGMZF0`AOVh!iQw8}xrBMaM%n3{Qp=A_*$rY?YcPY?zF+)cL$#WPc^;5^{P5!aUX z=u&8{v|nzlPG+B*gU`>4kFx7E_?$35d_MBh57c7dc74|Yw0|sFiRfm@S#R*%Q7#(@ zIPo$!TmEnlh=pHdARfCNzWXaQ&CAqa!ncritLR`^XuXA8oiDcNnT=`q(H+JA?aui> zzW+bbMWgSc=b&QXh>=%etBV@bijU3Z1ma4TL;Z3{7{R%jWe0^Pes`)z{nmbFH#y>7 zM)?u5DHD9MM^gPO6TR>nyBK#+yU#~`hOdTnR>Wj=Qi|eHSGO3V-6kn_ zMvi=}$+}Y?R>GNnq|&j(^XTO3DJgLWTgesR}^N6<1;sEfcWaMZ_?MuMIJhg{lC z9K#VE+3|y@lSV+KTp*k)tdRl>HElkvIeZ)=z@>PHvzl{`S?dr z_4%!{uGqI=UZ2zZ9jrp# zJT(*E{IzZlRSXF#z18zmwL~?-V!8Rl=(kC*6ib-j@QC}(a*ORZ%dm>&%khda+XFdb z9?qkI!`n};)r-uHdo`L({0RI`eYRBjZUxS|n7Un9@N5*`h`zp7GtBfDAGI;H*^Kxr z8ukCybN}GA6`>{5MJifyMS;3^bVKSRz?=k21QEK_35V*TpA`pyBn`gL!FkmWN=iF1 zAzGyY%WE>9<)l6hYwtfHDHomte~G1DgC-LOV~tf1yWLSJcG|HC7$fu9ASpRsMv!Kk zQ{?R;9=*{v$7B-bFE!PDOt>25<1j$-EWFO)<9O)TfrqCzw?t`vX=HfvyhwQvY(KJy znAwTo)o3TUsM!+#wVVzzPqW+|{u->jgE#atf)EpGgP5bEZ| z_epEpmm}xYPKvZy1O$g6T?MKP*|@WBv?v@_zZWpFybj29KhoigfmCIb5GfAwkFI|S zTGswCncg0|6g^HjC4A!35zUmRcM-|4E3LOT8jN~hC?}RT6xRUS;RPpZioaeh(XSCV zHy>hdK)(*YeVZ4*YOMM{nN0ty_xdN2?G45&%tGoM592l6i>7cL2Sm}Z?X_^x$YkN~ zXb8>b!?4apui9N#|A%HR>(#aKdY=s+(p6SM0S+cNg@)~fau~CgjbW3FT&dG-tZl|B zxJ(!7Vn@bRd@N;EHk_*s@o}_?AEwl3q#2Uh%4UiWsd;Gpmhl|wrjK_6bdayX&}G$a zv(oGL4tJ8q>fH|Gk7E(tG2PhS!9tzq954?WVIXx?_@{pamb1x*>@VP?Qxrpo6wD$* zU#>Jh(XIW`H2hxrlZk5*P=STs^d~qm$1qYjWn^|6P8LV=XjA+-cxcKqv{-#NsOy82 z9iEWaW5!~|f4=CzeR&?7C&yjyEk01hyI@Y&QCNLV(;^m4i(T@Ml@T4K8)W(vMwK`d zKJV{2vm*S_C%BU(1hTrlhXLxkF=9rXL`)o%6H81*ISly);n`=3V#(t&tB&2m8&mUU z?@hN1Tm6-LWX*ClWuJvKrg7jHb$G-N_~f^RuY^?tIi>~;q&sGF#L#to@2kBTFG>>2 zb?Uj^apFANm45Bc!{$;K&ov60?QFNsaRM}23~9TKPZZfpWT8F={bgcw!mw3!an*Z; zw65lWHwgz{zxTX@Io6l&bTWf-`|h3CkQ=t%%TSQgJPGTXud#lK6{;ST0rrTP4$1ZC zG^AUTY*G26clM4Jcau+dzRKMgxS6clFRaJ#XCdv{#;D|8pgC5;JA?`TfvNI zrU;XwW5|YbHM!jY2b0=xS8+ ztw}~k6D;2wE3mGk1_u?EJk%e#&JL(*UiU@$;M0eshuVYqUt>E`8aRy-Bmj4pddIil2UM$yk z?C$+s9Qd&#?|rW&_^%e{&9;m7COWLFt*lvhyjT?D<9AJ)xZ|nMTrWP3b3MI;6~0+q z{>(#{p88mAyC0geyJRr55PBVAuc-0zn+oF#VkxXp*am(HZT9~avh~N$`Df5AL*~4U zJdCd>3Otuy6v?ds#}wqj(W74qWMo-C?coWr^DA0|>B#^fxw&CCBtnBw(r7VGv_Xpb zD?WA<{{-4-8N&68_i7tj|I3i}ja%^PYbo^f{pIN2P|9ltZBLE+(Al^&W4kUxUZN^W31rWor_P8+?u_&k0WLKSAc8f z^IrXE4<*B{_&1rbkghA}iVT&n;mn{M$7t#)6W7Kdx!q-@E|tX)#&lac@1uW? zuJTVLpOYWJtLZ+2y2dEML4k=*88x7Pp#&lZ)WI6RxKd*}92tjtuT;gfJLqK3oNj)( z!iM**ZHTRYS1A&uuk;>U1x~V68ClRf6s;{6<}|aPmfQ&i+eg0;84vn#7p+kv(=E74 zU-uMqLUzZnX$0@Cw|eoLXLs??zoNkZ_&vhW4*I|JgYl#k(BzQwx`J62t$+tiwBu!< zi@Iympkhu;9pbGe2>MI*lksjpH|8~hKl3W7BubjT) zwHx#@*p8b&*EYjnS^rt8*i%lqr^s$^mdU*L%z2W=?g1}2AO$uGe#vz}0y84Zj`>I1 zA^D28M}?2VJO;|K-P1u9{2(ZI_`ZjU#eWws#4H54gv@$c8-&jf-BpX`o? z@)Vs$Z-bzM2UUGfwVyhROK5)Mx}d13dFIDl6YS4~$^S^s0^#(37*Yo?weqGdl~4L*q0+ap>_aU`NJ-w-0Z@~#T#twt@Z0wq=H&D71UL?E0N=$LkqT9kx3N^&+kY~7d9 z;PSygMAJn4+NUdea*FOYFI`nnBS6o!M+@ByL3lJCu(to>+|L0ad#6ywfO*;HV&H1a z96xnDU;8-0s!YSYuIdFzwbWHZV*jlOuYq;4eUjm~v$VExLM*C97QI`g$j2p^D7xITW^ zs`+cmlV0g2HOU$6JBo3l7Itgz0NZXRryXgX6(nRqI-zVpLVKtyC0KP9v9IEi@M>zH-_kr`Q@ zj$nLk%xXP}FF_P@sL7l<=g;efJ_Xp2I%u{jz9pqkmmSJ~sFZMLTg61lTzH%@kxEII zePC{4c;gN~p9%niBJ5I)G>_KP#^AZ&2eOIlPkurYn1`s)1Qe8XT6fgD!O0-$Ly@_W z;1REdJ0B|>dthuyg?D-`h+momjYWOIH}J|{=w6+o5pm+*;rvM-r~?G+V=#!lXGUhO z^p{_4DVh$@99avM;w-rbj$TI+zjDhK^Cn6MgL+CDl$4uI!iWGR*QoME9WZIsHL6{r zjwG+<+KRR0g<;g`FxO*Ktwv8(C&YMptJjx|PO5y?ESEK%b;47?s8dpDUwn409)#6Yq}o3$8G8-9q`Flru!(gO)jz2(S(;hvD2 zTG`)=F8D|g7t(snYCpDByG^IXRYL%!qBy*dHHHX_hI;gCwTm`%cfewXP}XBQSaH+S z{h3iei`_-PwD|fK#I2QotrzO9h6yUxrqtD5J8Ue$?4GaoSk0!wod6wbngd|1(f+x- zMu-R({IRV^L*(*SH|N^-9q3XCj%Jk2g|J6e~oF?q+9Pv1CNL>5XSQ8 zhqa4^;@j~tU+9`++Wz8Jr)x6fwcomnofz;d%TK5Hk?XzY??zs`6?kmbN$C||kuj?| zO?{$$dkZ9SE>TZ2%lseM_JE;sYuh$sV!Ts0I+Z|N^pxXk5)tYtVE1iFEm_EwViciu znB#bHwEPVeD2I!>MTD`URA|C;eD&i-@WOe7SnkoWvb@B#;e%@BWwwMlh4kB-&Wj#y zPam`J?0swTGM0BnhVGI{_hmTVkCm(U+D{@~NGofEu9;&GE1hQKtc{|!Yl&>i`>qo% zsLpW^E2a|2@YOV0Hpv;h`33=78C9xACrqH9ESUr8BouBXhY)8SmK29+uW||F%YHZ0 zN%p9s3opcHIF3AF3H{dYPq^f`o|pmWY_fYJkL`#xlH^GEWuaZP`SYyg>}Ss_oCQi+ zdM_kT@bT|ExD)rOLIne;)J3e*^{A1XCRAuAL}&#rrS_}1Nh5zb)a_;FaBaGrSD;kq zTIyj7zGmmbjjeqD`-bNglJFjUNm=F;6{3FvPNW&IDFqsSw3IDWh!DI7F>jW?oM;kz zIyZH2m}J4`x2Y6qo7{ILX5h(EJ#=!N$yraHpJKwMeCg-QfUDQC7cwG9vl{TM0sB@w z*7jp&w>;!u#ef7vB^^erAy=1}iFd1*%H|m6e1~4$9%^au7mEj7nP2_+tFk ze3PpEc|=F1TiF5zXcs0_LVS)Id)j$D6a1)OK}%zDITI@$F^|)nQ;|X>OoH}$%n5U7 zk`9({`N4#(4DY;8rmys8#N$*i*V@!m1xW*j(IzRJkP{ryjC|RGs1r%m zW&Z73aL$^9W-$jK=JkyBy#Kh48hiQDuv~@pU2J5IE4 zOrzx{eCRd{;aXQm%5OD~{1RU+FY`Nkb7)YgS5mfE`dTp?h6S2j#jIS zG1V^Nm&T#bUsr0gj@KjJ!rmBPm^Lt39nw8}`0k;zZ_y{1qgWoiM|LAO20}NbDnt~G zAuE$RBp7d=Z@(mO-wqMR8=>ke;*B6BbQS70<^{JZzqlzGsS*Y#ndlt&66sEr9MIP*I%XGRV1OoJ^fV z{<0F(s~H;`m+TonCKQs|n_4Qzc{oJgiW@9AJWIVj8l|vXXUPRwWgZN9*vOV zH$M`;GyUgsbPWSmj8k9HpRtvY_KN6yd*h@2?4GuSt1Cwz$d7bA)H16#JU06@F73nq z@=IE9LpquU@3Kbx0mYOxg)G2hWTdF2aA6(UB5w&uqQ6eUUNOgGqYJY3zHY;mEApPb zRholGZLeQGEV#f*=>erZ#(!6#{(Z&T%+t;ULq`O<$W~<)69v|&E+IYt?HVx`I`J*zp`K@j5EvjAX)(;$7^d?$hHed^HsL^?*AV}2 zmfi-iAdRa4`+uhskj*tbQ|LBy$L8n!N`~RicTkmQ2KmjBkvnCI#L_i1oo(!i8wO^+$PPBjmOUrH;?OVkCMrrP@WN?QWGF5@5n{&7p{@!UW zmJ)kCk^U)q^x18_cEy@^$iNQJwMXNzu?!&80_Q^WGJ9R*fMuElgvZ$%$Ev&A-(2?6 z;QH393H{7VRdE$g_MiO)t$E(!{6Nfe?J~z~t_E#9j=Be{ZJemdQ8B4$YOWjcT^dy< z*CvIP#Mw$B1ztWJ?o}!9e6$oCbeZ#r4LMob6U);i`xg1ABWoa?Na3(}JOlT3$eDSN zkzsSF(n|I5F~zkT5%6qGwSQ-YB;3>ZIB=be1;5<3urO*SdAn`W#|S1L)toq&?}aH@ z7K`JZvHkRvJJvqO$|R+vizXd!F{l8>OKl*HX1A5dcnJ0Jm*9)L3k0{~*v5n4`yBwO z@3mL#oeB1!Y52&Dvu1dy^T3Ao`<;6QmStSezs^{&Fx>K*Seaa4lcHG3D8#R(BlCZ= zSc_e!6|E{zp-uppi`k_B11QlJrNYQD(knyhj!rrtH5@W_`QpX&KZI9x)!IJo3~+xq zxS4O+Ym_ZxYL9x)H~LOxQ(;Sik;)WfPJ>t!tSp!e@A8zzfi~J!6#{SsPP?HAS%cl@ z{|SD}Y)=5fBDZ?-)OfM+r0* zLQRHOoi73!owDc-u&`i1uEL@CG2g`-FSR{`_7lynJ>(nfQF#n-@982Xw{Cq2;uUL= z;H`-I>9~ilGtP8VjqDkMc>I7cfGwQ)yj3sT=y0(O&*_XB*_RPKCEWVQMni-8D+v}pm1n+~9*fg` zv{>!toFM!D3JcWgd&S^j0>0L+6BZ!~7dPhaC3ET|KgrCMqi&^8@y^X7s`jVCpsf_%Kd+!1$2&UBLf*?U!m8 zm$R3|A}~zRc#_qZmHt(%M5^M!JNEcy=K;9yH08T=QR z`VUyCH~J_5BmQ6@tPEtTPz^zy%$IKVN!Ys-A&UdQ2;xL7nzOFdE7a>o;tWWso=fQ;x5$omxRik~~($ zsaj;%mLB~$^Z;luTE!ITH$JUk!JMKdVKIzMHyKo;r_p3~Pt?5!UC(WD*+V;p_a#u* ziTD^aKcE7m&OiRiE7r!89(Fx3x$I#2#MajKg2n9*=LO##`K-Xj@)4PrL17a&dw{hLTWe|S*_VV?A7k;}DilINVhB2GKX7T4K z#J%^W(64#km|tXn(3zt5jAZpy<1sP%&t&GVaQHioon;8)r;?K$#8iu7gBiT=n`QmA zWtv@l8z1+cFj$XW_48AB;lEzA(U+;* zw@7@dZBu#JGQ=nTb4@g24Dk&LivC++XlcNsT}HkU0TFTe;h>OM&Xif6ldPzGl{o<4A%6x=o|+nRfHWId>Y?|X2T`)e0a?c>49fN2JMfH^YHhizl(54n#23=HI5 zwNyV|^Rc=BJ~gXVdVC3b=<61Hig zQ3Yx*vkL065?4iSseHO5L*KTr*!GhzkL-)R&C-WvWxN~SBQo)%&KIaIDKwK&eTUqv&lpC1m8_Am%||55>7uxjcEgnq+N-65^^pIRkVU! zbXj;{SXe2+sXfp?JTO?UKQK_a*LPpvu)bTI&7&jJPV3zmKwhr}MsVzuQ5b9TTCf}Q zpyeHzC?ib-si^R}n8e*qB86R0m#qtXW@2jf2=X#Q2$7gCftAGgt#cze7BG*SFbmUV ztR#3$lQa1=Yn$#wgL*wrt@$48dfiB3o0EyWg;Cn6dygdJeP>?GXyN@T0L5<)F}LB5 z=k!O5CQy)aV6ROElHI|Nlz|CO-}oU>aI$>0)Ew0lb=I)sA`2Vo;psHeVB0J=Ik|06 z2&vMk3nk+P=+{8$I&gBy|N5X6U6Ze<6KJpg>8Ioo9tpRu$YvjA6wr!g-7qPf#a$iPVB<=R+H98)S>o`(}3p>Za5wa`B`YO_tJQDd*W)9!0oZB_#tY ze2?!}09HEAe8lZeyd=QU5?p71iADJnDWY@VOhyW8Zr6pe&J@lP94kMjP}II%Klza@ zU1yvQdR0co0Aj>Rs#;NuPm=}hY6o0MyS*IgagKVu)NUdx_j$3T?kgAj+jWtnoOv=n zn`WiM%Ej)ahhQu65cCL)0cQa26^GznxqKsjrFmoO{R~FuT2atDxVIR)C{#DBq*y-J zeKPjdr`2zHctDn|xit)jUtRzC=CsEeVS7XuI0uST9Q32-*X z2JEXhWs9<}dwA#ohsY%A05Gr6&Br%C>x|UsmSG*$ZmjYMDg^S{3=!$R@kDZ}xO-i$ z=Hc5H+*0m|TksU{>Co2c!XRk@rwPQgd4_$+B_@N|;zY4%v08Uq~n4uR@xWn&qQD7uo&Q!JNHjhbOwu{2}kO`88( zBmdyTcF*G25`{58^n|A$6F5ai>8AiPaXt?5W_sEgmtEoQa4~d>y7dlwdwi85-FMq! zwV-3@ZMuVI=Y#bt`*hMPm=hpfK#8bk2p=<6L>Z3USGzs8wAOy5fhPY_H}n0pfq8)H zmFfuTV<7_0&z?S6IUH%q0@@Hyu@bvGk_pgOyqFH2$8jE1OJRHiJzgPr0}XT@+a08R zGAaxZj`69C(v%h6gx_-Rf64b`o(h9Mo|nPN&H#-aGLW%bG?~}FBDwitdC0VDUmR~l ztHzR>93^9IDVGJ`Dey(PNxWO z=9J|4PPn#A9HPZ!x+37eE;;`D z^0R%LeDuX`=JGe@?8L~}-#qy44%t|zbN@2<0C%M;g2T(r0nozYpV_DN@2@FUk>{gv zU%UEcavHq(!h0QS{=OG{Xr#cD7TW{C;x91@Ogw3QzdJ0pi zOc$dDw@F_$8OAB1?5K7TXaz@PU1x)6QTa-))|j7~S$3G0@E7wC?ajX0xfqZ;FD#HuCJS=o= zyl|w4)A!iZwmyoo>}rkXr+1PHkqn%%0OA3@5=%*-HvGZY0rwa{h0t=yw(U+A$?@IVv7I!R;P!@&tR5p1mdp?)i%EkC99^5_TO7c|!hMkG@o^ zX;}pRmFx5aD2>GM;D{@Be{6fL1}acQd)LH{Me>zoQS=k7{d3ng)gi26){MlDq2V zS*g~>88!1k+ec3BL|4fCRQ{GDZGtYCP2y;o7XcF5m`XqbaaLm?5!<#dWKHDNb@tn9 zcgU&PoGPUi92ns6tK z0{NzyX7!`jj(x~7wEqww6>=MkOVX8>p)yDE<0%j|91b56EQqAKc0p?-)4^P)+A!81TtdB?T3laSzb45lZ$aake_YK^N zvDe)YJGF;1!&~9c`T{a#6FW#vb$@Ppwjr_b4c13Yd>Q8FJ-e9yRMji|FSM3F7}5U( zwFLya2AnW!xfsf9_-XjxJaUN!F*|k8ISzldL}Uxv78$QtVYK+)wiRlv^2PE8osSG~ z^}B0;&2pG4Jq=}A9tV*+7jU4vD^R9-!W8>YKVlaj%$R06BQ94aL=H}xk4huO5yp`vz_cna=Q5`Qgdy5!~K(77CnU% z2-$40EH@Fw9^n&CsR)ZO3&W79k`ooZkVx=!;5#4$|E+PLYERDvx!p0(cb}6fi+prh z=6Lp%932e*@>aiJ*(+q|LTc?B5yscGq^k46J-42SdXX8IDsqiLq7~a`z@H3@M(a_> zUu(pEHP)gP4t5;YK~@Oz+O_SD=AF(Ab?XQyacnZvQM?cs9dz$|U(x%W{0`_sKIqCh zkWI!;LhO@?HG^FVlFh7LE<9h>jR%VmbNmxJ++h{`lhandUg7B4dscGPoe$zyQ0Sjx zDd(egf6gbMDre)sDQ$x6;2p5IX^|He8pnfaM`kLH+54XA-wzH-$1wu}=3zpuB^l{g4 z8l*^rUvm%@LXk(%WUU%$6P?N20F=}}xRn{#q()@8j89uMk3KMa!?3mTl25vFD{fZQ zh9~*3*Rgw!M`RK~#88*!Ub3J89G|Cflz(@~eVz9s6r@H7%rEaoMYT^m-*7T5oN2mh zs?1OOl=QA=gyz*D(V|3%w)3%Si&3yF75CNer|;{IRw2x1Fw()TP;`)S?nIS?NVyjY#F(R6X;dnH>+e1;iIM7nJJx2CW?c_6sEp{T9Q^cQdN#W5V8w-P1~ zKG`n_)5hEhv!JMRoAqpMwjY-><+76VDSZ-uhNJrrFu9!%oJN~KT_y3!4&S=`z?Ovsc0N2o49&6M4;?1@}4{a{4zXRaJro#P}V|d>6Ct2+E$Uf2@`6 z1j#o7BMe&(HR-L9V<9N<#i=79Eiy*U^`l1T7n1o9w&R53`D!Dgjgu}@YZO7^i@rFo zfc+m*KCyf#ZzO>w1-=C@z!%|fWEe(*N1=}a9&e=i+6~qt%kw@ojc9k>7^~h$?Nn>p zDmX770ON@-lcpqQ zfkF>A5@&wwxlAEP7s5AViv2DAJ2a=!lIfNRbkxw*(Nj5aQW<^L;aOX1?d1nKSp^bN~1G zZ^>i!&Mxa+Ywh29`zx^|sQHvKOcuakCCQOfX0xP~fs}ae=%O&`2E5d`{7sBi+Z*MF zW6lHFYUwpUZ@y59z1^m#ifuyyppOp)7qEa|zk2-0LzVwon8XO^)smX)o$M{2cWm5w z=*~s!s(3~~ri(mSe<#j@y3SBU>~o18t1-uHYbZFDYlC5MEQ)IV(7PL&1lFJeQ>Cz} zN-8v#toI8QW9ek{jGY_b=B}|#^k*q17Vj)+2VdZG%AA7|m`vK?wK4Eh#W-Rqw%HEg zD0R1l#Siaqv1xU)m#6o`CUs*CYFN)`n?55^Y0OL~S+oJAh^Qpce*%V^T0q79c&pOU zg6iU@jy;G`L&x zG{F^2(D4fbS!qyyh@$i=9(Eo<&sQb=_(^boK|>Qd@wBmRgfG-k+}EE|#QEsT)`u1` zN4B;C0Gtlw08Y5qXiBsljJ$A9J0qNgRp;pYhw!f0YGAS0X4b{N^R$wg2T79i<1L%N9dr!O> zm(C{J(N%&Gs3UWy6Q1kq*ux3sSM|+b3UjS=M@rPRU~1~>72yu`^+_|62(HrHTTdRd z->5Dj-%NiEAzQupXW1z>Ft%xvHp}}>$B*iu9B#^2El)M79!y@Zf7W%WK$OeC=xssg zj?#35rL?c7L@zI6tR9>E9K4QaGanbdu)O)=NDMG)pFP{gjp*xPm+Ya_55J;2q^jkL z3b*G(p1}(ktG@2xSHAde<^F95+e2>Mr_hFz7?PjyL_bh-6R-=q%C4`j{lo5_Ec9nE zk>W7_c2za;ENFlYS^kfM`OHrEF+nC1&=HmcbxdzLT`tON)GdC4EXu@Wat~2#lweI!5IYAyV=!-R z<6P4$^XwIe_Oth_SCO8hABTINXRn@r@Q8dGQDs&24j!FLUwWiQoP@EWT+&!p&0%MV zP=pS4JW+1yjmUgPC_1)LeBWL;QGC-x)SsgpD;odROB`#6XJUIS8qt2N0<0eyA!I>S ztV|ec!Qj|P4>yqS=)tYVc)0W9S!;o4sEgKDLEXwuAOMG86yip~eU zz?FeM3Y|xi$zTRcXS~YXkG}3Vu0#Ph_AjYur|cHR{XpzgS5S*%X`SbC1=?5Hf zKc_yBL!cGl+dD8R3t~Ire9^k)kIGlU?v+5E4z8lb6|WYEtp)@dKE%H*1(7Ua<02_)|dGFw?Xx`dZQ@uf;^^2aNAlVw>k=pC43x ze1!&dQ1iDDeMIK#1AsFIaG8yR;UdG+g7;y0#}&mWH1?iA~3icMzQd^oYVyzCN8idXtq0t-QR7$1)dNl{tDr>Mf_yJTq(XV>RB;~80}|u zN|3T%f8t=KLtsuO-gG=NKuui4>kxA#UM;~PVN7E%r|l{KeHSp0O9z{l(k29icH6MG z;EZCNzijS(QlILW{IXfjLMm*)p?fayZPd_w%J-icx(v`q&R19|M_>$?xfeX7ZD$cv zR)c{Uj{dVVEG_4hw+h`0*UTps(zcjwkKIv!))yrbQd1W@x!%ln`%9MHo1ADatq>6FEd%+Y9N}G z^10w0>%1o9SOB0q(nYB3XX7^a%jS-+ukDLp-1rKgnpw@UwBASiFu>mzjIAk^#qKLh z(I;o!)z++pouqM;oR@4zC1xUIt?}o|La-kUT(-Rf&``kN1Wz~fm^|XqVvC{rjK9Zy zl8YlA47Hm{6X&@RSz=KOSxjG}}SQ7Ke z9D}{g$QIBO2Kx_jV5b}{9BlH;qf)u~M?l}kJuu!85b8@fUQIl;tw3*0F&>TXF0zCS7$#{8DPy5Sbn;BcZ``;RMe3|aQq6a-} zzH`&ld5m|e%O1Z{CBuP9c75k(lejO8<#lnB0m(SefNlD<+|t;d47bMgb*RtSgFXTG z^Ua7#{(y+8JYHe9463Tf82jz08J6ScsxWXE2t#4c#R?VkA2499hPQ8qyuW1605l)? zUR!rP(T#j0o!DVKRH@kmL3Tw^z5C8Cy7K|-dv^lY@l%515f{S!dZq#Bkzi4=ayS#q z9HXt`DXJqahm>f%EX9A*z4R5uXVp&*_QS2a`(JQ$WuOnG2RgOIya$uWLxE(T$$Mqs z9hV!Qsw(>8n_I3^%5jd{>uH4B4xRC^h*RqBrens8(4*@m%>gb$8Zc}1^Qd?9&_iN9 z=-$(B!}TX#XxVwp8$1-M7jv^;9lw2EqHOmKLI%p;O|ocivP_{+Yh! z?_B(wFq5#k?7Slb;s8<^2rM_0Z_8R3fX)Kn4LQZL3Sg4(>C7*uto_hMT2nzE4^y|Kj5&t88B3J=2Dv-{G3uP4*x@l!OS{Tv6ykGj< zW&jl;;G!qW*3_J1m!Yfi^hpvH<(aJe^!ORfAx^hg8^-Kib4x>*C^EogJ}kc*zu9%M z>qrmzZe!zlF}7mMfRh9a;&e`YPPTG*5xS}3{S(aXOr(a@ZDN+O&?Dd^`+|M^rVT2K z2i@rWxXycOwV>(6pPos2@4pZKWAFVR>66aaykXj-k#l(*ew5E=#obY^Q>cM%o&%g& zP<_d&GGXY0>T{tOW<9%RXv#S4_&qa@W@{%BmnDi6qcf<~5TJrn?z%VQXZEfYa@ z>r@69f)PM6G<0W~z^AN3_yw6o%?-ne5^2EIfV7{#AZ?(-LkWgp4G9P^zjWeI_W-Q( zaWD(W<$$RI!7>$G{6y3?2IngI3&Nto#l`#?)yZFi8aO^6(g}hLwrua+RVB=#42b{$hVmAfQV`dAJ!lFD0Ugh@!Gr;Oo+uIw zE*caYPYUp?%ubjSQ>x|^iD&M?e?eHQ3STXu(m;isc@K&aIkt`SpBqI%12(NRaAE2) z<3G@>7Ble4m)6z;?v9SM3bmK#zq=be3wiui`}w2P%U>a!EMQ^MIq*XY&IgY)QXr{s zKMdev>DrX+86V7?&{1vczarV zy1>}T%W5(oNV;s~A}Gy+EdV7|1vHa7C72Xh8}Rp@$4m;npWjnK(QAcp9mG_PTn{%E z<>-Hwwa_~2O4lx{#Yy5APr`Ob3bF?S0=zdsc1L?0#{o`zHISbBH$lT=3TP2rnIw{- z<|#|TS10L^9hB{siCi2<7s1u7o^T4}%%R{!UpR~E0!{MpLj_F4ETFlHBG|RX{Tt%| zhFKP%=7%sfRmU9gc5edj9)>6lT1x+^dqh{IkBHZQ;7HNuTc;9qs7_jv<w#dOYUT{x`TE)>lsKEgYpv-wjnwe!zD*_%Abec0B z0x|oSCTXS7e%*1gx-zmq*mWWNvQdokK-W|niz|}57WcLy?rDMG=v~a{`I^MSR`)c) zt?|!{$4@M?_!PNadJhlZ|Ld>9{|!U%AJ3Rd$^A57>KXA9Pwi}K8{hhwPrjuHDCit? zzBP`IJX6cnYqv!Ll^Ejy^%Eg`5BmAeJ%HD=X4jOXYMtACHexP-ZxPghRcV2E+x!W# z7lzZSikPKGIq<}`@c{8hY6N;PQF0+*VDK6*xJNuQ;$7N0T2z-P;pjTaI9#h=c`ar! zv47nXe4#-V3@k;R16aqQyI^d4n0Oj{{0Hr~ZG(NWcUz+tx-4TW>VnhCtn0gn#lN~c zJxor><|&wnOr|ea!AyaLpPNA`sVc6b3}7-GQN4mUuzvma?cmb8Hg4uo z3g+itpVzot^H?Z%hS^aj?gka?UwQ+EP!1Td5Jew)!h9Z`8kpcwQSZ$Lm>7(E+tz9u zxRkZjCWV}ncXFa)dw1hwH$+Bn>FufiTGOBk^mYRkv%ElcA;KQZ(`zWJ4TOQd5kwYX zX`xd&JI|MH3Xx-4S2N0FI2x!ck!|aFCT?NCq0xo2pQ~BjjRgYn2m^EZM2Qlpa8*69 z`v)^3$7pp*o0S57e0W>oyoduXHP5Gk-EQUHt=0#8tiGgqE0QHU=u#TX$J{$D1=ZzW0e>B99CvT8gG*(u~V0EsTK1EZ#nx}9`V0=#Ii)0HYI>sYJVc2_%7DF@%x6-Utq0vPlKt*neFKCHz6lX)F5 zCWLWv)l3<*(zGhNmcyr3ALubZk=2iUY-hnW&8tSH!s8EDC)k0vOd(j}2I7e_VHUWh zL>$pO3Qa;V^nL1X>A1(@jWtBlsdl&2Z`OBS6W{En-KCmGILaJ9uEBfXfrLu_$@~{R zaV=p=2HA@93*S_FY-j;4TxO?@&@kI%pV?5WpsjtVi;Y6cM}IBGmMxt?CDl0ox1n;z z<#^HJQ#vGBk?(l-WNpY=cBshqjtA@GYD6AbOA9#qAs>MwY7HzGyi9lc+Ks;UEod!w&qnSLtj5$i zrxD)!LAA|>^b1{?HU{C?spS#0LDK#X8&-E?-_p?MnzWt|yG11Z%SfXMxqm7gO&L#| zo~?CGAi@yt?Jbxnc`lag_~p)lbCW=q2JtH+o$}%Bxu&{;;rSvu0pCyVAwC6mq7Us- zsv9;{joQ%@BMU}d1Bu)+K;A1u+}qZ0ym|NJMIhO*v84^IKiDc?);>rRDjI#(Z`y{q z<9aot=d9zhX#Fh`mc@`0ckcE@UsQ`M4N)Kcy}Zy(7SCa9})@t3|yoLDqHQgVWHM5SUsaCat|?Iqu47 z#m$}6Qdch_7{3>T*VN8d@8Ubk0TdMDusuoHjbcD@18A&5DemzPp2#-#(T!IA;}n0C z7*c4=t33OYJeQV3oUAi-XAPM*$&;nUf!v^r1$q0a;2YuLimA_u^HRNqt+mhTMiSva1SD=^XWltTtSZ)tjzrmWy}nT+hdc`b2pw$3Z@NN&Z3eN=wR z+H8x58SzRN7hCjIi!+65rZj}B1S)i(!Dk_8{GG8w^ZadG=pkeW_Elxy1HFIwI1R}a zcByr=s@~I}GnXzu<@i%?Rq#vxZvrBTs_0V#kXtL($daJ8;pp&6}>qdf~?o;}mq+Qs= z$bLHzdSu3RPm+8+*gQ8rwk&DZV)%zR-+}fQxtuJTp8aIeueMDIx=$ZE-#d~h=md<1;{}u0g^`sKy6p9aBQni<+IWSQK8W=<=o|%Ks2;0pG6xRC|tICZJD0`VH$QrU5_|D3fiL9tSJ zVljThGRmsMZ*WQL29UILY9=ppxpyNDLiX|>)CFY!0gzf8sUUla$^i68*%j0j+2a-B zh$m7x&yAW6LkjU?SJ4=EC)tjKmegK-* zB@<>L96e(^r&J}MA_vTZ6~__)2qI_4p4pO?mNif{v|^nKvpv zDn1c@82|D9Vxv;~06#vNc=`k0y?cfm=*Q)C<<52iNb0a)ynHXF!Yz2@TUnwUmHes1 zdUsKGhuDfO@{LT^r4X!i_=}nhk2}ZXS`Y=1Y^p4V%SDivkakE=8JHpLKMk!719c7* zn8r{HAXwIuP*h-G;n?u{YOYl2ys&W{NyJ^#2jl5FoY6KW;Aw2b-WX@^C~n3=xa{$$n>x{Bz`1@l=A@G7i`75+jE+c))@` zwPneb@~8>*1p1xa1AIs+jHUvjD- z8Nh<2j8o?%e)xpNP~QQ}h&waxX(Y32KEmi%x5-m)XVv9JbCvj0IqIs8<&o#F%~sUi zpj?D@qInShy>KXz!~!sAFCf8rMb2+e`i&Shw&9rG%`o9Xb~nb4s68t84d0iLh!X6K z(-d!g*vOazZ65}}JP~SosW%>R}|5EF~{sLfB*%7$h@1qqA%bY(Dx7)> z3y+iMx;#AGtD=y!aCB~o>-uMo(3Pz#@n7l2W^2z(kwzXKX+aRdF?H+5{KV65Y~5cX zD!sYg6lUqqsiZM}auqCTCB(80HWdcS#y|7!)ZTMw@|XRSBg` zXgxnCN$HlW{i^&``L&GosCCmfqQTx5Nd=lyyiR90%v^Z@e?I#ELQ$IkCkoyC-934J zO;9^}IrsaX&U0=$SZl<$j;5t zK7d-%B+xG4wQq+>Vj;_uw0labwvec5l{b*?G@6H?G7YLqp z)zRMD!I9TWnpeu2TJoBsmos>gw3H(F9Aj!pZC8%~M?YRkZ4cW3$G@CPt*%b}dt(t# zHanzAz)CEgPk$JBQp28tU+0|Z5fG9;qv+(8Cltvj{EZx?|CF4|t^xix9R03%d-`~L zIeG=~Dp5;b@%HfcGx4#t2YctLW00%8qp{9qYRTV-mX>%x zikga&lA4a1nuZqKC{NQv>1gRszMtIWzeC6w zC>YO6Yo21dX-moHdsZg$K_M0YRjmS=l*{9_JPn zmy|v$d;a2OO>JF$Lt|5OOJ`SiPjBD5{`bQpqhH3xzfMffV;8teKXjMg4D4_E*CGM%N^SmW%`(JTe9d3_?V$ z`~&;`u)iezS4fnW`gb8wUiz;HFDw5qBfK;S`2Q}# z(?LOmSCTtj_NM^<+Z}%cc=^9kBlDk9^KS$EZyoq|052{3KNI?272s_lvi}Y6zb#z< z4e)=eH~v2ja{pg`{+|NyZ^&>0SeGvS4Y8z7;Ns-q-#F|Wzp>LdZ2eC7%iq!Dinmt) zxa-d=EiLyKd@*+P_YU;4cRV@tJCCX9<>md`DZg{mhK>%dwwJvTyjCY5FMmm1Lh84T zS4mFh_pjC`?DZc)z;E~Yqb+~O)t)r%#uXDE-V-4Kgu0Wjf6wWH`_6wH(DAbkIk~5# z79v2$BmiXNc~36aF|pa@Ao=6^<-BYr1rPVv_X*n>&kJ7 z_Yd9~#N6Lu_vGx~C6eDR(DRg*k^_JI{aGiwO5pAZ-w!q%+?AFAZ+Nmw7@s@|{QE2M zf5;0~yw-m^cygaVdgKolUi$ZL_+JVu)>c(h3XI5uszLuqk=9JoB#PWAJDNI;bh5p| zl`9YGtjP6(YQ+aJn1`GE^x<+fTKx)_>_`RrhNXMhJ}>6Y`|J_W+elC1vGXor@y#!V z?X+K*utxieFB`bB)nDq-EG_fPy?R4Q$MH+Y%iqSA*0(mdDt;Zj;whB%i5VFnj`Q%` zYr-ubNxoT*U)`WLpLt90?aRX)8_g;f{p|SltNQ0pmN7Y=RHIeY>h5Ru5t-#adE$aF z@Syg3W42WxAu#B$`qv^X2o^pPHeoc*E}Xxl%~?hRgE6%(RAlHk_b~lZ4$I&E)mb(0 zgwj1`q-a%n%17|pE@n0eb5P!VLG6_Ud1FO&frxXSvoSuKqrYjT&#dy+M?aV?Vu7i( zkk;FC{K7b#lHYcGA#&>?b?D~n>v|GHXcj8{arw*A<4Uj8cC(NVAL0=90e3Yb zeqy&T{XNZ5r}X~r90Su5z1`whkyU-g%!4TtJ@-i+iNmAvtbCc7$se+~*@vGCrU7#A zJtMo}Oy`3==x@(C#~%A5XWvOEIuy3q)4EG79IBb4IS8d!59EIJX6u@eA4<)lGbv1f zz@WY)oA;*cqx+)=J0wLiE%HeRm4JV_LDvu6zNV39w}^1Ab;cky_GS8&bjI0psx!U| zhEGj9d(%29#~t}=Jqm2E2j&KbO)PXMef_~%^6d5n@gVG%ytDm{bRn5;(J$%v?4w^w zIg5Pkk+~2bW8nC0$*<)LYnBZD$l#KricR_L8#WJ<^cz1l(rNVuPPi4+->Z}nvU#ib zAZ#jK@rA*<*>VPn8vZNK0}D4b1w? z_)Mr0W^l*R1zg0?6?d;JRJv?S2rwA7u9fnuI0R^_tyt*0qTul}e;jJ?Uad-_GH1a( zlVfQc^}_#JQ237$C&CSSj^oxO(~qGa3k1z+%_-L`%w7Wr+yYH+(%b6aUIRckw7 zg;wBRe2Tbvv;K4-$4#uRD&@;d5~RS< zJ1?E|l7)@wKTzca)3w>i0dk6hwVRRY33-z&=3S9=Q_Iqu&l`|`@}>1l^l9h;SW58SmBNAK63 zYYy(y_T?^JeGw_wf3+V_ zz2saHY@d@rpXz_vc53W zE!jBn*?tdPNc<)rSWa!wP>@GPrc4QOM-R|t; zKkZ8oJW!!ZV>+LDCv#tkp~fX#Sm8*&o7Q)&=DE2hGbn5<_2CBtYD>L9#V3H#$6t=i zj2F91&)H1AHy?KnKKn4!r75%>9j$yh(c5``812)|Gw|iw6E1^^0)qtFjO)n3&PC(C z%9O7{oa0xfsyz=kG+>5ku9YrD!IuMVqt4K2fwfw)@FwQIMXCe+ruY{H&G(kB4$#h= zIVG6$D7qnRie7opXhf6pkn!WEn3@Hdn?*G`@d(lZs%Bd%S<>)Pg~A&lw-88O;jNh_y-C+t<(W&e=;xvWxiaQ&< z&2pqGDz1z`UMw{nVzA)FEE~gX&1_1(p61jnX+6(3?+Haz^mb2iCv{7`4uigfh>P$) znvr`*vX>bn6QNEJzjj&&e>IVEt0-DEQkIkgUYE2N)B05Q=4Y*YK)K>BHD4+Q^1Ll- z#i@!nHyt3i$}OTXckNI}8^7@I8K$6EXc4&7mxkykgshy*7med_0YNiX{ zIexJr#wy_PQM_D67YI%v?`erZ7VI`{Hm4eJX>KWuvMc1iDw(*#J#X#?(N2z(5 zy~0^Bl7gGn)AS8dZ31$JHMU?8veTPcA&C`?`CM9bqwn>~TMxZ7q_qWSq^X`1+L>al zV>IBK$?W+~r=Oh9T)n>*N*2zvB_KF(v*@!|Mdx~zVq7eeeGIXE4rx< zpG%7jN?mN@cN3xB6KFJz!livp9_d$}>*2f5ynbsjoNqQon9b)`p0QbwM6h+XVa_+D z&xLj)%=Y#Try5t48YG9u!0ZKM39(M!iat6fCUKY_QXalg8d7TCxIX4)v+}lIn=H~< zj)M+zh+BA>cR?Y~#VXyGZStyrRNy@4=lnqb4y9Qi{q32rcAb7g@2nnwQWMIxEqOwr z`&GQXx!72a)kp{XDtwDMpjH66XgA4t?0d)L41rl3CqB_&-SM%@%0k3HY;aa_x78E?o%H#dJ-+|R4IdlEuK7*r`FBzvtRbm`boU1C;d`XMmFE9 zh9mPQpDd?-WR3%wWrCy921QEu#k(mauhd*MZ?#1xlB{dMmm=iL$)wwpF#7yGT1Fa? zF}Yh-o?Evby``s>pIdPqWL1`$ir|0wq1ECsyJ>WE3MHjwq^0@O`DO}A%fP~z<-~0X z8mJpxCQIZwyADlZHy2G|~ zX+E5fIJbDpFKevO>L(MA>AA|pLtU^lBJW7=ZNB0?FisbJHictxxoelMGMIDe9o>2a zhFZ1smf}{ciT;J>UtkM^oM@}w!c#=E*BN&kQd2H*h0%$+MAUXNS9jAR7!{N$OpPxc ztfJ2`#zm;BN*F1Ab|j(c>1ZDCZ!c=kN;|x&Mslw9iCs#R`TZ#W@#N=~)GIwMd$)M! zQrD^@WNfVmJl|i6Q)U{C)mI zI#10nw_#nkVbqC~Dd*4bL|+kX&tstZS)8tPLr>`Yw)U|*-A|*-SlM^Q;Ilt}h|a3A z!pgI~?u_JlD(#R#a`P^`>b;3mlHX6Y5XGd{7}N6h*4^?1*4cX1|dxk27cY13msXvUA9jpg|3`}!n{ zE%Q?|pim@|X8L!+R|Z?U#4SSta;7UQSQ0gjU-JGna**PJ#Qj2fAc?W^pW-zydmXhh zJFW*YNoMOkm|hzbseF{o47ro`9j)SNx%lf#^%MK?V&ART+7E$-IeaRIcR>lG0+Kf9 ztpvwo$6Z?gmm}p1AGo2t9hI}@Zf*3Kdm2}f1q~1M(QM`%q3t*IL!r}qzuJCHtNt2a zMs62|{NRbmrOx_gCv0g(Kap2J+o zS8K+fo>@V6mk1ARt@3DhR`!v7bHyhyXWI!QQ5VWQ`jVMx-X|O1Ty6N-Q24G%!s^qU z*}$#d?pKNzGQ2r*E;Y!p;p_w(zj&jpgI})$#Fg#rXAshZEcTd9SCohk4Ibou{=_WKWQh|Gy@ z3Dm9pp$+-3s_*Urt)l;J&^$5J{+HKx9}|j_e)60o)KV7=(>;Eps(7S85E$RvCRwAK zKdl;$1*7k#S0Ak9u$$$2eaf$|NNFwWcYj=Fp%)S@;M;q>Pk z-p|n*T`TdrP zrs@sK(NXh0_4AlVLkkyF3e&kC7DJlsTF)#?v_%2Om~o=P}(TotBRRgf`nv61vbZ|wf1#=YcArP@YkCQEop2FVe`E`H%{*!VStO<(cT0S9O@RXFG^h) zv1|i;n@0oJRMqA^X$F@PBsvA_s zgnMQI(fBANE3nXa&*||TEE#7zLWDDlHI0hG7a>`)Mw=u0x za=I@yP4ez3^yTxa$3$t+Gw7B&H$fEi7zaa2TrDM2k^F8bwpJB?tT&}(jNI3%OpAs{ z&spjLIa`_@zZ%j02Hu3l@7EwR(MJNvuj-t~uL&2hG@Bgyc*VGS6qUOPBD7nb2hWvZ z>DI!v=gRr)!UJyIcP^z#T8Qrff$3-Z(jjU#NrY8!tY0H%dCtM?x2HbLvjbLe15~V~ zVw|_CJ)Y^RvSWSM+C5YD%6vzEz?RxJJocDrv0zqxQ$!ysauMk~id1p1KIz&|V-OB?#e;Qr8Z1MG+6+CCS;5e&Lb0=n7${Q8MY$Iv*2dX5;*irVRr=6>l18z$wejna z=;_5>g$qe8`?U?}VQi^8P# zBd@xZ&yO90#qRm_33&TcYxy{#)IKf}7Vj%D6haP>Nx0cq&;f5C9?q?XBduJd#6jyTz-`Tp3FcH9~wTdzdVn%BCDC)fPbWJE6Ha4QMe z?L;?%p0Tw9v8r@)Jd9x7!{wfV6mI_EN`e+Fo<90%Rg&DXyu{4;KxBigW~o&tkB4to zUce)=WglQ1A51u>IL{J|a#)AnS5zR%XLbz(ZBWv+T!(uX*k|MAgPYF{PuW=1iY4GK zeJDZNXYuydc-@Hzx6tyz)Nc3Y&8E)Kw~R@KQ7oY2Qz+IgyKJ#<+^s^Vn!0^kre9hO zNZro+c#*8;9lIiJawMAX7)(a#!oxzid;ARQBYkVQZshc-$0Uyw|s18+`XhR(NT;-K@(X?3D7R>Xw5sGDaI!b)Rs zFMo2T48{K0OZ+}ls{zf_arXCXV9GaH8q$eg4fT|wldOqRQQ(_=JuDPwuunCrE&wLN zVgbW;s1ZdYz4s*J1x8x+N>|&$>l9hWT*bbNuU`=`?vu6B#_NB-qn{Ub@lDwnid0>6 z4bIj|C7*BJZX*l$26%BpH`311Freyv6H$X(UUpw677p^-OtLr~$ZCr)(ydlUuGZ_Y zM$j9TZElteIn}^Z+m?(wvKcN{m414MhjNl5*<#OK8Sn4Q%J!QmekLUmcf z_xruYg3S`D8Xb}bYnI8QwkP34>e=}L(p40z+%^?pgiT8*0?b`QZL5HVtAl)Raoe%= zx|`RYUHG=h_zVl_M<;VD`Ou$RHo54BCfvqDS7JFZ@dp($FD0+E+4k9JmFOLQ;j7OoIt0uM=wtIM(*WhOe zSLV?%D8{@_IuC1@>9DFamWNsIR36`I%dMXJ z-Or2lRE`bz$!I;7l<~Edr^(4S+(Z|QVrCn1x@IS)<|I?q1=dmZVDL^|SzO&z9-V@8 zY0vzzHnx}O>@ru=kbI>+wzRn=#O_wAb>D%TcF#=T2+SD;hE4#cB?wpyLn}=1h!^Z^<5Ju# zfk}8yC#~%QEU}F*>^e{@FzJ+247lqyX5PlDtqu6;cX;z;l8X6Uw$WqlW4!42h*5SJ z41;dWNx-;C0$>1VuO!8QE4GRjjLss`;x@+#do-?Vc=UuL4N$AH4t3XXHOAN6E5Uw4}&f6ZX3OdqL?P5Kj=^wW@od!h^Qs9BuVKpdQ%NNycw9^Zjs2Frcs7>rcO z)0y<%n@RKZEOq_l_BqWXXu5Ue!_q|prk$iGos!hv~E@3*nzxG}gR zu((Ays?W@vW#%lLVn5VInlI`L`6vna%i0Nvv{tNaCThp zxJdPu9mqxA#G~)vw98(7Dz-#yaj}02gQ@iR>N!QNZ}z_q6ZzJ_Jf-k%RwBc?_xyHZwM*?Z;DqFH^22F7?2Q{>~ z8oVN0YOPyCXmO^NEcjp>PntfMtkB=oCR3W$3cW=XL`v_-wx-oSu1ZHznz~>N_ z(n>e~2|BMa{)2}SOfp_yKPn!0<&~J8pHOTmllK1Sv#eeM@#iB+uik~Ie<^D7z=3(? z8uefd1nH-Uu6cMbJWc^AKUzE#z~$egEMB7QR2VK|PgkvQU}E4c@J3hD|Ey*nO@8-< zUGIr0BDE%%loaIn;up3%^Nr?(yA2IG3r^t`Qi@jD^RpUKvk%FcR`LDf-*)Q{KjJ=r zpT26Bsz**=xS%J?3OVvi`YGE1#~E*v5!8+|tB`!|hhRRNvt6)mF7x(7t*p<9PLssO zmwhj%C$*m4p8Oh{db5S)wnaiv67R0m-A!v)XBu!JIHrwn4XH9DkEROK0sGb|BKhw;MD5r^TY<>*xUa-)FDMi2ngF|PdNp7rNf&ys6H+ym`>MRv@V z*d}in+r1F*V|Yt-s;vo(T2%#p&Y_ZLamE7^?pUyhFH@LU=3Hw00+i~T>piE!N<>DV z$>_7ulD-TZI<@6Em0Obr)lc3{MNmoU&HvbrL)EctzQJN94!V#qK+PGKcLh+x9xL{7 z3*yOuf-aM2i zx`yPkvW8;^(pnuW06S>I6l}k~^f*RpQs2Tsl;zQixko9R?=A(ad?pUGkpY?W=w$S3 zi5IB(F1nl!cx=l+ysGPkQE~VY$Bm}p04qdcd-~%>16Q9n^NhSZJGW06BiBKaDc%B_ z_}zVPeA%YjNx4*!di+u%eyW=VDTdolGD5Zg1z`^Goii;&!0^z}_BsiTjhT4WTB zxaKV2@4PREr%yhjBYs5E;&V1eu-*wXqJaAx2c1N?c_-?ON2>~!=hT{>t2Zs~NYoMZ@yt2;>kHgFd4JCWU5>P zFm=;X@$*KBy+%t{mliWyC%NG%yh$_XO+w(Q z21<*=Z1HjR3zD>mCy0VB!@8koW6YNB;l?xbV}9AY+ZV_B6(2L)>SVA);hCTt_TXA* zV0DskrW;0x)*)Q&Isywa4H<)>;kal#6f9^qhB2ukq-{Bb+vV&^zGXyyhU2bRu_8at z)}c3Y$j|%__TDp~scl;ujujO#(nLXtiV8|oq$nT}m7<7<1&|gIAp&A-2ujFOkY1u9 zprAwrq!Z~#3mpLw=}mzI1Zk2`!h$4=ce2mj=kDS;XW#eUANPB|^Fzp5!DOyE#~kAs z&lq!zT{Jq@leS8QymIv3{FkHR0=l+u@49bu6&88a{Y7-o!|e%cwWYLZoXx})EPNTI ztCtcnlBPwy-OlS$qf(-9a z^rPVwJt<2y<>>+zW^iH(?B1XApua&34mAnyYGNCz*ESibgq43#3v@S2p|A3OnX`fa zNyjjau?y2tjRb@PtNsw<2hFV{|77GNpuXE<-bbx;gSm(v@=jg?)b~_}XK}1xFAq6z?272hzzLcahxOI*HPbyM#4_GPTFac(4P`iTa?(n{P21|$<(5Mk zYE{tv-ZcxTix6lcq*lP9fCnJ+eRXrMM1^6s)=6UZe^;eJ-2E-O4=*%BCtq6(_OjWS*!z0hBAkt_Kxd1u(xXzRgSk?ql)v zJ-rgLr`7=o-o1b#BZ{NZg89rLAEFJjpxj(1v7k6Jn$dpRa|CfumNwfJI_PJ#9&cGO z^h4u8rIK^75p54M-?QkpQg0=%Baiz;SqFZ6($F+Bu z^=s>Q;Dy!8j%-ti1(h)Vnxr<)fC2^|kU@-D9Jg*l8=UR>0Nf^bw<%<`70U;pz4^-~ zz3agVw{tmKJ6IV1?LO6p1*iXjuE%c6bn2(^J1KSZk|dmS!tb@l)qjk7d;4t0#+Nx>?{nzdJC+Sl{%=OB zXT<_l@hfrnu}otp3K@eYNn$JO`Kq**Wi##Hzv>t@F}J41SzhRAaB+5BW?ds9R5E&N z`*BQUT1rB>tE}}-cksC1;qp|ZA>GlO>XVh(Pw}HwbwtkWT9~K@`4IEA4q`du^ka&Rs~P zwoD&0v9)hmPs+~(?I*L=GP;10;ynAC=Gjab-@=h`o9b^E$GZZ&pf*-W*`le)AoC5Y z7H?+0r7`Mv%NK7NF;=N5_8D1i@8oc7TyAZ<$(zB$Tf0Pk_CM#SlS;Mr!dNg-iLg79 z%D|0%bz)&nKWo}h9h<*Li?i&){cq4|YUgRupJol-tF8B&5-nLHG`Pw3_?=vhNB0ze zq8%H5vW+}W(I&C)ecN_JN}R?at?fK-+7+6AFY}a95F$X!ZI1)RTI^oKWO}X_*REeC zdz@g{JUu$DKItTzYL*$J++_agl7RA?t>063Z<3l811)n1g4{Dq;MSdGaw;%uXK-1X z(z#R}3yF zWAne}>aa}639#cNJvA+umnFXCWy&Yf3(@kKmD|T3Z3Fswxp1{p?>a3dQWb!jV>dzo}}c82v;^ z{tNZ~0=5DR*ayD`y)Ut2>9!uWZ=ED}FdM1>=Eak-nToasTLe@joE?t~p$|Te3)w_? zN%%aISN>(f!BfvKB`vBhEd1y<+iMq& zdH_@U=kZ{eGZ-K2v;r5@b}YyAW0CWX_G0L+{e9AbL|0%%x9}nh-D8Jwj?DP`$`fK1 zqqDt^KG=6EGjUJvB!A2F-!Ub*iSI|N=Xjm-a^bVc8W!iETRc037obSo)W=(g6?77_ zmSMI|bsWF3e6@UP+Iw4<+m-RRgS;`mfeS|W+O>ZI0SE*TUXy8L z_#U|&GcQI0Mf&Mv7G(jo=X)l9v<{xb=Qhed4u{?7!}x@Qs?B_3MXV#NkQn+`{z}l8 zgFu(>uNhM53B9ARHI$=d%2%J|qrF3?qbwzj^>PA05L9cLrUa-xf2-uNTS3)4&Xc5i z1yO1rWSIuy+a~0dJ5ncv7-w%JT54wK`skNv^Y_j^~slo)@w@Z zFza;66}S8Fw6ktc;v~1@V?c)JHk{3YO;Tj|7PFesJ8lZ5eKicRd>MS@2TAMPaDB5r zDlZjJG%L=G3YeO-&j_4P-GC>&tC8E+RWACfJKtzu^vSW)>ojOTnX;eGZQ$Pblhjgd z$NqlTu~Cj3sj67Mxlq8Ff%eB_zKHymQ`Bb)dh`voTy?n|y*fCX{-}%hcH4md>w$B2 zO1oWD#wqDWWeq|1fJaa6*Q>(#^{%@J-=)(wyJ5@obst=DDL8cE$9_B2S9Ss4LEZEh zcWVdUe)lvGPYL+|Ptg7}XEA@CSh=!699Kk`ZO&>BK@^D+a3}MvfP@L`&pg60-UmY_ zg{mge(oNa2E}ruZ<4Y_)Pz1|&C@DQfOKx<&qz4!h_5-+)Wy-LAX-nlU0qaFKdlPPW z_FOyHBCh94fnP&}Xk0NxzQm(RRBlSs!q{R>#r=JMab!acxV2EfHqM(kl`a@Jicb)zW z`oFTiNFZk?_d+@^rf^FNcPC&ov7N5vJZU6MJR5q!;querTW+&v z5#=R?0;`vuaPqn=BD>-IyDFZYlhoy_B>VIXET+^~QOyA74M zkbtuJT)>)LK&^!UWin@~^UM9CmGrK^Es2v;Q}Dq2#mOU<(s8gfpdTS$ zTn4U`=X8SkG8oj4rFue}h{yX|m|;EX&TC*_gBBHetCPl-$%TTJDskLfx|c7CMmUY{ z=+9>2OQ~JxekxZ)qnaW*LqRE)rplVb+prHb_qp6k>u|j16P2_@Cr#?fu=C}|=gak* zWc=zj>bENqZi#bD|1_O0-$C@pblk45p{qfUB{1X_$3k<@L{iziQk_!aTcFd8Tmj`kjj@_dOlV@ZTbUAJ-QKkc$GC82fL{3#iKz0;foQ$;?eN#AplB* zDw);iS-$0I=pXBM-@GQvjH?b zYz2_6FB*i>x$+!&H_W*v?*4cqmKYsVOP|Wx`#KR*OFmFMBK4=odQ=cUf@V0lzH|f?EA#>^?aq%2y4s?n%N9{KR7B z!45Ckk>eg-}|b(_xO$N{@3Jf{RBmnRQcDA zZN1!Q+Ab;_FQauK8LQNPpvGE(t|M}8u|LV5D%of!K_686k@sqoDqJIY8FI`@0x5hA zw&x1ys(3ut>l$`66q3S$sMme$fKDTAv=+ldnf5aIIF&di_2ZnD93p@yMU73#Ib-n&u1*4TK1Q#Otki4-%+_Q z@Z-)4C_9t71=Q(=wQVkU6eK9eLD%z7j*vQq>7r?k=ZfNW*|1g20&2L~ochTqgC`3* zm9KjiSPxbtW%v+_nX3y%_%<8&l4i$N;ZRqeEjH2t)wLH;Cmzq43blUw=%{GK+leuT zN>|b+fq-XXGFc0#gy>B0gPn|Pc?l`>GLJkX(qK8t*!*=puAvHL$+*^nPe(Vf)Z?g0~6tlVEor7UjKj zq)ZCrEuhj2xxtVyf&yfS7#KEH2AW=igGw+HqEH!a{{Wl`EAwyzPK`RE^ZraAEq^MA zx8x`H_-2w9{elJ5Q#T^0(v{&tpWvxlv}d*lK|fhsSW*$5nt`6r=U`ytY22g5*}nQS znf&8D(VwhXJI(YyQbwD+LCMbLg;^-_j%x0|(AtrA&10vIi0Q#ZE|~Dr&&;`A=K0k9 z-Slfnd?Po1jtskHjU_Nj@t)-}%Q=&jq$l@LI@BUEo3k9y13Yb1^eD zw8vBiSe?o3-+O1ip^^KtoQtj40f`$6D9flhaYUNCWC68Z0azYu;QW1GTD-VDd-g1# zyh->P7M|%aPy5jRCO~#Zm|pfP&;2icqeo4V)ujt4879mREWv1b@BGzVDxL~VwdZxH zR#R&!m>zZJED|L@+BwS9#Ic4(7Et?Vu40)n-)URHm%ZrtE5~SMOCTHE+<}I!ZlpFf z0(l+1iAtg_;dw&?{a7agXHO1p-p9>8GdcbGm-!O`GHJKY&auI2MQ)$M_9dHW_43~~ z;;B1@F|nOSx!-WFu*{nk)&#ETwPvu$K;+{MZx#!3w#`z9*P-Hx0bZcIJrW_sv{p&3 zd(noYFQA$(d4T6zZt}}&l_Cw&NQ`(j5)+vX8LDsrDO0LQ)x7W;Dm5Z4w{pYid?p@c zJezrWc1)d=n_L&$VTnK7x@<0DpM_kALj zp|x&7A4k~gD~q&pFQ+e?+?yBK)L19@g8Br7OqqToNmX^WM9kXGVPdauexLD-HlaT% zL#?NE@%OEuj0JPtiCbBEK3anCemdksD700jV1l^26SJ#w``znO_e|9^xmXzO5(sa$ z{8rd3Pe(hi?p`-JT!H}Av`!i0i_J70(_@X6*Gm!ca1nzigb{ZOvea;tR1`0I`6WL! zZdiJjRaQEn-yygp!!T;;W86xQ$Mcmsq~lJ}%bTuYFQGS(nwu)O@?x?Yf=y3b!1upk z*)RRQs)qEuj+}iFsQS)qyq@~SX7|mwkP)8q@8c;z&Q_@y&8_?bweLc7Y5t(1JMd7q`5uKw*S5ivjfqY3> zgEp!yM!tWwk1945z%xE>OnILo2uq=%;f$W5=tA3{N_Ghgs-`4!8(IM=P)2^k^<0#; zi$B?wi#zjo|NbnmMe~JxY|#Z&Xb>-zHkQ;0jclSveoCt>zcsu^=FR(hqY^TFa63i= zS(8l|XXYMRG#mxEwY(sXX%CipBlZ^&RwQ`miy<#ny5P{UFy2l&@NOT9W7xAmfaf?N z*Z~&{CS{G0= z60M{2I@H=ieW3bVXyup>JVjv2jWH~JCJ0G04I8|ASCh64OYUysYNYgxYHe{1)paIR zs^`2Xye@bh9Q~<>J$S|0!dB^;_j+&p(}#DQ>lFYTI%XwlJ<-lc5_T>1w_(V-2iDce zjYMP)&!3!iFK$%{3kp?wK0y$(j|scHA6O?MKk8>|6` z@-r(4DueYmv?BPC4v4PTNYY+3Oz(bT!2g7p{%qQ;dDhD~Yd{aTDpFf7`}|ef%vxqW z-t-dv{dAa!vE^WV-w=26ar8?-VOZdR7@>a=qujBhpG~`I%GTC$7z~(cx+9KG9w0^0XSo4V$ZnDic<55fwLh73 zhBesho`GDzT(c5Mm@B0H2E9TJcU|Mn@h6LXjaq(;t4Sm~8O(Y+E4+QUBZ}dPzdhNz z)%mKs;TM8RN}}-G8Kw2)ps@pe{av(O5FUs5UaZ7>O0y+*j_TvFn~O!=7Eni{sw6kB zKhQ$ltL&TSY=Vrf*G#}0?}`0*m@;1Tu6XJ&Cgt8ggt%-ej;`C;erZ2^ZYVt>qCo1D+6BVG6fT?*JK=&eh~t)58ZwXpZ}_`x$BivJMt$OytG5vL1-6HF>3Cq5mO0w>BHb3WcaC24eiVsKc8;LSz*wtf3(p;Ga z-~6Z1iY(Jo1DsE^G_&W;eDGJF#J9)$-GbYqYs16qmmnc_{yxsEwQLlyrc84CmOpxsZnnZqglC+fFQ9m%F?DY?am?Sen4>t&|jL z3I5g=k>v0M?*5qnjX#)ZAu=cU?6-(SAlbSk~fss=Zm)_3qE;2%j8w zod~d2!uj z#IbR!{Qc^>{Z*eS$>Wly-S5x4C)o7w5qc4popEoDFc9&H zonB{>9DIHwEut6hoq0cw?0!7qq^S=yWVfuS?Ett zn4DBTTPb(y&I;4umVJ9l?tLYm<;WtRa2vE%BfV_q$W6B`g#s}|rFV_tLr0k*uWcOU zZuH`^?xY*3Opho$(G#lu)Fc+7Jt?d9jMSD`eJ1YIn{!sJkIl?OUsxoh`~X-wZU3v^ zqTK&Fnq`(F{5-MeKv7$UcGC#}vMy@m50JeI8_N|-Lj#CVfXyxI1=yt>M-3%aA~$f2 zU%(>L*ZA^^7Eo~?5VwAyg!#j0pA!T2zS8s zza5jGI3_GHgge&jk&4YYo7mjZQ7o*mdC}_L;ViB)G(E~#Ge;gH zl}}Q?Ut1BDaYB}ho3|tng@Ew+<8KfLpdx+$Mx+WOQYg=qK-S1|ux?av-rzIPqQSBi zkrCZ4&i06`goM%l^87-FK||R+yN0){zZ{e)v-vTOMq7!fyUDWsnP=QWOC%MT4Z&Ou zxrS?z(O!w=37v(0*T3)de$KyJGibn+?#mT!sz-B0CD_;2CDrywx87X!0n0k+be=OI zvU{oXv2!?`jiPg8zf*G+zraOodGDNXHTR5`YG@@+45WZ|pY7{?FhNqb=3dN)eN|%= z12olK=`Yoc$cLLQW<+WycNfJPs1zEw<>ZuJi+ge6T2At{BTf%8c&|wE+&#S1?C##6 z;(aiukLs(275WrN4-7O~3!C7Ue;J-K5>fZa{#xC6xz$GaV~=U{pvuQ|hMly^FbH}# zjA2+YY&@Kq3R5beO~@9mb^+_{TNkwG$StmNK}LJ_vz7z7*&!1gM}6ni@m9}DA&ZTT zM~P8izx*KLd48mwNYi{T8$(8v9PW|JY#0`V^=dxT)D>xzB znPti*jmNiFd-mTFhj0Br?}Wc`w21`R7dx)q-wQUapnTyL;7xYE{b8l3&n*9L;u;>U zSdiYB>f+QpzUi%QUdTaGTMmmCu76_H$A|AVoW{uy7f|cB!kNs>a_c?WJ_hatVF#1^ zlzj*5j)j&zNeUfV_5i267!LHr!@dlBV6kjDT`^Eias^YYIxY|q=B*|k+A{OCnHQqL z@1HeVuFk((L5}XTdlNlxaPN0Pf0Y>{U(G{ybPU?eLESmu+@Z^^@J{$U>90OAE!(%U z*PysEOUHi$Wf$S@`hUg_b^jAyX_mVL0m=2UQ(8uWSTCbiM7Id=QwfxHzqNY*?DhYs zMf@2z^~=4VfM)lZpRs~3tpa_9n$7`cF_IDpG0kDk33v}XuG+{udNc6VsD848KmajE zafVPS{?Z~9F;Cr8UDhA~*unM+m8pi#B5x9}R4KJzaVJ} zeS+)X{~t)Y^3O+-_hDS1%ouF3JxdU*-CA#kpu*A?Gd+ z4jZ&Bz?Do%%@*%#m`H$^dLZ7!b#T7o8Q`y{YeRr$elOxU_{Y$#H zjIe6#QS*2H&Hen0`}u%_Wq-i}5RMIB0O3$|IG~U)Myj5qf}}ss_|hS$)Re2UsB8e+ z3Y5)gO>xDc6{N3a!Z~M;FCNM{f$y_)mKZw!3*_4sF&0Yr29=(G>}?lNXGsaz$+mV` zb{7rsPj+>XG_ppAqx1s$*q?;vW@mTt5~vM%oxRGTlX}CN%Tu2MOTI>Sh_VC-^RXrs{e0Qa5)7DJJ$fa9j7g=^bO8vtHGz32k`3npylj^|8U5ehhikY# zckWsqmZO}cU0s8@;;~PM*v^_l*7){O?_<^zaWR&#DMQg;ndP4k+Rspzhb>gA@c^0yqx zE`#|af@SI2SsyYD-j~S^8o@h1k)4@pXF%$M{V1LAuvo$^zEnQmDgR})k4o}O{3({Q z`jam^i|F|U#|oStus6NAo%iL#_MqeprT!|=Jps3*csbIb9tlrXW0@_I>MXg5RJf~L zj~QR_^0I0m0ncxgi0iK2^?F5iaCV{TnrFdJA86jt4bI!?N@ME1#Fpmsg^>0SBN+Gw ztAXC&r&IO#E@M^kPPm*y8Zxg}gVm+^O%_YNBwc3oaV`~S$hVKQZAi>lB6NVM( z_{YpFtq(mLK%?WHPZBS1#YxmjmG5r?c*o%DKXC_s$AHRacN1F6)=^VaeoxRqcgS=l!r5xD~}~ z9WYCXXpC=`22BKKrnmpo&UUU|g41l=ivcee59Q{t=`$SDccOC|9Bkz`uuFAl_EKP< zzXeWTLRt|ny_Nam^2Bqs0dnI3QHwofIF257>MOXKq4PI@#2S;)WZuJOE%7O_ zur$}uuu^ukak<<>GUwFw`QEpO&x0gENwK{5ViA%OjdEFu*H+%p&|Z2B7kyVY+QTW~ z&HZ1+L`#a7T&w}38NQXWql%)$)x3C@In6_F-F!^Ss;z6oI@FDJ3l@o3nJI7_{}4hIUYrPAp6~CDuM+XT#T} znDzl5a-h#sDQ@724yr~xC^IR#zl0(=t>}jn)imns-dXHx$qe&(p4d};W7RQtXKlP{ zQ&q{!TJtVC`iS_3EqnF(oB`wWTbjF?TH4TI(C-^W5^}ROZPF4TnzY_dJ$oXjAhRfw z8OCMLUN1aRBX?6y$7+-Qwx^G@my081*?*726rTjrZw!*>6lr)P&MwjxU})@$JkV(S zsgm3#m5x;F^J&3 z2#_vF9jOhNZxDDu;nCPMsm#<$% zH3Ph9G98-Vq>ScnJPHmF0(MOhq}RV5?PUvsP+4QDS$4m{E^m{OgNIx=9~Mw%NoRRo zp3O#i91COv)f)uVFMq}|ZNNbsQ9Z6ajvr*h)VzZF$}q^D;@xlJIV&ksKxQu_fe<{` zD4RxigmH+EA=n!$*Mnmd=b*AyCXKf?k`GzC4YX2EW<<&$rSaS`Y?~wP15J3G0Gk(! zfvnq5Al9W1vE1_*W;Rg~ge!JE0D2dGgnV~UpAF1}lL+p!5`jygGS9n3^=GsbOKCfRrEc=tbuG&*+w<|-@XTX^rG+)7Uo3Ct2^L}5I=q*pZCp*5!s26yf$xQlELjk_ zuW3xYx~%Ku{GG>dEgTr5wO!JY4tCK;U8SGPiq^);h^(qaxwrm-5+eedet8T?Z^Ds2 zQP?NB8o!{|`G()5Fbp)nJ2Bih9QJL1NAdLD#r!7|F$P{$`m+0sh_O}m*1r<)1%I<- zl28H7$=sXeJ-mjUb~2H7Ch9Gqp7>Is4&8px&p!K7dsh=I_Ij>}z%Xb9@oE$Mf5xx< z`kv@lpky$#0S%5J)OpTp0cDI`*S^}Smn+CYj?%K)d13n48DZwQo2Cvjfnkw?=1&3L zbT0zN4U#i~F9kPGpg-ce^A#86u^&tDCJFyd9A9vx-*Jd|a}61Y!Q^%skJI zT1#F5BsjNyEbs7Wf04oBK-Zg&6cK%e3;Lrb^}3m!IhGN>q)xfb|29IgY>J;99(t1Z zhIW-4WG%@8k2}#tV2nqUk+*c!(18&9-UDsSts;C^^m;3=w)eW}m~&NZq zhoX36#q(#==N7~LzsuRHp)gNi=X7Sr0Lgv1p`5muc$G5qFQA)?4Qbb{OLz2WAdT+J z&A*bnu=qEaUEDuNRa^V-#m*yD@xeVzR2#CR$P9e6JqY0c>s-J;%hUC+p9!8<1?~q} zA+hfbv2e{=wZ&_wdvB)rcFt^dt(BaBAzfYz$DClnT z-~k`gD&U&Eqq}vZBBIo5Wf^3D42p|c4Eqt7M=QKG)`)3G^n5);^)o)48C0zn-z+lQt0Knuk^(Wt4-vTimFpPVWS#sqWK zBj3h2*%5X|$4;v2w@n#{c%pYH={?V}>Y%Qjmzr)1;1=^FRBBr*$-KNt=<22ueKM2Qf9hO~CDZu#O#CkL1d7;>KfGE%C zDbD;&7USH0WHk^*nPT2c?AUYI^_LvrR&V%uy?>`959E#9`0%S1`&Yk-Q7jB{Lb7N9 zWg|i6iMIw?-~|7G_}E#+E54Hm7Vwi9Akycb0}cAGGk#nlrryNdI;0uLKED;%Powhe zGE*?nUWKsZ&IQ$AJ4j`IBk zjA=Sodr?cGftHL;^B{MS&NX!HSyZewEOa*=2b43Qq61nvJ3Xq5WNo$H|=rVYi zW>m9zZ8%~&UdNHc%qOV(0q$9^LS^0p7nL6?X*yoYkp;KS$;cb6ZPcbcb7SMZB0RyF z&FZOM2K5vy7oY-98!iT}W{qI{^Lf4@gRIo#eL2Nha3DitRZ3XJc71xT=iFAGgIW#f z=bLXN>D!(esg5iV;|ja>4a4uz!9NPsk{$C~)3Ok$Y_D@Ht>gsIxI9$9De8mr@DJ#JH!=dJiVil-VT}y!Uc>yI%sYDc+mmDL%e!TN}L_)=&+u)G1 z{EMP|#|@7@hR=>}!fwqEIUVz$T6Fx?#ebfnK8fcFkr87Ljylx2pEM8D>Iz`i;kC%Ct8ekTsJ@XgSh?@Bl^ibz8cye#V7j@0)}%k z=(F}6oT2$EngHp%@a(Uc`Jal8<<6f-SszP`QwUYg?;k#Z^WbAbV@fw<`lt(;0+HFKF#>C(1Hi0gZLm3N%2beZ$#4rLoOG zXh4;ydV{}z7Z1DRZm!?feWY$&Mq)qMIIjV2CHo~$U!rLetCQ2z?M?ss{;0dnOey31*&uS^4ZhU71 zYA?!~0+h0}>5-GR*>8jq4nJ9lMkB+0zVkOLIw?|L82sWGtJ zr-$5;GBwP+O7e!BVkwZ{ceI^0CUs*06=R<6H10s;|IF>lW$hd(3y?|P|GS5f4Ps%& zSI`w#a}ArgTcAWEK0lS`8zc^_@UE-g5iIc`!QSlSiAt$EOI`?xv{D0T;)S4#ykYYX zu5nUzTzQgpb$plo?p=3>9?{RqIo7u)+g|yhgUbvL=zh@BXgO3#4vgLcZ|QSt5Q3A> zl8-lDMeVm#ChXpHV2QElOEPg!=zXKZhS!E?S&rfBtqvoX#rCD7=dAjYqO=Yz<<%1( z*2P0b2FS$zZioF3pal3VWBP~@EGu167}O6`=3?+Ja+FkiNH!9tNP-T+vWgWG0Hm({ zWmh=maIj6qnQ{>vWfBynWw76yr9`4U(TuNt2Xv@2y7S}%GMv}ti@cHCPW`M7OE4@g zuvclF`U|L5y%y}ude#kS2c4rdRm^yHno= z$Alj|r=<65F(-h_?cC7KfBf^xK--Jas-Ly0@$qxUM-nu*z4haMX0lI4*xor*E>r_h;B9-(mEk?m@7$G;| zzT7h0ayXz%%}3r;o9RP&+fxyunxFEyEN$7kReZ~@Us-C@wZDwAN%QETLdx1g7iNE% zIngA8|2y$`UvfRk$$x*j-VX7&XTe99=O5Q-4&0^!to##-5dWX~v_Db5$^5MSQNkIA z=0R#y|D)f|i|i+?(-w4fk2EZtGE5P;-294lD(0KTj`n+A9d}j7w+H$JxCGdWAV$xm zAo;R`CVTGm%^woIJyf$(*1DorvnFOTnW0!t^PAOL%1b0l#lgZynRd}W(E=~W3suq# zQX6bm_`Q2nzTC)8tZPX|z+JOZ84uC#Z6Ax`)cDZVwR`5j@?NSm z@lKs^(>lI;H)Kkf83T&`F8<0NH2r_maU%|M9ErD?_y=0MxZ9g&sGz!*6+5DTql>`@ z1**_)`P6k$iN~a`pEAMj3v-oJDluKc!8>RjY*AJeb}PyPuTvJ7W894eE!1LR_@0$@ zZS$!X^D;%%p02U4I+7wQD!irS!%DGROLyD~ijEBMZyogX&H;y&ME!neC4OS*{_A*( zf%S8sA#3VbN0Azw7ZzxMqzNJ=?uO(6@<$-S8Qe1fW%bbj%1SCij}7${QxqaNnk4A? z)HArJuo(A5laHMYr_yl`uvtc9r3{)l9D0OF_EDz#i}}o&v=JET=~+{n(u|FvA0ti9 z88)eJt=VL6+!DZ{^z~L7tspgOtuYdETUOb#iAD3Zdp_QL_Or_Y7YVh;>$WU^m$}VO z`tgeZnA0zxL>qs=kx5RC~QL{i6@y20omGg*Uw|}eN8)>ak>^aBV@(8Vr|*Ovtkhr zb0p&c7EX-RffL^b%3smC?CYu#rZOUwCb{JE0oWk=(CV(c5iXhTD*Z4MLWGRtA~C7aZ@I1it>tJwQ1fCO3n5 zCs7gk-LY}?4*B>hTNm%8d>4)9+tmD_zOb&h1xc`1**mWBllDHNK%x_%bq1+@WLWR< z#M=V*ffjsb;Mu9_Fq=b@o1zsnvz|RUb|K7SS%XH1Y=6Y~3KosAc>$HpM&O|&U9YYW=hY#zjQNT`>kokSH>o&3(U$+e1FMRxOMGBYW)jZ=meU$A=>V%H zHx-7>QZ-m>7Ly+`iRany`9A6|yY*-dnQMbWN~NVQ0=vaG;i#;I4h)$5I5IzRo|Z4cy1o9YA0IvjeaH zUZ6rPjn@8N;7r)V)Ny8VDGo3zR`;ln$E|JLfRE9a(z^i~3v-iQ442DNEjie>qK}(X zbs#Gvi4C-S4QSr0?VTJ;QcX2x>MS79X4bKGdc@(xNsY#1yj1MvUe4~^1=PH++mqrt zs)qQ)xgVv_Du59N)B&FTXQ#&gLA3J!7K;29mi+Pce-nlSqWpKT{MYLrKM4ywOq)Pf z@fJ|qdb^yE+E~oIKYXW9a{B_xl?>B#J*2_*C^FzGPU&?5twMB|_5Fb078Awo;oQZ= zS){$J+{HSRKa8J+xS|xsL~a>%`CNDBlztb=_8of$ zjl?f*nk@`-&bs2Gy!if3jtNqON0K~1aA7`_Xn?ae-5}rdy4~Bl&lsnPfD8cU>D`di z%TrbTfU#XkQgDb~+j4D&{{Yb@DaT9liTNjozQ;i~9B*2CJEZmi3PiVN=kYb~ZK9Zg z$eP!EMnSmsMESSoZcdDKVRXn(Jgn_;--P(cy~}%H*UH@MJ3d{?4#PXNe+=ny^-tU8 zZ*TUjs^M|8?W_4q|CWirAQQFsPLjac^e7M;T3mi`N&u|>0t!EG8t8TpyB}H8!1C>; zn|dzdqS{$pCQr8UwXF7L(TL)Pa9ZCh+?uT3Ac{EFjwawZtImslnaDj|AZ+-?$u)B4 zx*&!ihDk^ zdlx?GtC=<%9>nP=X1g!JVUf1SK=7o;o`M5dPhxtZc ze@7EOn64r9{lp&3xGZ4~_Ch!!kb?yT%A?M902e7Tz?XBP8zBKYvA7b`Wzsvv;^VPp zmOB3I?_aG>NPx0ZX+sP&XUv!v=e&Tzu7`Rr-QV@*HPQsYJjD+?k*>!M%jI&l7f>Dn z!0G;9^zrDY$R9b4vkaAKKE{S3&Ue~?)D5mJaxdG~BOg6CF2-Zaj_=0axQBUR0%8vr ze*GqyJfTM8zh7`}W2U+k!31C5`R2{vFWBF)Ls_`ljyHVbehr`bP`jZeHh4<^E6a$oWNIzo~%4(Kf$;XJ@ z?DZHV9>n`Pl`t@~V3P$-0pfy!ebJKVe~?S3z;Jq&R#75jjY^xB4bTmY7q-9Wf61Wlqck46_*{8=%yv1fWikF*s@;%nO6QcOlClIv>bO zVg<~L|JR1Q2c8A71XEa$K@EUb5(*VLTEul3jhY7;oZzFC@2crrRKF6Yt3J#{maU5OOf+usz(5sCZaqM44#iD+i$q}gfdy|J3I2L z-%}K#^KrMb`~8XRsw>N?{})W#|HoGOf9r5X2Qk^zTtVDoA^r^xceIxAC|Z0D_r6Ff zGC#e(rK}~`e6@4B&iQ6l{~5phveg&lF1-(`ZaVyJ-BEFlNiiO%rBKpm;2_wML2n}! zrVQ+==Ixx#vyefzAX5w#>*UTC45qxXx2CWIMAyI{wz$CC@7ib~I)#U;Cp}yF{US z)2_URpXe&n&n>6ATXIgJ=O#qw1Z}G)uP- zrw>%_PGaOuhnqc}1c1FSj_WNp>zSs z=3^O3k1R`_*Bq5(XpCz|4*xnR*+=j!=&?l0#FWVss!6IXaZR9#bVs-oCvPmi$So|^ zto`a5HA-IN190rt%VwNEBtvQq32ntnXD`*F}vz|5mtFvx=t{e}g$!AV|&F#}TQQVZ4S&<4jRZnD)% zZo;Nr;Wzjl`h8Z%6-nBa{m9bEBk#Pm?_h>f(IVFnVK*lfG25No&0DzUw0&75Y1~H*QINlDBE%JL*jyx|7Tf zZp1oHc(Hp_nB!^5c5zmY=F#Dg9rx*NDG4t>{l0l{hwhI8bBha`PK`a?qkrZ^2y%ao z?0xtGNB0Uv44m;i#k7xdN-9kv%Cx3TdstgMi?ML`Ps{4I(p9~moT;?xTEB@x!qMdW ztCoz=Et$b~L=trjP8Mk1O9j_QT~R#-fE} zD~Ei;hmmnbUp|?**S&xH@>|IE%^#8;>=k};%9JYt&M7b{W8c7`dxEcR4y?zVVv|~w zi}1#+X@ws2kr4sUvtUMED>u3O^eh!G5`DgYIxWTa#l>1<-w_XyC38D^HZaw^ zNE?xQHdc%z1=@Z=V|ki-j7~zfv5gD9uiK!yV}554W028T|LPq>80DaI6oxSHy*}>SPL+X8;h5bK6g>aSS)wCm>*T4c%!9710C&Yy`i|VP1ZXv zIONsQ5jDTaS2<33VdwO2Na;WPaV0`Bn6m{cKL~(VuNDBHs#|uzXAx0pe<%z4?qhE! z&XGg%pUoxGx+M0oUm&1x?IG@uJMANf7IXW??Gld1LZtvT+FRtM+82elmyxu>jTZU6`j)$BW!B{#IgN(JJtjxL`F!O7%9Dg4)eq74!kg$u@R2|;TmX8@rV5er z4m{F{GyrVd)<0fs4Gr@1BG@$S|6%Vvz?y2-c3}|dC?XxCC?L|MSBZ#pktV%~NbkLc zL;(S*(xoH42%)32NCy#+-dm6kk^n-05dXznc74C^fA{&$e_j7RXXgqeGs#++nYHFA z_cQa{EE@|p*-gjO<<-8 zpC?c84`ppN59gZ%JPy|KoLMzIHL_59z^YCHR^R};D>{6!(J+Wx{#E=sv)tz z5#gf$0}(FxFQ_E3zn9bhl}fUFN{65Kl!{Cd2L~_Xj}_6ynSSZV-}FNKf7*+GT@hUj z+}|o9iNEjQzo{a^3HgsAA}0BdBKqGekbW2Ne=L|TX3oWg78e)%t7$3uug++(yMHm2 z|GZcdzWevH_P-HJ(>OSQf&53N@h>O&RkHr2{lfpUss9h{|JMc5#fbflKob53C*a>z zAhF`e{Kqo>zeOPZp@8`1PQI95Vxp3NonZg6@A)?qOh^(C7JqJrDY;wt{ngzR{s(vS zzmgZbLohWw3%XAz8|UKQked-Y$>)NjWVyW&UB<#UgiIhS07?~Nn!9F;cYoIr2T+d;CMCAoB~5h8nY4=+CT#7`%*FviTmiz z#UZqGMqEDM;*hN#)*v&4ff{V*EAYoWX0W{8-+ZN%P+($U>Wi*;>#VAeT~Sm2c^Z8= zOe{%vwx}O`7gl$Ync_BE(QxRk_qgAv$>;p8<7^*w%Yd?%G5p} z^m2?cEG_e?pEkpvkLBnO+ehcs_!pSM zA3UJTl$kz?^A}g}Hw5B$T;!Kgy|}-!2hyk`oDI8wUr)_2^JMyZ3sh08)vrSGz1o2!>G1)@>4k65i5ZR?kcd! zt!n^*mmf=lj@rsy+_mntO9;%7Z*oar-JP%TVXTTmsn?=a5KZSGt)}1(=9^iQN`ATU zw0lz4F@4LXqrC5Fi7d?w#KdAA^K3CTFcbltJS;c|9ixu?gECn`VACmZz5lpnxZZPr|L z3~M!UjiqQiU9O?c<(o!D1_BI6Yv<)moy+-LtU^iOY*uyTR_c*ubM;EzVCDfu>5s-o@DyD0;983SR&h zfWpzX@^JBTx3s#b`pu4)b9Q#Q_=?DHE{eLtff z^a9=gi&Fht4@%y}(ZyZI)xy$>^`dE-@;a`pzX2E*Z-F?1x1FWcFRBnI+x%Yfi}3@T zQ$WGjQ%T1Yh$8%QxRQu-k8ueIW=zxCtSqM$I)jbA!;ajd3=r>B*>^Tm-DMMa?V zznn!;P>>aP{?dO%3D)276T!Qz!1LEyN!DKn}Pyt0D z;3t8-2hI#Ue;>17#`?k#F=jRWOXV-u=%Vss z;$(J4c{%tOEa~A!uqIJ12G(nyspTGb?tje5YB;TR4>M%E_FSdIwH>wINZ$dA2a_>-R}P5wXD&Y@+o=X>IN zc-^Yr z9iPlhs0`%fxFgp52{fy>t}rfoP4V#CY4%>et>Zvlz>$4BOIXjzX7*3Cs+2)Nh*N2O z9kqV@lb>gv=-uA5^cc=!)(_>;)X~n4UN-DyspHX!J@vXeJk}rWKSc-p3>9@wj8cO* zesv&jy2?0%Ly}rG*fjJMPIg4Ve3aE*;Uc0F>8lsnBUq?aZp~*t8g@+O9Vk!4PWtgV z@gk&xYC@sh+IbsB?WHrOF1uA2&J|+cK}0nEbK(wHJSo>lJ3^npV>9WgAD1#NWjy^< zmFsMrXIxmZz2HFD#Ej>hkjdG1z4iREzUsI2jL zwyi>mwf?z9Jnypf2r2#-iXchD+kT&%-#;Cy>|9A=RrSOTCe08L7W&lr6iuV z&nUjnuzw}HqPGvRIT)7I*5Gw~TV8j@JzDgA-lMt-dD;S<_v*0ch!)9|KN`F0%~b1A zAVnlFmd-^wI7P8ko^HQSM zFiBViXfPbGUwpXq%By6n`_{)N91Uzf#cwO0wMP&~CVNQ>Stw9at0yMh=Jt)bHq<9% zr(}hZM3p=4so>oPE(}|X=BFDs-zHd%taXjNa*>`1)$-Kj4%t%{pt`F>wDvr;7D!od z{l35aPJOsdo$vk(14;s%l-=q-S82+XhXyyLZI9MT7ZjX%VScX2|JX_=9GornKTByi z6VbZMsfIqPsjTF;$4{XQ67`AP#g2~=63mow4vih;yP-Z;83u?_ZgbYhVAZQEn`HPwcbTbBz77~ZTtX_lm2#~Q@}JtG zz}^RBF>lhBaZj|D>FshCa`-RNMbzXbI{GF&k1&`aVqM;Rq;{h4|Wwq*iPQnWt zM>KC=1k*DwQ7!4ES5FkYf9uMlu;ew>t9V%=2mST3d7!lz!4DbhuWD_^QwGCFaSS&I zeL*1~$Q4NPm2tkC>LAoCCe1I0JbZx{R2#tTxINl50ehP&&=#v{w4ztrRVh^CG{PhN zG5{O$gI1mcBrggndSCFsM*NPTfvU)>YHs2*mE0+7)t%^ENw!{hEg_kZ@SAp`N^-X> z)YU&XAY?wFXb#fSg0^$CNIo})$IB6ApbA*otph71eUzn`dqk}`Y9tYCpX7KCY>cy8 zMN@O#tz{_Q7j&YexnKomdElPaNPn!=5BX7Ni<&$65eyN~2jP?WgHqS*X&R25xN7mu zg0D9_Xq!b;ALVo=5^t{%<+nVktF90Yy280ie21P#6_hCI^~FQlF_6(JS#w|egKQ3K zoOTVJ=jsj7t3+CA+B6~01n(&4FYyJ{CBC6W3sRkQSDI-Z^&RvG-}*ovy{>v^-0I^l zb-TWygcAjfL1Bto=j$D0xi^C*<~u!!Gu1S?3H|lp$70+JEp>TsRfcT^(XT?H*bA@` zxjHVoKh=zg`MR1k7k|svvT38PiWN+hJjFnr8$H3>0){>bH z$@JS|;W*v)Y%;IrFnb%0=%(sSmR(nUha~)D^-db;dK3 z9hL38UUKj|Om+#b>0EgU=dbMa+r7rVtKf4QBxvej#o*J?G>T7pqOiDoeXvk$#91zJShGz_U9l6A!HwqB9)=*}Pf~4=BEnfAJ^izHYM0NK zRD3bl_+}>TJe$H&xwr<%2!@rq9+bcy5(bB6Ry>~YbpT7T50;#95X?8OEo9|ui!-pIbWryz`yl&Vo zqq`H~e3q%xB&=0cdWai9Uwr7s>sNZ{XZVr-TQT(B8iDrr{%DxiL5G3$k$iosa+UtU zl`!s`Z{nj*UQ9j9h;TC!)n)fEl}U0A5WcOj!v3*zw(V<-WnY(s%1wJ|xXS`O z*vmEsh+Qp1t9H6G?o^~C;WxV3D_YUwX_9?v#EGC~-PcUb$3+IqEf`b_;y_;5%IQ@x z;wxb*xs?b<_X9b7zDA;QM< znoA>bxUNDye(90a!H?G@%yR|eaj&k13&!2*#waI?4{15^Kf1kv=l0HKBfVNBfmHXn zpx#Z5z%3-9rX+M)@g+Ps3T!G~6xWdQErOpx!v2#@j9WW7lx@rf;rhIoQaGXUlW~Ws z8CWKf_nvCqCnnxY_`={kB#yZ(g3w*t^~GYFF`MQ9%8Kke!%Eftj65{Oti(7~$kIxi zWW-Q*fyAm;T-OVda&iw5jW9If#B+%~=K>|7NPd~*sO`%)+NjhOBRp0Z2tb9=LH_N{ z>2a6Lu02bYB&5P2g2$R}88BnUMO8Yv_E| zd@7r6dC5A_MyDr`MCXSFX?DsW)%9qObdh|P0pmBihjBEZH1QZKD~9X-{cVV+$_b=~ z^^aB5>KxVG_S9`I>ArD4^u4|`wVR^G6yv!+RjTkIe!(;Kn~jitnu8cYV|FyYcpLo} z63cF+`w8odhy_GC;rPYzXOxJlp5x0+3lODC!Ffr ze9ya28V>zK4sERWeC=Cpm0=$ez**$}{wa4OtC2+y8#}t2T}z37EDQT+&RC0xa$Jh` zAcTtE<$%3BuBkOLrd`HJ36xu=(N0RakDD%Do)kWZN%n9vr|JAC^gX;_N-aGpp@cwwPdj&es-yXn5}_2Ad$ z5vgoOnEgjXL@Thvj!}Q#{Flxll*WSn)~a6ClvVMceJRRlNBB||1Wj3VoSkLg+MdgN z4kuPkB%8)i)PbqRbr?h#Pq>$D_(M^BT%>d@@ADfdh7!g{tV6i?k|GInJQ@10TNS2o zSQ+Qop9ke(Xa>_x6qL_u?i%^dP6^fCHF{i86%V|qR}^_aRjRGmsTY-!&W%nZOVxgi zoBJ(%czob_G<}so(qL;(`nhvHZ$rmiJPWhCJQ8d&GD@!-01O&OZ zpWmSRV4mA|7T)r9okO`QbM{^5UHlO{wjqz+2^}bp%v_@y8tKvpAyn#X0cg|*-5I# zu9ZH6IVWUDHRx}y6qAxL-1fdswG-MeAX{F!18xjA^yRy>+Q|kky0+Z>E_IImyC*`G zjQqv2q#)RbqBPO1b-)ux7 zX1{)*_q5|&IHa)7eftRJ8{De^eR0k+`XD0s@z1vcv5&#HD!%f2-}<$lnO}d=+0mQo zxHW#iy*)vOU%^D7@Q%4_rC;bi{@#9Ip+!G`ib|GU5*Hm=wun*ymn^|-ihCj~+l9U- zc>kmC4?-f*V@-%pu~rqgNtYSF~h=?3ACU&qJc^31#3h6J9SN( zigF#|YIZ!<$`zYe?^Icg0zIFYBe~-=Pm;KE2dM8F`4iJt_pzNS9m+EL$<#-mrOU`j z9ak^l?%6Z-WJf#UHBoeyqlq7%wW zc}6{)ZeVf8H^+GG*_BUaQk2=IIhPh0)vz!E+#Yv@9pfXFpmWKj5&wYC!k*j~@lO+7 zZW;3=Xt~|JFSRe3?jCr}fT<@e`#gGGU#pMjvoXKUm%bp6cUg9sfrY^$$71KVzaw9a z1h{ZzN9w-RLU__#St7gRGW_ZK*i9opMo3H5w;zSHmUs{68{m{~bBj>**h4xY&X&L2oK(k|+yY>%gN8nf~y$ zLv8WdkMBm7=5x^zmLGCVp3!+Nv7O#=sZy(Qyi#~X=xpurg5=R|_E227<}M4}#xT8@ z5tySiZ;8rNpOYi)QLU=&9+i&^@5lTPZNuRdL$aYjdP zX8bYJRuSyon^z=X8brMM{qvdlB8%^j*t6|f)hCM|7okr;=U+;@gCtg%-x|+$&kyjoV1W<4CfM_@H-xQGLc$%i9A5VVp2R!K|!Xh zYlUvKSg$4-w%HLt($sqMa{Mck>JS%@KFM~jp0MPZ_TPDZ>O3WcPfARO|9|LpJDK$Y z%zex0!oC`h?Ela?j)nPryztnAy(8qJ^$Ax)_AadyR4k(n5T{fT<#|6>4;wz_ly>owyX`etc& z+X$=pN#*Y3_!Z)|X9(ISn_;hCQ=(mo?M-ZWTst&AEHgVhwq0>5iR#p>d`s$Af_d=4 zEz|S`0*aif~ zyqkG?iM{^yvYsg7a%!X*qdfxKL>s;+G&|5_PTvP zu;C?=p`n9?z(L4X>bNsg`hEEG!GRr4&K; zWkYgX@y{#ZOO^UkHf_-9?VfD>W>Ey3Zj*&lmeUBWV_X;cs4h~o=84@()9`B0K7ycO z%*fy~tIHckKQ-kS-R4uxRzS-IYmktJWzZG!U^s)Q`D z53T~4WbuuW9D8lBC@j~6i~x$fU25{vJ#KY}Zsw~KhqJyia(1?S`5z+;;+&aho@Ytq z@6Yp-&?w@kP%AB)W2hHDWnafwB98|5+E{307?+14wR@bF;56u1xriZo6w{Z=)OYm} z3Yn`BDwg`T&FDPCplrTuo;T!WcVO|&YQV4aB7Js_kwr&I03%_bJV2k+d=Dw#?Y5Ct zm$#W_uTqrCS37cZ6w?qnSWobSUBDCTz4rEbX*W+f8U!58hV1Fmh)omd7?5vcp_0Kb zMR#a4j)OV<5G~iGNkKHmvqUo<_Ifr+?8@I%$ixLZ?#O3mFyNftia<9YQZTeU%SAv= z103JI9v0+Fuoa3BD1{xz1*3~Ym1eIHGhd^B?Jvl{2=gSVI0IO-34g>eT0 zqnCG`1+H(wfC z5Hy{>R8hCQM+nxxZg?N-od+XM;!j?E(;GKM@40fTd;8$AZm=hd2H4{~2W-9s5CkfH zVhNLSh8?*O_|CRx@s8D%gLW$6v(CKm8rjcShnq=afw|5UV?a)mw_*f1vMIT(hUls@ zZFKDN5QbW#eSzTPq--B@9D8kh;qJI2q>t3Osb!^-R^gQBkAOArbxltJJw;IJ8!)i#8@M+bzZY2^LLcE?e}Xul7~e7cDY zB%rs4miW~(ygPU}EIGCM>oLK=#eaf+_a55D0kzo+5AI-Kg7<)CXbnbXXx|wvbnqHI zlzR1Tv~0@Ki;DGalnyp2|tYsfh7aMJy?t>Rb zEoVngXgid^vZK^^SStq))M4l}jqT@eNqkpB7wi)`M!9+jatbhB^p56nn$va_?abP@j! z8Rm`qyvzQ1Bd+j)@HL)7fF=oghJ)cm$DwEu*iz_?8rvyYLH{((Wn(@800G26cyR+4@3be zW669Y0tHm6jjxD)ez5I1NjcvgO-lTjTIH>u5Y20S%e#bQiTZ=$=Ex@kVOr2O&|&Nh zKdAuK0$RgNO?k)DmhYz2;qfHx>t|`MFAFKo%blm%`_^{#lunQzi@?7m57=NKYZY|J zx`bTs7>f9bLj%@YW|R(Cq%=aaDK@m2U*Tw{XH`q({P2=&M3MCUwc7Zkw&_rl7lHH& zZt$A*o*@$K7!)5Pjlye_dOMEcL!`_3S$M40KI)Hu9}|Vg9=_GP@kt2SI8G!w{r{f9 z{tvQ1|220l_1a=>_O9j9;L0EAW>m<-j>Gc@hd zam0*^OvFk~9Fnu39XhKwD$S;+`vdGON;*7TOOM^VuI}-Ree$8_q+UyA!E5D$0J&CcD(s~SYw}IDu-u{hUuL_C*o{n%iJlsIKkD|wArQUO6zVVy zP;C9V+hvv1Wm@Mb7OetE7`gLUj5IP&6?HWdVT~dPeuq&@@0_@6M>8W<06UJ0ZVsulNLG0+uwc`WkE2)=s_` zDYsE<`MUBUXu;)h`c|l#-SUV2-Gndt54`WP$+rB_9iR6HH|2d6etQt|F+8f3;yfPA zhQLRz#UWTCG_hY-Ru;o$ZWe4IyQu8$&F%50+WELzzFLi-PgsAGE1jP$Mr64Os;BKJ z_c_YUZiC#O1U-komI@2s6)Bk*)kPk64)Anj@gft4+-}vCnatV?vOVahq70@U>ji%i zkxLBTHvi|j1N!IT#XU&s*{M5I_0?G#+DTf`pt94!n4?nwa)-3m5(E{_LmP}44a1VuIG|t#NQL89V1W`0c^&dg zKeX6D!>e#>aaMc2&+^vn(CsyYRJuNTTa_hc0-Sikf&Pf50jaR>wW z$$6qzESh66^c~VPxf~_Dd>jT436}UiTi0s{`7-S5PghZnXwpU!hgfUyHJm)!Djh8D z3Y!CN`tAkFfPVCKQ z&!KEPZ0<;Ri5&8`PzRTw#p}(cK>pr&7M4~HUr`8sLj;!8#8ZVZN~uBsX1 zjQ_rGtRFw8!aMo!mJ-{p@`n*T5kq?h?{`SrZd$#RugV3_BMh=txo!!?(;HlqV~wZ-GC{Sew^DETTh%3{gtW>S zPEU7M%3Wr;)NFM_Q!$4-w|L}}F0gER3HLsW7-W>ClCUc~JiF?6w`W5AS9N5{VltJm=Bv{7u^ZeXU*hX@Jt(X8RgRHGP`nQf~trt2(0M< zU4>!P#lvBcaWd%ireB_lle4$AI_!Yq)pzIb)qAEfFNrloT!eNB;Li^0 z#xPfq)>Fot+FPfCvAM;O>Y=`f_#?y}0#-wIt7x^xU9vA!Hta74z&Y?*+MV}s+SpDC zU_@7X3ZZq-c2$sdEG5+81b#5O3!TDx1N=P=)-9ZWC@k18*MMd+fwj;{XV-k2IzW^F zC**9q(O%E%J&X>DvOUc?cKPgF=$^Tz1$)(bu9}K7<7d*#0eK%k-NmE4L!#uC3no0z z=fyCd-2q!ofQg+D0#W9d5AT_`n~5PK(V>Hk*%UMLUHDb-+GhTV1wRMUfVdkKFOv}u zt)nOLHpu_npe{kKgK^M6G#fk5(9o?Bkxj1AK~4&Ayj^w1GTCD3S|)Zy)%CS$C*w>O z7EJCX^tq5+Ziu+EqVn7_l|BNK`*CraQXL>UTFS`2BaFA@Q9egj=vXHNd1x#5q(I(>8q{u9+IL>7)_wZ5u%Vg{ z$rDan?AJL{!w5NZ&dZyxpw0lsVWhJ_5QG)YC*B4m&o4afMelVQHAIRG=w?4|_z;6| zQ0M32Vvkp`u}v1_YyU(+KiJ-hy9@eff%ZpwVI9khrbZbbiJv#MvVotXO_ywCd3}Xf zOk)yTxsU@DH4gdPQes7gv*`u`yfeFbb!qfY_3UvnRh7QuiEmUV;gA71r7Q{EC`h1EQcOec_0i9~S&ToUfez0{uogYutk!#}b(zY?;Y zsbc{e8cJD8$b!GpE(Ik48z<6a=r;fH8YBp&?Na38}@ildZ*NjQ$kjDDOA{t zhrjg3GA>C~5>$Y-Mj&^gZTCUe=244RWmJ$kVEPdmyQM&lj#J%2~Rr-+4v-?CJ*bo1#YK6T9vX_ix*Xk9W-QG0X`!t4p9EUXTNzqlJ5uZ(B7epWLIefv$N8r)AaW%w|v^&HT62j^K}L!>hxw@A^HdlA9X zRW@{eL+HGac<^0eYieQJjj8CVp46wA-YRw7bGtY}&VOWH|M3tGWRU~H#tZyp6uy*K zkELt;x~qSrhn(!>*^8c0I2m*5@2i+IQmop%HEuqryfjwS0@o7^-`8}W!zs;XgfC^8 zNujOI>@g;&!GvXUzy`lA!-;ays+n|}Twd%}%f39nk>WNjZzm$|U5FiAK#1*AtYk9f z>sr!3x|MKv{O4wh7pRiulQj8s_K_BHC`4qD$lRA?VMJ}V=PL~S5X<_ZDtT=`AQjv{ z$!qQ7XQU|omf%gXH6G{mf82@x%RL~kt;L$2UGim@ne=6+20$Qql$dPzh^I9AN`)qQ z70fHR*?934e9@jYRk|@OIgX-?FkIioc4qPV5q?M)RP5z@<1MXejau;po(DVE z)$^IkgM+S0=B<$L;x2)vS02=l%d!Fxn=HYo04GiTF@$x3@35CMF)Dm`-Am7%aGp>E zcT#`QynYXp0o#cMGKuP){lw86qMZDC>RjOTeskhD+2@++jA?g`oD4sE%=4!tjg`xZ zK}2jpSHP$4pq4pB~&SMP0{^|n%4Zxf5A9oi?@yIYbXqM9;PTkbN$ zRx2x{A5I2nU2hN&rGW{T6Wm-U;w^*hF033z4wc`jXaKjH`CQ%{2a{NkG z$QE7?czqr#Lrh=^6w50s^t+NP(i&ee)P8x3Gri!O2zf>|Fa8qG_|k4BLp`E?VV+Al zR3HbtMyLAdBID`l*)}^nJBE(S*K%ScwCUIIrd^y@ zRM(~@=tYAGW1lsJt6a@29iSg%Vx22O4G8VEO{O&@rp%OlY*4|geKvP{$Gcauyo{7i zB>iE-%ZF}CnPu^A30c@50|T$i?$NUA2Z$}^HmX7LhUuZmG@y|@KxE^S3$}&j?@A8+ zK2$_s_PZm3c@1CS1WXc_W5;Cikw@>`oV;L))iYIws>c1dxR@YT+C|LWu&GHPgLQV0 zNRg@s`qtvR5okMrh-sDspcO9s^ziRWKfdW@*S(7Q=oC=gRk8)F9rciSo&1?ro^He4 zgkf36?M!_hJ@jDQq6X!3lzMrv(s*6{Ra9Brhs^Sia(G{3)2RX^ryIgm7amS(7D$XV zx(Cv1H~Cao|BwZ;{Dv$+zX})t{efazZ0uR+4+C#+<}@Dc7Cv&0F%9p}Qj~L?{A_+r z#yAJ9(eYK?0ui~Z>Stx3D3X(pbf4y@t@GpcRd(9t(}OR;1rcHrPn>uOPYYGP5bSC1lP*0je%_8S2pWiL{i9f1>e9Z zI5}AsOQFayW`NKtODgvKfCZq;G$%zTAe3J0hvmnujjf#>w7|^*HzC7K zTf?3mO8LR-Guwkr?5kE-7==rM8kIGL0b--TI!FNwZUYY6y=*HH8u8^*nAfpi0-Hkf0-)3M_2usQ6d;S z2G_CItsF5KF48tKSJpVt3Jlcvx^`Z_JFX&ygX69;mbdZ~hv|L5;;j339z*BrSFUk4 z^b=)+KMXN35+1?^qjgrE#FjO4y|eZH0vAZEACb6>oBg(-{OQ($;DlE|37OEWL76)Z zk7)bBR7M)YCp1Ygf`76`(*W`+f5AcXYtRP;UIqsu#c5>xOW zHuB{Az{VAY>+0JdEU{-cU)M~&v|7s)yuOwifJAI2A!>jt!iDI6(YNaE!TQH`!d zyUS;zRYjHCHpKMo`le;NiH}x+VBO6C8C4Y^75`Y^k8J4a;m~kXHkw`%3K6O3)I|yGXLz;AOs+H4?o-*_p8Wpg7$mla;m$bdEB;Jhrxy0; zsl_+KlW|>V?V~4xC9S*KYI{{JGVD8Y>sK^QUT;YHjj7{$4xpbbr2AC{hQi+zlHL(>jP;_HAfaC?WqsuGk zjEvgYpJvdDjD#`4!za6i?Ix7z-olt4UB`RenO0+iJkV~cj`6LXjpf(AgxNcI{@kbH zRpO+IfbH7ie!olWJLbtG549`KX{Fhi;?vW0Ea{aMTfXNBJ2cO8zmZo0308Z$w1TlD z=P21jysNR#+g>~+$c&c*jI^w}{ZzC<=^U4#NdKI;)>%6USZj;cFX=3PZ3TWocFpox zj^(JRR^N8}73`1xK|79Pa)%6vYi>IE zNIS75YZW$8B!9x*+|}K&3N7;M&hy{paKWSrVcIMl5QXD+x+zq5KMR?^r(GK|1{{lc z4DkP5;Wi-VcmZvc7PEpSF-BQm1ugS@Mz-xQ3820k`&WZZ=fQgVfm0YW{$~Q$+pI- z`x6f$lv%_Chqg@x!T?51z)QiXBN z>#)Pe4i&LjqG=Sr=j&`uWT!9v^x9o+4a*mbN>ybvAf&?LjUmW$_}HN!oqCQum!#w| z-oiUI7HJP9lzCdBa$d@k-B^o%wVUz&N3p|=^zW|aKt13uQh$nZs0&SsLfo^cYu8H zv$kZ__A`fWTsTd}_i;EEtpaq5Fcc2jS@Xca?X~O>q7z$iU zK<3vK#}~U3q6a^59G$`rR8QrgOR;abe&WPN(_*mz3L7nekvwHNK@WrWc8Abo#fEmo zz*JVpdXZ)1jYI+xu<9oc+nNU2H>JDpdz3ly4f?g!jW_D0FVVYQ29ZZc=ye&3Ni!6& z4nWLX4r*^LMnW+ZD}Vy@xm{JPNY*5iUw6QykFzcvE}K=?3P&n0;^i*c>wmi1rUB?H zmC@44kM!VG;ATkRRb(JfHt=g$6`5T85*xLA-r6c@di!t^toqrXg0BLUq{Om&fErv| zMnoE*JVz9c+wXmxJ=LF+^1)n(eKPV&dvHmu1|;2edu?3?p~;hvWWi8Emy1Gdnv&O* zVm0H}Z3zdnZqm^YUDC-wo#;7`MtawlZwEjqKW1<*FLHb4H*K$uE(C&OhX7+A15SmQ z%6CtJx*A!K#Uk)opOwPOy>HvHB5us$ERuplU-dWrA)P>w3~|3~xw2FWH_#mipf*Tq zD8LSwkqkRp*4Ga|)a=PDJ1U70a`zL+Ds0?b;x=A&+5aVAIR;Qb;p zYUQTJXaF`@lT@q;o1tKB9g!Vjv5qxt!DK+V>rPcF0ebJ~iw2ELdzu4|8@tjN3VLvk1!3Y&`p=_L zY5V&V3;l?cXqVfKnHDo8zOUpY=KI!}ljeQpkBrXW$ry7?yF@Y^rBb&7+f2RuDAnJ1 zyxfh|8PlJ`y?+m%PrHawx*P&s8`!icE%HxdJn4h(enGEe>B=r*vAOd;K>Lmpp&isf zxb)Dt0tj8m?zeX57EM3gJW>Pf@=pa=8$gJ40TI%3nr%3SytyKMX?-UTRn!KhJT%oe zL&H5vH;%+F88@-r>qLB)xzSUtk+Qa#@OjLbe@G>L!o zHHb~5>|1lu5cnZESX63qt+Mmg1AZaNnUx?y*Sl_eCXeg<4?=V^ zGiSy*oM4=A^}J(tI|hIA=l+0L?_5>4UK<%CRjYDn@C-ebXqyx6hEkyQaS=apUN`DC zyylLKjM+qGoo|m9SM8R1 zCO%s&m=wuA0q?|3KbAQ-^7ZS^FpF_&n(Z%`1tR>iFtiVl*4#Ubnl=mcRg|tSTG6i} z;r!M&1Q2G;=4(glhQX+lO0lDh#LbjeqA9^LH(fs`T-u-Olbrx|6sTl;!=0RHRe+=D zD$h(azc7SMj<9|~=v|U^pT4m!yH*RTZ>D@VEz>aR-+%A(ZYWVf$M+r-CH-Z{6M42W z68=K|TF3eLZ_dW$b5>0gGj>x4WeE2jPMVh*L{ZXbTf;8`kq`~9NG$Naqj z)A1<22CH}5{;{t_dl#r0CmiLKu7B~Ke|&$?EjFQqT1kImg2=jZOvW&0vuc2$Hd3O| zJH`IHLT}W!gxJT*>+~>2hcFbFW&{)jR^qj}TFx;m`C;ht9bF~~(HUR1Bjc6{{;sa| zmjb*CD$lNUxKDDg#5Uh&3vSz;9BD3{Zfxt;wNs>xs6M7*Ogb_dfz-TdqP5L;bLO4)Np%u^L)uON8dAr1`D0lM{Q#f0Le=eoQxKnfQd%n)w zrmt3AS8PmHTtzoQ$StGlNkdpCT56=aa7oX8D?B|?^!;L{ z@}i@gdR5Xx+_y{a_Fhek=;+xzFL)k`xJP*=7k}CIT5+Rp2C z-A(~}tMmG8&KUQ!ahQ~jhHkTIJbb_1RO4kcXgM;uxjADiO?~F}Be!`ap(+mL6&y$r zeMS82kr&D)Qq+{8MzCki7|}Cvw7kObcNZ6# zhlStoKaZ#2d;k5xI?0C{@zQ~J0F%mQqgfxp$0riGNV`!loFBTj$rnE*MTLKNi-;X=e*=|pRTtP)^S1zGzx zwKW>6m-?nJubvIbe!ZnK-{!bPmU~tI2uXJ4OJcXIPW!13%*xA*1)qYEsu2;@vy z%<7J0pw)?F$*3X35S597^XE1*FUi?av_meigpJL3R5wI`=Q#ZUOLyQm=rKG@bm zJ~^ht6}M}(htUnv6I}7`SZ3)|OReo{p1|;V*cHt6cu+S^)vD4Z7dnR0$0$~k>OW-EgM%pLH6X*4x+&)LwP zz!cQ)e4R88%=*zuN^A@)SAJgmt?$U8{np@Pu~m;zYSG0uHPZ)pR|e}4jBn|phx@(h z83|>ATI*)C)V9WUtzR3c>ea|UR3#9DF^{zx{lxKtavSk@m2bXnk|Za{Z}oT zKJ4dvEznwu(|7w4ew`32N98>j$>KP0w(+Z}d-n463QUvdRV{ilPx*8n;~%V2Oq;wg zcdy;aV4tXG;En&v4c$N`gu-}eO)it{%A=;HEXn5r0j2D3x-UJ?BDzB~WUgV4LP?Gj zf-FOu3kqh`XZET!jG1(GNsLr?Pekets~ozssXV0xuGsr$z4LM7m`%;Ato;yuB(~a) zX?iS}ttmm>xoyt)L!D86)Fs~c@J+i!nlT?A2joezwb0UY9FNf5AEM^KN`Y@ESZC%< z88w7D<)e|qshKVFopVKAZZX;zH5#(g`zNt7xDhDW4Ef4H-4~iu@>dv*!18$qp!bh193{DHxa8VUCe=Eq!o$A$eg6A=nua>9CGR~W(Ztd|iEaTO0si4g zm+}<-XP`)yI@%bFUp`-=f8FYN)RLrJp}ccJ5-MnJee3GIvK|=?nEk>%R7|E=aU;`v zv5K2IK6I=D3>=rXK-WpX&^Z&M7*$)ZUjaVvQpUsDe= zKIOx1-)e1oPFESKDCg@T^w#N`-%|bSC-~|x>0~{C35kgA-eZ4qe}rfu97SC)FgIgbl3`)roaWVEoQ=Pj_ow#hI04*-#C|uLQjVyNv7D%>o2_|1E*_ z+he~W=v4$Sp{!l_y)Va4u`bHSww@zYVboPOuEKJC{8?$r=4&gSUlOC`rQmz@(Pz!5 z%yZ=`(^G|G7W}f#X9bb53%5O-!fi{0lAa?By{`#I1}?WH(ao+{u^ouD=g8MLkM6nL z;f=HQ>oh6hFn6NWv0;Ac(_?iQ@HyT7>2vl8Wl_grcd)xjU|^s?D>ZeRgR-{7t|>%u zPfwv_qJWl0y27ap5f}0_LyHxO-b0vVbw1W%??6aPgZeA=e&m57eGck z9RnT|6dR^a+g|LSLLWBe$Oy*lat{@pe^5NuGh}jv&cjFW2x|4!Xi+ry-lHd_R4V$5{D%TH z`<(5=)9}s5idnfaV55enRO72plJ(!-WQ)BS@^zo~k>TZ}?ED~&q=i9H#~P-+d#G3M zx)+tC0LgcVVo;64I{1)1e8Jdab-8N7-Qry*rsoDZVNtT|7P@I^1jO{du<#I-YjP?&#S zJu;6ZxlastCaB(RttIjufuh;^FPz-|^f_yjGS^ZaeOULx9)eT# zdvRDXx8#MaeNRoY=Vz#^96~{*+(NT}*y0OD^nQu6B=}=7y@;5yYH^wEud`Av`PFX~ z9L(t2`R+0Iv;+^}#1@yI$j;Y|`xZGn)z&#Rr9glb(VHJmDBh3qewTB_b$io`XlX+d z#TCTQ38uO4OKTeioZmr7A|ycPIunh`@4mce{t3w>59bRGYUVK=j#pECYf&vVs8My* z>Ka>eD{3;5O?pyL|)2m_u7rA^pT99 z;J#)rob#P=Q`yDDxn5VLZ8j#n@h4$7`_!qI-q+Ox0?IFd&O#&A?$((d4Ix~DE-_c* zF4j4qymmI{y;d|mAxOFuBaQ%0)KF?!OU=P^>s$VQ&pl7*1h7Mw5q6OL*0Ep}Y{4Fb ziB|JiU$rcs39D2p2ec&hB%74nr8csfG@_E|uh#qB zaB1fo{qAx3PPMhQ(qN;DWIztwabeTme7puaKd~)bS#9Bb; z1(q}XT!_7Hy#+?1-GxWN^2E7k!d^{ciP0@L0nS>2qGI52S$W(W1=7yyrwjTs;AD|q zi)dOMY8q{kqp6$snOi4h%J)NLh*rq^%hs0tm3r9~32&4fLLV;*yhAmAwYAje+`Mdr z(vuBP)z0p}=+-D`8$ICtweA${i~i&{1|s7Dci;EPl+9WqjgtGJ)?IKS#04n|-ua6W-+bjk_pcp@GLN-wD`=Q+#BPN%u$EM8Ln;%oTsK1Mq zFZ2j@s!Ns}=d`k|8wX2;JUIAmN`C#e@9xJB7S#q(j%_!z`%gSL!AI|p2*EB#kpPf* zMP6F4&3JlxI>4e~QaUEbNz5ljo62MO^Mi&-UZN4}e(XSc(v>A$85i;Opjq$22`jR5 zuk%ZY1XsX(S)=Xz=b%?k)dS~%*2V15^WJebYk)E-wdV-wFizWd|vE_l6+7o2Q*LFQPq6VLia zh`0kSd#P1nxmr~@BT=++J4*HBWwge`S4)eI0#qIcwu|a=yp&gwDfl%zTASuAT4>2| zyUDZ3V|!c8Ri>&YJ89Pcpde+(c1Umm+`b}TM!TdC!t?po!L83_9}^cwrQfr0P>u^4 zy&inb;~Z7J$zql=)IKz-&1?B4(l~kb*;P}NWbG@iHj(7AtCzz^f{!BEZd+vmKmL== z`2WWL`<0*m&vxIb=AB1F)z*9Lgg|Gvgg%L@c5or0{uA?TH9z--G0T zZsmAr$1}dzTv@SG{$Qv_PG`oOMvX)GjlwIenXYWJdXXy==ku)ccM9YBO^?~0fo{-{ zBt3iTyjRK8lg?3Eu@BvxptFYDT<6b4tTA}s2~WX~nY%5uEljv*Sh5FiH1BgowzJk0%al23hd(HYM&!>dt}ua`$2st;80xx6cQc)_ zd)}R-*-D+B;3-q$O_ImRKEKea=oIOC`5=2?2K)2E;o2*W5`8INA7R>dap0>;Q8nNg zr2V8qNs^>i75D*J01Ra=pe9x8wji1+L{?MqyeQvRv1))q_b9r zV6lp(mUR4fXIAXY94|=D_abk%AeV#@HMCnBT;^p3kKEkjRv0w=K7^VaMbR`DRym?4_B(WCT-koOa z(r%s=Ym|k`o1M&XT{myoX|MyyceUqXhvb)TgLAxHy4C6)n|XWQO=}#e=!O6a5Sw2| zrd_V|rt~6st|26UMN#oXc~a7aqb~+e zxONp!6U!pv;{}@Wh(H1p@xq!_tkrsBPF&vfob5Xu84BY|I;h7d&{Po-2N?x&w$vSP zI)rCj2D=*mwRn}ZJL%riJtve&+mU)x)!0`I8bYg?xZ&0`{&*=!q2jz|&k3>%N zwuQVu?L{z~eynen#x?$le@#8WW1|i|=kJc}uwSf_@|?mYHjAKiWt^RBY8%Hi$2{T} z_W%^UtklWXr@bLGEnY4!BGE-6~6Evlw= zU*&F-clu`S4B)rref?K!_5S38iXuqa=1<`p?@7M_q@Q6c#5>3@j{Zzs`)esI$++Wp zWW`lvmG;KLA|j@-Q_jZ4juH!OGR1hFj|meQv9fO7ip#~^=cfD`yZM*1&$u9~kw4Fl zw(1CAI3^>Uew6IF1W!| z9!}MvxUi+1&upL&8U4eD$(d{_LHu#356GVrEsuxh3>@a_%OY*WrVd6jzf8FV|>h%7f~Y&@gU zmHwNQ7*Gt7DcA_ddxvoADCr}b!S%5nGr79~nGRxwD4FRyWhK6?yvbb^dEfFxUFeXH z_wt}ByJ1iF@O023XH2VFum+(n4}ei=)WDb)$&aH1b35$RQ&~^9J&0<ZJFC>Q(Gh6gPzH&Wh<6+ZqDsMO^J`d{s^ZngoMK1+ zqBSM4TVeBKZaH`|W)EfA{jJh!=J;LTQzH!<{r2OLe%K60@^#`ZSRZ||Ry<4s?eIR- zh;%#W!fU3y|20Ykd+ekl+H!d7o6|-dP<z+Xu|Nh`Zi0r~>eXtx63ByL{Tyrk=t`4Qjn(kWUvVk%C+PYp&*i!v zcqWiV9?HnCtLnRK$@(6qnz>!D*GYvAob^^Asjtt&W5BF_wm$7ViJLbt!#5hn^U~>f z11{rJR@0Lkohgb2=y${BnoI43Ua=1-Ze$pV7O#G@&@s$g)3+Gan?bGHHnuS8_Z&?= z&4XTP@6oBtny~gBmQRVwy0`NP+D&7p+@rTk*f3+zW8gI+k1EM}Kd^{L3oj&jyxigf zf=df|2%L$)!&`Pkh1K{)QC;|sLh@q@3*AH-^2sy3=d_^ISWxU0Ky zx0SMzBIe5}uXx7X7hRs|5)CkG6XuwB`%NA*mtFPrteM(jSR-G3e68i&gAZOl&(9lW zxf6?hR4hem%-vmQ4@3MmWJyfNY4g@`o3>jVquiZ$IMZw$o(sPi_r7{BQLZh2#C@6Y zBK@;V#k!nj%(vM6g^FDcQHu!rXHagFamLIt3o;)xwI?B{z;@uR)#}yL@27l1-k#AI zdo-drn0Ig4KQo?>slSPdlHfFe5lbMk&x7e*cfQEw_f8B+@H=r+!vf5+WYW594q z4rxC;ZDdV2#_@zWp$%>2u8leoZ~-&~e=%X?qBEOmW3HR(P$kl>H^v8X22@7wy@ zG$_@bcCptV98vB)cXnWi(WvGjY!LmErsHfBwfY)mH|xqIvgz;TrNW(JW=hS)M=!oU zY=UM-n-_<*y=Ui#)(uMAZqDqj1gC?z)vUZqQ};+MRHn3-DA=lR+xDFOpDgKrLrnj5 zzX5VIRv&z*hyZwP)24){KPZZGYQS1kzdHO2aQBzo>XDk=jQ^Co%1su*8ALyE<5)I+ zY27{~%utanbzS)*)!ylb+$X4(hLPZ#MTajc-Oav#)4LmL-(I`nw`vBH@&U}_@^REA z67M>AoKNylJB3Zh&x@q!`-wcR5K^4&%6?|_#<&Bmylpc$_s)G)aC|x5@lFdeV_(CU zP=*@a-(o#y4^F2`9hIfg*A{4YOTM9bJrcx~E`7t7)*cWZp)G&)343 zbU`|03HMzUB^Sx+mKl$fNj-eX_8TL7G_E$gob(%yQv%!isnp9ER5(FRZYnH=m{{T~ zNXu~wneUR0AN6Prm;2s|O|k5iw~EXN-uui9zKk96QX&8mWya;)RT0z6Ea zZ}j%_hN|xKg+NwhS=P=QMUYfqLu;3BjRA5Y=f^#GOfN8Q^(_#IyGDQ-E}+d;ap#frSA^O#-%&bS)6ER*(V0~%ipR^`JU?0XPfWfND%HZ z2LKe3V^N1xDjFKTr7FHDT)k_i`6ApJdM+tTy!Yd>TF`L2X+q&vm9yD!}%5DE#{|;$TyR=>@)4za5d`BRUV|oHW}=Bx;IMNZV-WJ%`R;D z)W0fb`&B#t@;L59Uob#m&h#O7JVp~0f_sS8(8+;L4WY@UNvkbuIFswy&S%m0X^Wm+ zTutwzFHAhdBi?FgKr@3uOwsr@(awS59`7Q?6BfM;sWaOVW3LskMw@~-W#|mXqdr;@ zWjgrnz$D>A{EomcU1^8f+%EQIeUfO=Ej%b#@?&V#AC5 zdeV6r)>cZM21KM>6fR^d$!oz~QCWTgUA<^@iSeX__FQ`BE@!vZ+Z&Z$6b$Rdq~1p*E8cq(=KQPpV#eQ(!yN-mYjqL z{0?$9qH@tt#Bs)uv@r$YyBifoK2(fJLW9cO6pP~@xWyV&h9vn~-{we^1>T8G$rTD| zc*yyc4qOkux_1OIO0M#oFFczB(uE&7r+;y^(hieBT?+5!a$gc}z0D$lz1v%o z^G$hcqMJNewQk<3IOXZ<4l?=Reh1YrZvGpq6@8;@zin0ZtLA0lbBhsKM>jtrPbnBs zc3MR}TQpY6`i69GNZ;C$j86R8+w}At!(ap3w|gl})Lv~Sym$QDjbR(|-ew-=W>z(@ zgPOSR$r7!ETf@A!8~54Yobuxe8eB=$-JA7QcV5T{m#roe_Cv0hNl$Nd)wCqk)W@po z#8K0Qo~BXZYCFo>ETW_ocy3-{NK4y$n00rYJ^hU)n`zenL(|7J#K^36q%3&7>4o%z zq0c+L%s#8BbEW2jI2cu9L5Z|z)Yw3Zx+ zsUGL}{Y}vvc)CrhBEOTka6?1_Dtzu9{VwU@sh&UZiV>mK1!ZTKj%N4Erfd7Ac{EO&RvdPZEQ9WypJ4B-o6qKhj@xGoZA zrfi#+Hmeuj723m3X8AjJ znss)t+A6$Hm`hySGC1_#a2e5LU;ozufxlW*ejfWH3yb+jK`c0vbQ^+Y8VX;;sMm#I zu+ecm{#ds<+>qKWDPavkqGbgTbAKT%_`mAul{;89tT3|p?L&4_Q-2L%G2${A4C-eQQODkuhS?mzxLSwyY zaKKEyvD^%$^BQCxU`g?O!jq}%0+>@~HaBWtb*S7B-1*X)+usUE=!Cz6rfs*XH-n`6 zZwP<5h9H-6J$WKX;DBW!QZ&w6&jMS#;HW*w(^w1X&&lV8OqEVCYB$iH4k`I$x~QgC zY^u~ZC{o@!u+)-)F#mjX>-{UM(Rg7|u72Ez>$s;_iM#D=NnY#js0O1;)IoPvK}mo+ zokHH}Rr=AhwwV~-=k_9`&Lgj>*kjt`m<>-gVWI*wY6GJ(hhN*`SP1Q8o+s|q?0_}^ z#x%-(){qzz3 z{b!U>h9On@GJ5H!`G)6i8!b7N?bI0-$|$kZ+{3Y^?-Yx&*R{P1$@bSD;rDERCGG-Z zl7G?RiKfU_?pA9D3r20g*gsFW3mPVAkGi`HNj<1}`rt;7NF)V45oZRODip9N!mDK& zFNG&Lu-(?QeEny|HUHM`ABbLR(RcW4i!-T+h^Lj7^GXLX6?Oh?tj^wu*t zcyw@?B@cLG)5xr&@!|%Uyk$fAhIFUot#(v`%F49S@4_I=nZwxBFsW?ub?!}aSzh`^`=S*T5SjZ^` z=ueBe-2r|`I+6szrOeKP;32KwrolKRy?;?!=1tVT$V7R%_=6n{6m99lf%>wz%ZHgI zGobl*NNftcqlJ7G-Y$qo67&H1An-bJTF_w_r7?A!3rbtE&y|BIE)puP@n^Jeqx2W1 zdKi2x$JE#tw@*Qlcd#2dh9xd>$L#i&&9 z351Pn-PK#qy7-Zith#lMK?OHXeynTn1?1J9sqk$VlBanzDsWR|+6AolTo1-Bb>8!o zO|baH{xBWkiOUhJRA!&4Zue{e=0}D1^#HDH;*Mb~N zas{C43q3I;N!cz29TyZVdcI^(fIN9~fr*6+WnJv2pOyynL_*k6x>Sq`Hqx>mUnT*i5oyC|W{q;|$G5qf1()&#r}G6QgqonC6Uy!SPn%<9C3F(`;E%mOH1aQGdK~PD`Q}njcb+Q>+Ng zq2|1BK}StHL~20(iF~TWy+?szO)3ZM(ZnlIS6(ou<=TOdO|zYGedr>g%3@h2qSw$FX|0L)*8xIKOgzyRk51e z@d^lz!3#ywpOUrH6vI6)ziP0ZJwfR;Y$v%Vs73I6=MrdJ%2cqrJK)J8d<$RPszt%j zlbE;rGbvhfZ!-ELS*mF#w!^PTOUS8B=6x9%G}KyxC@c(*R4JA=7h$nlb@XovswE0u z*1Txqn!hA^HLG@RCrGRotqO#awpwlftX%GYXW;r*ZHeS?#8v3HPRjmS z^ub2spW>K0892MiEZGa_gkWAzAAAT?$FsI~y6-z&uGk3Wm5)O1hsJLuzw4W4KlVW| zAJ_e$@Ju>QZi7)JS>d#@G03wv29EIent23IL(Zvf$NSVM+45fJMCJMLEBW72G%5Oc z;;Y_2qh}(BISz*caP=7oN-R|46k&P3Ah)28>Oi=&mDg6n9p=*f^^?=CL;9AZ_^lMZ zu3ZVo#I+;E`rMPjL7!XC2j9hkBHYrC_Vc$^A@_&d)tZ`Pc8Iit^e(*Gg^@VS4ULk=a*0 z>IO!O+taBFbzPp(jo>H2CfI|IWD#sZl#s2e=7g`L^&rTI`9klLOF9XBL99!*?-dhI zpYmrjKIP7-S%sZTf)uV!rcZKkTmpCuHP!lTint=$qL|mGfJE*Sp{Ifm{vqz9IiS3F zJC|1}&hM2|d;6%pyJvxD+PBf}8)Kv<2d zhg-tlc((DtAyDSp(rBcF0*(btCF&_HfE50QjwK66cV?MCkuSS)&M>=BMf7^d(yOPG zlt7?2sr0cYil4KCSk5`9KY)~X2+e+0uB-7j7oq2eJ`43RNH=k<<WGl>OL;bhB=8&^@-}I_86=yXaO|!+;r? z^V4?gW(cPLGP`|>eaZa{sfUFMVj)(AB26AsDI2gfayyJOq9eEJakR+8x7JGmPWLY9 zQ#+EMkQFu*GUi_i%v{4pWjediKeBFfi;an8V|vc=NV!i%>}%FI;;}(p@uG2Tf^z;e z5S!j{1>6pbKl>m1ZU%{EifmBQiNu@2gy3t=W#&Io(SLu?n0lldxLtNEn#9r51{C%( z3YGUl0Nf=sEkYrek&x6by~w4;?T0Zq*`q%py*ZDp9w)t|yDc*ia6a=}j8wWqx&*i2 zmfj%~{_wcgt@%VgR8O6CaX6gJ^ssS>TvOo6GxTOb^_BnK^hLw^Skyx|6QMb=SWgv^ z6pV_ws-iG`7R4H9{uP{d!@W9}nPiZ$NF5DR1`^8YuZE;eJq=d%^n|?avcH!Sr!T2< zKkHF3ug%w9{XyZXuPP!8?=_wy;sHN2WsdszmAtw$CaMW*-gC9EGl`3k<9>Cy2X=1U zU)u*R6!+$#6$39xIR^a}Ufxp@ zroT3^JsrHY>G^6Scrag~SwN*S?RgR*T~EX<=S*ZT=_&g*`~xy#(?cH2ShJxo5?EXK z-q7?#{AQ%$kxzqMSMY9#A71us12gxue9g|NTuRsLJD^O&2c$g_Vo5T>!alagntd|z z@vK{7x+2FCqDy^f>bN>NRCo~?cK48YWW7XS4MXq*3*HtlSl`k5L2t;WR*+_*~bZt6#*hyH%00$g@ilBLi}To#M9K4eAAu$pKKcs9aj$;ob};M}AhHc{ zqnf(#olT zLD(zvB`}GtHb4+lTSj&3cH#IZhh-pg%|WIG97b|Y+%6P@)DYxpL?Xt zmv}6>;K^{KF{5+EJ$Eom{LCFTk9$-RNyDI5uqaqJ-ajj^m8~UZ*8Pp`?LrGY`@MK> zYW~YP(V6c4;TmmBJ%I}zO} z8RM&J>tyzP?s9#6zbtHk&MMLYI$ha`3Dx*;91asD#2(xiIb~mCo$A@t+~Shn9~AaYxnU@9M}s_5m;ttX ztfTS1e)cQbHgAi#AhDM$2&u<~u1$yTyO#z6-22)PHvhBY^zV~NTN40PVt4eR3V2$O z++TJ;ev>2iSIURv4ilM{7Zc|WUR-`U3*_8QI>d(?ow^_azYRvD5&DP^4RW96vT{Yr zip9z-QteZ2Y8QT!q}~0d_i*H{aiN%~?@LjS#IeL56amX%%IYeNV4Rgl?m3rtNZ-s! z;qbm@4oWmPsbt>-?~J|6Lmj%u+s2*fQsWSMo{DQkSNYp+iVrwPu=4nYV9j!9b&)-5 zmqNAchi8|DjN`v0nShJ!c*l^H@+}hM-N_2AjTMzLm-57^3tIxd%5C!E$IQH+nCF)h zrLFzfD>j|W?|Lhbe7BlzQr}huWi+OY2)xr|GyecR|Bv|T|IBm$;TXV9n|O^RPheWe z4%+4mz6*c`?dlpA?c`f<)Ug}BD`{WEbviSYB(6LzGNqqoJMj@=gNT98*T5?|6Ok@S zQD@Om;WkA4Mb> zkwt)hZW7L&`BlY8@*)iqUd zL(Ss|Dz|d!dpANO9j_QDG)we5(!T~2e14xjWtT}5C7F-I)X4ovdXi7+O-J_<=x}?M zT~iQ4))i|_^@*1zy%i;Lm#z)nh;ll2BE?8yS9_D1=p1~Ga7c884QQ}pmAYi3b1vhw z;&3+s&Bal9BW5cw+M-ABiJC53lGJ6Lq1ei+!WvAk^@hO}JMs*fw)HE=Tt7-l>N@fDSwj$b2zhJI^K2W2!Tnyf<@d{w?~lEhzpy6y zfU}Vw>~&=~c^9H|-d;hwAZWFsJw;;~TO{{67c}2};Ws-&VR=52`J+l3&581tSxJ@c z4Fi6Dp4#>(Ow=6fnJBA^njvU`xk9ien^|G}pY87dTl@d0+rN`UVjFHp(yBQYLm7uL zMjOYAOiAWp3f%H9)IbH+=)QMFMDbUz92-N6QZLPy|Df2{R)x;)`@uZPQ}F5y*p=hD znwT=sLv$#psxThzycxLMF&WWad}oDCT1`_XWdRdB!)Ig^v?_;8L&)lOCn%g9`kb4pDN> zwC$CYo+n;@UmDJOERmCq2NsTSHy310MwEw|DW*)jGmyGl-RPss0%RRYLs+)?yl3fn zMn1c=PdbW9npb8@kHj2Sp|4Mi6#=Veor?NQtW*+h?~8 z&n*vypqASLtLHUeT$k>*Vz|CLT-j;Y(!>z=|KbOux+kvPV;F=v(qA&(&V0wfy}54LXd z!3AXM9~95FW8mutN9N1XBv!2eg<+Kc$8Kf4u6*eIx5)!cFJ63E7BuTw0KfU$bBn`~ z6X@X|6ng50;*SyGg%c)8iyS{FB<1n|0SUE_|B;Hszxp`ffy}2PciioO!B$y~i|0;fg;Kx#L*e~SL16X_2B7^I|4V>mMpzFenTJOzhlsCAL^6X)wN4j)p zqD}9au}?D}LIai_ziOKKQuLZ0P8+QLS&bT>w4u(VJ<>W=H%w%B`I!9p>*nkS`b8gm z^(!He2Y(gV_`P%V7nbadKiSY6ul@6OLw-;cIY0ebvf(dw*xO%YQ)!vFMcz02xe*==+Ecit8jpBA8>IP5gm7ap|4nc zKJ!D}BvS%&>Xz9NuP2zvo z&L7z&{hM3=2eY8fG5(vEJv?9v&@sN#lO7>Ba@u*s3=hfpIN$LiF1jbAb}d62gx>@9 zTI{s^*rnu*27u}I^e&G@j8Y}?TSy_WyI_9Oh>Gz2ZcqADZ7&kbtO$P<(g0?Mw{gl( zjlsAG)f)Z=0aW$ET=XKsdqS-f2*c+Muk!)}X30p?R$#$^y#W@;=;!~oK>gXj|G@?F zZ*Ld4^!J>?{ht}^zeiX9s&ER9{y|ZbQz}0kuW`jjMTuvk{r)x3&hABW8ZitEc%wD* zv$&G3($^Wbu1gu8VPsfM+Y9Zi=LkURS5MW`5TQFhr({FtX02FQ{Dfla{3LSgLo(S%5jdzhBOI|}9MXW7sBB+Wkkc87%9`5vm;_)Bo`!q5)C){taefPK!KFN>y>8@I@vD_qQNRNgd* zSN~BoirvN+B{&jhFb9skwr0ze8g;C)`-rc4B(>wB`<#MYYOchJI`dRdB6u~$c@H6` zJQ>+kk09kxYuW1F{d5WINyX*94cI@A_{RcXkeNhm58%@v!EzAL8oS+3J zBA6r!$0GL88%dSUn}QJXaBlxj#c(E)*NbFdIez0dqzda@4hceUrV%xvyls<>40TZ?>7O(W z5J#){s{8%<?(0zRtrJ9L}N#6cZA=ZEtpqvw+;u|3Po2LcVeB&LqZlMbLjNr3? z2$iQ?l=sD*7z3P0WQKXE+K3H$7DQlHDKa{kZ$Z?VM8-x{ zJ}F)`OSWfEOG{y~C^hbUA9F>wJ@kq$g8n}c_(F7|6BGqefW)Vo?in8*qjJ5nupEsM zIk?_&C8EnSX5<)wPo8)q^1csqB`>jFiIsL|7eW-DIeZ7`v~})X(e?iR#S;hW%dN)i*J4s`c%HiquJI#GW4|xSB0X%?QV`!=Q;dU79O%~vN-%SUS9n;1GmVQu#w$&V39LIdtl2<(k6`}&ldudwd8P#h%uUUN;Zn*gY z@UZ{1bb-GGPJe#>1K{c3eg$y(@1@!Q^Yj6jF1a@_nDYlkomP}s)Wzp(_2$O_vkG*C!|?NRqme`D&WHZ2{^-KX{&>X7as)}=zvWdMO@wYlQaY_&T0gCei@ z_`%y)$>}TqH1&f&qN4DxR7^k&7!ky5?g7-JYf@lj8We=PVhD* zK0#ErzD+{=+D7tMN_SZT&#@e02#^L5jSiPpNJSP z?4=x7>W-;M0X|JHZ$OQ@q|y~Apwanx3{tG>3e z@-4I$Sn%%>b^k9&$&J2E)PjwGSocAw4qd`!Y>3*KLI{pv2e#F>O)sE#gK(a>NrrRyZ(aQ z8i+Djp?DgqP2~Abwjddl&RR-mxn7O!qjwr&k90UaN2xM6kSo7osxH>KJ&j&;%EryK z0ky73j4)0xNi*YP+&q$dC2;WgIPt0PZv+1PgK3|P4Xz$?%KCDs2pw;j#8N*(j{21;a(}{EtXYL@;5n1KznvV3i*tE=nc}&GP9FlO zdGdddiMzdVnJE923~cCCafHpkx@jH_o}AAinoZV--@Bw4QtZlEg`U&pVbSaMka7Hy zmvUBIOsGD0=E0~q$R%m|e2Vx;QkV5cn(-OH)0XQTKe3na7b>|sfIGmcpw1W?HRkt# zn*VEEu)~DAs#etq2>`9EW~`3iJJo0RJvA9ht7w>^OjqU>OO1`@?bEN2wk@y(Z)7d|z5<4EMNAdzJP~KWGzMoL|(>Mp#G^a zAUOPY=N4B30x)x26Q1)m5qD(OKgF>@@Bv!i?L)7aQ>NOQ{YCIN?2GY|b{=>R*{i3} z*cSpA#1sysIugPJl!K1bV1P{ua*=qDoJc3nC?4|;X-R$Ls4r5`!ltzhQ`cA(^pu5L zctU!(f2ByR#4`JeY<~|0`NJ`w1m;CJ9m(dy$mVS|XN)A# zvif^vRm$9T={zgPPM_}Yw>Ebddu>?cx~Z?D066IsFPMp>K={p%DN69{er_z7jdYPS z7W`3wucoekLSBc1&c6wg(UgVadKYf}V&PMzu<8fX8`HO?4@m5+AN_w&(2)foWcJU& zev2*6nD~RqM$SliTSbv6E9=t^<9DE21>wA&m3jpiX?%;TRwSVL?Ie*t!IAGzS~OvJziEGhj1kwGQAk zo;j4dpX%%N;St?83LC=D2Y-aDPMSA-gB@PTjaPGq;COoi3nSDF-nNvb6*Rn_wXm=o zP<(0Mh^$SN+}8MVNow@ky>M?qpP5W`a|0m4kFX{rEvf?_EG^w(@2wCUXz#zvn8uXWnGmICzDr?Y+Jt9xT`T;o$F3Tcb^NDpfDJ_ zMtntavz})M&QEU75{Hi&l;%wrT?0i(Rg!7rt$~mp;W2 z=PcsxQT5x9vwp$?*8>irMx&V^JTDGVPrxGQw^H-12)tbY5qT@!7TyMv7?;@yR>yRb zhl3n;^XtN$E}XH@=h5{Px-595nD*LfWE^O|1kDu8O9Z)q&dRERaAz`ZU{ zG7#RP=J;=nO1?npTR(Fz$T@TGg|@hMq8aa-WW&ijlDjh)!40uR^p_00J=QsDQ^$o>Unu1-RG+w(sr-%^m(kzoDrpYbTg&ofO;d1s1|%3Ktw2U zN|@y?6*Ybr3|i1)m4~4qVIgQBZWE+4=8LZBMCbgGiM$&t6erG-CP!qDT!-P5KW&$>Flez(R4i* zK6t#_>OtKPGY$mo<0&y*VHf-fx=KAGw3#<=6~qp5F*rlgWT<;;=R8Uhz3=XPYH)LW zoujY(WKActCeMrb0zc73+KH8Ayii0psFtZai3>VxgzbrGro-KAvlGBp2imsFA5eW6 zD5?3J$#W@=x8M!Ujl@rS8aEd71E9y@t#Ye&90XZR9Gn|!VoB&Cf^64$G?L(@!+z4y z3BgJMF&qqfrZEPm)~(wdw&fwp)^U&B^eWF%$hv}nqQ~syUJy%gzycGB1>K&3SV)Qn z3=(T~5)1TdKc;)kW~}D_L4jZ)_^Z@YjZ zjsele&(zT>rs#hFV@jMd2?1-3ElX@L7B9bWYKj%>i?8rcp8&UTG6IQHQ-X`hZcF2!_C*rmj669cg2htT(zubMwQAGKzYdir`G?p=i! zuQ>B(YI7o#Jb5)^qwFUcBN^&^y&9*K1QUf847Ay?jUha;Cc6+@W|nH}#io{{b6n?g zoWGQQ5<ER36g_}EH=P0YsxeaC9W1?8`OP=_!GY;OfMN{ml`{0|glVLdhg`Ou)6;ps}O76n3 zNoUsGr}SEMK_MEdVwqwWt_=v&t<+MPQjI@NA1Ex7;=S3sZPHDYw-JTO_~_57Upjo}}nH+Lu{$v888J$Z1uw#qQ8JQgw4ZA-=|4 z<6rJHB8W$aY4AWZFlHGcE*MBjQj~e1OzLAdH?wbRN42GIO7}|G%&!4 z5(4w~yOW1^jy*%Y* z@Vf;oOAipNl99^P-v|B4XH+ntH~@@hUw)z%0-u+*#^75PcX39xSr8RJK|0sQk1e}* zx*s~+P1k3t5K&YMUFUQC$nwUh1ojbLv5{Nl(S)%zT%Sj7>|+xbP3!7v5@0-sV}rp( zqjK4q-zuvQuNdb&P(=BsEDMFIAGE`F_;5_ea9Q%x#Aems7cux6EC$p-8a@k%gai8e zD=*eNez9fyi^2rI+&}#Y_wbAW_G)40q0#fhPsuzkFs3O5WR!qHMyEfIf6V?s0?#CV z&X&n+jJB*(G2>P_udy~||GAjn-l2z-=px`t7o1^}xqF&`bO#XEs_`IxP{=)pw+|hc zfmY(kfZs-dDuBt(;=r!#Po*PEbWPzgGkp371yHE`bjc5jPfK24I;0y2<%2;dkcA%d zczy&1=GnPmxhV|x`}+eBr-EoABvXEXU)PGIRp7zM;ngP+`lnPUug6n-I)P{Z3BgNk zqsGWFNFa+3=+FpLpwfnS(yv7b^$H3Mx7VC;64gKVv|3pfvkPxFIAdav4 zK|vN^FbBi}`a!>XLx3vupK#}ru>@P3d8c{#!a*@KI#oj+3V)*qn?RB~fde7d3YPA0|hf)VlG=HhQ$-Wq6 z%{$`B_d%bwu_Vnq@5%S#_<#whDrE=kz5Z8?qyXRy|J}vfB+(4? zo~$eK;46q^3-$li6#lh&4odpFO9lV_iT!^4x-d2987BNoz|q@0vydBA70g69hdPMe zV=(W0>?77SsDsjWFSK!)+%1g{R^!qEo79P)e0HNRB~SbwQ!#Qu3aAD8CJ0zFS{Hs$ zU;r}TlS(2va?_kl1o#ed2*&@qnE^nQzq|GwnPp)6h_ePv+!7?q089CQ*}kdw{N1HV z1btcLiroZ!yB;VEh~56x()MfXbRhV5mxBJ?(*mx;uhyntj3dgg@PBvh|Fv(*3(WQx zYq21fK;~cJ$@uARu-XORnp(nse~w3UDqKk9eX%#Nshjm+PT)?(;nm=N+9*}j<#?9< z6Z=YkV1WJy^Erp9q9JBY$={gQQi1N>m39j`tvBqab$a_|a+m_K$lpQDzjRS-nMka= z^N2X|N%BzT%A9IM2R=u9Ld_E6$!a^ZlJ%r9GNEX~Z|2zGd}6@8uy0>7TqEOkQ}X7G zscV0|ucYn&KiGQ@sHmE4U6h=m0m-RJf*?63X#@cQ5lrMD0+MNv)M!H!Bqu=ykt`q} zS)za-G(m!rvxFu~>?StSv~Th6f1kb2IsYB^?03h#W8C-7axlw;asK>Qlb+sWLfd?&?8})F=u*-w!X53P1Tqi`OQ&Y#S z`q|jo#qx`b;f5dJ%IB%IIV`YAn{hSqMRCPWmH4Mc(emY%#&JeU%$raTHwB&XOlrTG0-`OpC~Sk8nLzw>@4zPTU&A>IV-uoP65H z&mAY=g1#-Z+ZqQ?@yMdnIwfZj$C~3uw3f(U>qyIT%g&{Vql$N*Mua9uZ%;o`8+a4n z7gtgisLXhk^t6j0$Y(K!Ya@pdCt_C#^D!I2UC-N0rrfUMR@hZ-HfS8wO*HG(wNWYI zue-XEgS|{K+O@F52VkZ3Oe0W$eHqaUNZ=0HW3`|-rzyF;hVvX~?W98t7z7GF3wq;(cCfpHSsA+m5wskjk?oh zj2X-g&%JeaJE-yujAt#vNoMJusUp(O8_qug0-6hgP6`C?&q5xZk-u!fn>m3cHqV*P z^C8Yg&v}TkT4mVg9*(q#qjKUezls}PlX$z<%(`wpPaI*pubOczE9OE4l1mREUdyFB zK_zwNP~kk#L2c1+_9Z9?+l)MMOr&`?;dMy~>ilt?2`El>0T@o6#NXKBI@g+v{j;C;AqG!=zCHjyln|g>Fc|u4 zHey&W7Du5GUB4uwaF!Qn36{2)tI>xEil&p|?ofFX@mlegyG<=c0c;w9OZ8>yTpLfF zIq3Y0?6$p;?5EjHF_O0{l%>IA9%0 zn1+!sp!Bg<$ae@)oQMbrvl<^wD;QljpI?lvu;#b?1l4qvlpjBvu{CO4`(?hGDQ7qK zIt}r9|7vi`U$d4Q6L%bqMVzU*)GOxDtNAVN5u0!NoWK2!px-i?aR_*Fw7={!r`0B~ z$}V3d9IAG0Ns`+cFRP$n`gAw#y|qh|=ldcbq?7;g$RLN5l8AtXrS#FhNvjd&D;ltU z!@gpp@GQ1CfwpN|bU`@;#etvS5AFeaxtl9^HrO_6-xKg=Yt*(8{SZkYxjkSlV=(hY zfKN%{G+Zl5y;%&0XA@2O8IihpJfV9(WAS7DeVm$C^#P6g^^f=A9;;+Np&DQ_0A%tV zFhmY$ZpC?`kzjr->wU~bD%U*h$*65@j!7-$$v|o;-)n`FANkx{O_lv%?B$aL`L<9S z=JR;DbJ-p|GiEmdQ>vLQZiG~LN|xgx8NqRl(efwsVPk~$s9XSjoMllE6yB^2LbW&wX-992w_c;j1 zqT2~U1FaIpjqd~G(PcpPP)r`5ygY_To>>~>XZLY?F9Xuf)7S0s=BLjZ%LcJR4V^oz zNFe7bnD*zd&#U8GQ&?e(iP|~Fk!@PfWu)|+jYQ7n7VVa~$o}mT&SiGzZl73!UumeG z9Yb`_GC0A{h!&=`q!@yGup|x&I8J??zjd58*%UlMHSa5ZbC8EEB!Do?+j=!vKe+uD zUH+nNY))1DJnuv+D>eg}*2+CryGLXWlbQ3V%VJR+D#-Xg?nL_XZj6VWvttTH*^spX zQvzp79>QXS;4jv@6Q^LiFlS$KYTBX%Ce(RhlN~msBbQ(H8SK$-vHWtZX_c+jQ~mHV z(K~Z|&gToB8~Yl83i3Se>oLth0;y+*DixtDFMD0CRpwkG4zrlw^d00aD?h3v2ijzp zGY=TZ-TMYnOZvUeG2d!#3NDLL{h2b4=vs zO6QW|t*2@XKPSqc(Py9M)#;|&8O|15$&n=`cV1aECjBOPA)_kb*3H-;M?gf`z>Yg) zuVvTu0|`g1gR>0KfCkRaccWA9IpG=>z9!F(04u1|%lw6P`@)u7UeOUkP zQ4fLI+S+*En@jN|+UxH^uHOCY^q9o4q+hc^s}(kAi4>| zN7DqN%o2TpeT{+-rP$;RdTc-HcI3pWUmEiTUxLeEpDl?~n~l%fwvE<7=*;J4Y&LH- zTO6Ae#OMEbz1a8V6W8Ow7aF0h0RDI4D;{iq?-{NaDZ%q7X~Y4p}IdEB8bJ*?r2Iu+)28>)!Wg(I~xZ)U;9 z&z|$9@`kKP8H3DzA z4wSTH__j&)bz?z@ia#hb>~e-h{!flUt4-t4!Y7a4Rb4((JfZI99Ape0z`ZHgP}}h ztZJ5pxufsRuMQ0ZQp;l+TiG;jc zAYweudE0Z>!Nu$qHT4JmZ=zQ;Zv#Vx99O&4iSV;c(C(zz0~o6bTCx)eCY1ExZn+=`I?{%mBN{YoPKPyXfGt}%Dei(1L$r5(i4rbOI_+}r!Cr5Zh%Zwr4o&zR#QsR~- z+l|Pq4AHY)^NQHCirFnz#b4yeuMfw>Q8lCTdWXI8H`iOT=OG`BJHrOcd5~K@iE83U6 zyl&JZKVu>#kiY4ZbNS%F!~M0ydtwi7y^~ELJR)UYoM!@>VhoHEh>f9arN%bgs=~;R zA-LsXzJ}xmEL92meJkzW*ZStV9cS5U4GeN>nF6Nl9ya${p*C#M_aS6%^O7S1MwD>v zs4v<47)IvDptO($| z+gAnyAFgRlS^{uXTglPq6Xna|)W`sp!ML539Nl4Y=-yI&_OYKqhJ8Jg|BE#TE52Uh zw~K8Lp;!^RqBC8%Hg*){Hs^-g>uQERZwk&RxxTa)QGcNDx`MN@!g^aE(jepYnS;(0 zyu^>cDvNOH3!vldmsz*>fT4rq=uvlfJTHv3eO{$zRQSv=lZS8EqfTk(^3OG$ntYOA z@_|PAN;mWZvff5As#9u1MNH+qKI=S*<$bEO_=<^YXO5$}<{tf?@w}O80D*V14XH4W z$=SwbUUfteYYo_kwhU^LDC#!0pTQg$?uyKp*vRk1tF`qbvkQ9e?Ly9XZ=}Go)He26 zz2pb*-`mjlpAE9&yKHG%`C)*j4@iy)}g_k*)WoCoMq`!=mJL4QjHZjoVHA3c4*sjTzN;2^L@DI@6k#H#5Dk8Ij>F zJIEoHlJezJOJ?%h9k&6<!(05E-WwffD5+_^ zn|1Y`F&G_4aMGc`fzrL)Y$kzJXYMVwplG`xUo*cm57jdsaYM03mS4*PV$}OSM$Gfg z=e1P%?-DHY*B9r~k)tZNi_p!BJ@H493|I)NAp|bG#O)w8CU3}zJWge8Xn!LcSfkC+ zlKznL$L*Wn0>=J&1vQs#_ri1=YGFq**TMzDfFoUOi{`M7=$YAZ$LYPZbge%g^$=Mr z@X7zsI^p<(K5alAQP#yfPn3c&qCM0$O-?eh2MPG5|_+K z?i9zY#*_HpVl^gaRI1c?7ot=ydF+n$%fs0;W5XR6!KCKc6XSTK-;$Y}s@c)ASG*#o z%@jh8Ux-Pgzf?^8wbuMA^XOl>M%)<;!4JHx?An`ISaeFveW~q1j>>$ywOKzIzqYiz zGeI;DzDy*eFv;$*{e~-{Cl(EvMdB%wmj-9tj$4|k~sdtI#o0`kjP zh+L>C1EkDuxuoN#Y^3o7d+mE2N2!vaYpv~~pHv-0H%Z`GEu=*_24olFk~#~{8Xa86 zirjmyPL0`%+&=uQ*lt5NUI$`;Jz2P4*J?Rcr`ymHIdR3**SK?{9wXYzviSYxU5Jiz zE+_@^aBs?W{Wt(y?zhCPyJ))Ij_yGD2Fk6Dt8?k9y-m&C6BBEHYj73H|0B9r+Vf2+ z1F$YjQWa9`gu4`nw54nyMRXQ@+o8L<)cUWD?%@z|R-ieNVWr#T;;bK4JW0&ZObW*k_I?a5$Jr9!zcS z%Bsk786#9(f^~Z^e3YQMYuVgfuJDXAa4nJS?PLDSDJ-4NG*JXetsA+Zs3Qngh&%~y zp9kyL!{~NWOEUB?gQq(d7QdZD@8TxLD*f!vbA`tWqf5vXSYuCRY9qqQz@2kR&k>I$ z<60H4FVB==89n|8Iyu$Ku!g4Er|}$gpP!ZJmdyNcPOu{xN-y*1(|_zQc?n(|OOdLh zsylvYOx^>o3BX-S>aqoFZ0N!z?7Ha$4)P40qw{H^4iRO+-E4Tg!)ZLZQkP?v;wxRI z{|+VrPe@$2j9ZM@TLae!;}{Bp2hPgX|MJxfvXg1^6eF6gbL?kef{&3Lb%>n z{^s<4)64pYP6oq?{&06YbI9FJGDof?#q&Ib9hlo~UL4!Z3M{~JL4a_In4&KMPfbc! z^yEK(PguHdBs6GNck`vEV?%OY<3miVxQDrcOlFXiHbL;y;64Oe&*&0d^1KY(({Qn> z4Bf2JhP5w)fs99RgyO4nbHF~4BWnB2$J>qAYE}F_sl#bLpL$?RkAwUk_HsifG_I{W zpxr16uQsGkvGsOuds!g^6jd%y-Tc`e*{W1iKTN|@MVX}7p4H}lbw1G- zdW0rW&xGfIi|sgiCI_?a)Kl!J41-Ws`1LmydZ?lrQw&^2p&T&bkxWO=1{FOKA7WfT9C;Al7apU!U;s@My!_gk<;K*w!%`0V1C3(xy(+PM;T23DL&Rr@=9T#_B$0xj! zI_`G9j(@wAN?o1m&%(kociIVQ2?z)}a!-srK;%roApwq^5lcY$S0r7$^MWK9#edMF z@V`orri-tSvEvghsD~HS)6vtHSBXke3+fJia?i`o9$?Q6M}HT4$Gf_kRFZ#CEiHG! zLV&b?BUSO=lX^qz{(mC$_tfu20(yNNJsko@*bQ6c=~= zYuoQH1Pl~JwghU#g!}|V41~lCgugopzyL5IDNx#r0{^)Y5)qS-k^x1cq6TiLqX&vl zOiTn6mXw49xH|~=I{^s;DI=fsb+Su$?8y1OnPftf^C$!~tJ|6H4xxQ(sP2>2KfV7ZkoPDlYl(v8J}JzM=6`QwOrMtGnlGZ{Nu1*!aZc)btE$ zX?bOJZGGeCCT9QO@aXsid;05wEG;~7y!D6fI1){zo3hdC;<2oGmwz- zNs}>Nze8^4eTiQtl!8e!Ij_2%Qb6`Dn)%U_VJa3uIn-s$1!;d!_Fp3`?Ee*I|3=t9 z=$av*AtnSWkC=e~LV!nX{Fzbfe_w1!EWv-j`~SZ@_-mbWAqoG`J~FcM{}9ni|Eh?V zm;N`EBPS#KUsgHF|6UINk5!KJg+S}bJu>p30p}7Bgk%s>C;zp^xp?It8s{GxR9@^{GmzzTjTtOY(Y<3BtEW4k987W0Lx0f;9psHZP*>ccB7FY~u6cO8A8eoyQjFE0IQ zHDCAig#K~MpALedql1f`CKSeNc_CNjmE|R*{@8exuw@Zz14+Av?;d%l2Y!h7+!?mau+KTG+ytJ1Q( zzSog_MeIWy9Z>+YyA(7T)gM+9QnIbBL8Qd{7?Na zYs<ybZ17dP^p~fEw|kwzlm4>SFfcV=pxy zK?}+knbm_+{MyO5E3xpSqy~t>Z+w2>(b^6oiR9t(V1nt# z*HNHvXGzUQ--_lMnxRn$2(8hEIK1O@9W|L_`?Lk!bG8srnTVX`u51Z9sLXQ4a|Hit zO8%yZ{M{zM@Ow!9n^952Hsa^dop8!QuxU0v+D20->bF(3qcdO zV77`Hn?QjwHCoo-;E}%m3Co4q405~+u1N_OVcYhE%i7+mD5EtXVQ56*_gUacf3`fR z&}lq|zM}5-(`D-e!OzfVe4m-loZJ>RzfsKDH#rRH|1{SPR-iTnQUBvRI)zpEG4)%H z(e1ZEkLE$tw|7Xb$*w~e;$>ffImEdhxX!_n=i0Tgo2PW|c7FLA z8(WmXl0&zKIXL6%+*QW|f?86mwuXIdzNoHrHdxv$hz!#S1|p81t~||BP#9H^8rYim z4WC7fZngVVZ7JV0tiEfp{iRf1Bn8U(QRo5r1MW^8@&|U`jo-vM-lZc<>udVfbNK=xte(dtA5lTc=v;8lSiuu1^c8+srQ8Ir#?1Vosjmvht@>FX6}dZsf}FG0d^{% z>RU4=Y!U2R^~_EY>@OY}f6-Jb9nOJ%O)P9(J8GUQt?VR7x__{nro&}(=!@H%Q(rex zGBWx&~ z__Jzwu=Hk^U!`(YNl#(GLXKFGIrC zd`szGb*i0(^)s^BcxM(ztA~nyp?rN57$%IY8v6=U;&bzQG>k0znHJvTvfYK#|K<=} zXk7k;^`Nv>W1Use3(NiEg=iR8AuQ)Jm-&K!+7rRX4a%Rlwj@`tsB#K_cHObd#VC0P znXG2<@9CeuvPn*jY00tD+EQHN;ORYjzck(j^P{ZsYKbkS=c;@c?M~E%iUmD*pv3#; zOV^c-&hZUO8?QSotuHz6uz0Z(d=OD!VYPyXE>euHbc;k+NUY>b32vX&n+gw74eeh} z)Be$X4Y}lsbg5x})xhkv;C%Xb)xG6(b8AWT%Uwt&9 z^svLnf7GZUv1r6DRkx*Pma28LpIX~xjxn6s%Rm-!Cs?q=OPtFour=wDzRoDX4I zKK)ri-RyXsY-*8Y?zF0(WusInR7jjm$2Y7t_rB;@>lNRFkZ-qZk6jjoS9^9E0y|d9 zHlls58cNw;pRkg>>v6=z}paAC!_ubf*J9%^Wqv9n7WB#W6Suw0qO#;?O?t z22xmXCUoy~i=~V|Z!*3?3!zUITPb-I+Ji2Qoqg+8{a}^~N=+EnGkajw63UiE@=G-J zvfZ>zL``032KEMt^;W!zLR-PSvPuasIP%J1v(KODlpBYFyOHk-0Br#W_47PY|rQ7D8eA>e)fJ z)uIsiRjCHcRK!6}QnRPr*R`fQAFlQ#JR;LL^&ngA6HjF$yT8ms5&V$yg#8IdLsVil z+#vtZn)j0x4b)dGaJa9m(HBJ)2z&=>lP+7MtvqUYXHkt-+q{E2OZV}WA9o}qUtnU* z^jbe}+?4=>JE>}zB)CrDR(ncMyfW@XKdL>DzWSYtjVaBkZc;Ji{rLM2A5Y$!INHJ` z5DYcw58K!Pue$Kk8=9cXm=D_|hl!;mp$qMEKOU5}z5MkC)nZep64tpTyZABufS@fr zX{W2Xmr`?~g>t%mog6H$PR(RsCvYhqvANFBcnKe3Mj0)WvUviG*uh`mvBwlih4eD6E7x?tiB*wOh^K-oUa~{;C zX8Gsml`#ytXOXclj+LwXBT8W%^FNzZ_Y1zSZA=MzepINbQM(Qzlqzpok53{%aC|53 zlaR(|ldsxdfsRXpY8SIlsPk+$xRkI!bA8B8ulI|OIIPpl{>LRBnsahf(B5X>aoOOlU zFF3=|HJPwIbwx79c4!_K+^5SLZa6*W(p0e8*%0tBLwP9-SoNiUReN+^ct+BN1Y>)H_l#;lJcw4qi9yujY zlr^Fx_3=5i`;1z~P~&3CKHS%xtBJiw#KChpUQDz zUFjQUZf=;wm((IuC6{Pfh}PPzSD@o3wRp30t+AN}ff&oOV)j~;*qvA+4Y`*q^{kM) zM53pn5mvV3`F3HNC@ex`z}{iJy0nx_*F^W1LXC%r2l-Hpy(zuSOi~3Zw|(lhYcZhjj!~6yjy=8sr%MuTl^7CNxqt9{KwtC030vOh zU3s4j0)9uX%kzTaFLcZ_N>)pa<8B1zqHCOBclldsn_MxO)8D=`6<+oX?@&qPqNUv? zNCqSgH}9g7$TwdK5qz)syC1++J7p*66DsZwJk!G;R1iq?d-5$tBNmI~`uqWZ?60!` z)Rl)((3OrG3XBzfXf?!hYIEvfE-7whq}X?fre>CbIansQSHMeee+>vLSU$F9L7`1- zc{}v78t`AMNB1=0xmBt!lT({i^y!<_E8pq5KlLi9YAMGrZL{~=F*%Vhm!XnADXBg* z+4WAk63o;6IlWQ$RSR9_TZbQ7situ&(fGr#*mW#p7cFR)ss_S4eL|^n3mmtBaV_DnH#h=`ZvvYIv}S8Ifr%_L;FjE=5*@ z28n1edeW0wD6&*mi|VMLb6X}QQ)hMz8go6LutIc9UrQyHAYT1yon8a6i3nH zW9^00aE_K6R*D>HewAVySt`wSME|7grV-Lw8mH=$?zAeoe2G8VGxcW~gI;cqFhAvC z-ljc2#`8P5NWY9OkQvTNFg6c%Sp!G}^w&EWOoDd2-(Ez0}M9V?dS% z9sG)++nxk#x5Rlk?dN?zlUzhsB|wo^6iQ!^^-UspjF_QpZPVRp(LHA((A?kRMCI}w z_wCxBf+0nIT@H1R6o`$=O$f3R?-r*N^2$>wkZk9C3}gy)k*pX@38e zPAt^|X!&E0J9WFYLPGN{W4qbpa@+Svwc}TqyU$)U)A?1c@o81|Bi}}asOyi}UA^`U z{%VC4)~)UHET6S$QE*jzS|Zy=#`}R;YV%NBLGu?OX>6ma%#|_P-9&;9d-bY!OLPS6Rptq6EeNTrKxE%a{i()E4yJI8NQ@^1HrWXDaV z6^_>3I#agtZ8DK5bo0teJUiCjwD1_2=aAJ9Ju~a|B!1Di!%P!pX#n)e3N4ya;-I?v z>AM=D)2~UB2urMtS>UoFQJ3UGCv1aN5dEyVeIaYg2P}%G8)dym)Y;()6 zWJywvQw#kd2@}aK?hY|!Hmlell9d#e(cdD=Yq~1E5b|fi3g{0 zod{nR69>JsZJ#y|$Q+uA3M^(GkS%_gsAz#y^}Xu_{#iv+=tyPbM6W2~_9a~2^p-D) zbQ#;X!l$;rBp6K}>&tPMTvlNPyIqdnk809}I*JMAOjFk%J~s-aqw+I-DX;l9o=$>x zL4W$;gQfP%`J@Dsp{Wkz?}^S;^4r_#a?c+;HW5wKBfAxLM*CdVQOE5w`I$xg@+xDw z{57S=M31wB7(A|~B$`iX*P4n)8-8%pn|f^Bpjq&aK*k)hx zgGKhi;s?2sd&SIeqB!dMcwHkDe-$ns#=r>LnINK|;_jIVz5K{^3#5wECAYYdMQBaC zV?{0ppIFEDSF45QX4NWXAHoElE9?ZYu=CZrfL|IuA9^1&y3PN5Lde4{fqqx)Ryff{ zn89;2$?5Cp*YF73!3)F+`@OG_ku>EM(19@@g6xGY<84c$`}Mh*C*6DZUj(l|f1_T) zcN%giQNlMFv9#3(j~Lh9*#D@;w|qTdt%{B+a(viCIk)(xS`!%n%bJY4-s7@S?oJ66`b;`%uJ?efaeLl$iYmPRUf~b}BWL9@!C^ zEV8YzC{$C3iOCElM~3`Z;tsy9`ZP{?L(UkK*8kcZZCm5 zT>-w6Xr}nBOd~--l{FrBsfL>r@k}uP&oOn8J^aK$@{CVnnFf^fFW>&uP$Uvt)FOl* zW7C^A7~!XnG>jLdwcC$NzNPu5!=X=TPVUM*Y(_23&eTKyn z1~XYhErc`2kVm_?WqcZ9F6hMk;LM=Srg1{$XF|ZYmxrx85r=oTbIOBCRfTJlJmDdV z?oJk;(^wU)$c;KGdO-ZLArcP^Gg|^$_K&}{`M*1L!~WdTQCOh){d)rbTWeAdlEAn> zby9xCGKmvbeJggQ9y*?@NdEJTt^X8uEd^osw;>j>^{Jx`Wl1UBOss$Zmg?o1P{F-H zn5+!Be$erxx>9uJD zSNXwe;pRvuz}8yQqS}lhoUh8_+2G(20Uaj&LF3cB-m4~NvE0~x17)XcHf3gB*{?QV zduBj6HM{+0TuB-%DrCrP%Jq`rvoGXJREjrw6;z6;d?Gun#9oFx1m{foS6tHfEfP)y zSJI}pOx+M{!>=bH@M2@qNSR;QmTAdjfo>a~;5nX3$h7D0vol0az}ZgYY!VHjpuqRv z-LY{GHy?nwDBkBuV?)|$KQ>=qL^77J+th1#4u}}sFp$SJ{5}y>e7`KBcqYFvyNg|~ zU0WVhtTBF;LSySG2Zzf*0}sJ$ayjHDKDce^N;b+zt2McW3>8zvcyIHVqMFh zYh2{yfeFWdVTSJC23-G~qx<`S>;J8Da$SUH|2-%7|BX4hbKJj+J8HEA*1?AbkIk!~ z!Ciad2ogNgw|o~{26e>+SAGb+>%`;ZQ6z^+hG)%!O;D!H>A{kjeWb#}h?RaW5%N;3 zG8()r*#U}9wMdJBI8(R9*f2=-$p@)++FTmhmf%yjWLvBKG`ift5aHFF;=J0&f-E6; z0SbKAs)3%wvE-w2Vs6Kj18YPDFqTGG(X?RU>DHKn+*0okud)myXVc~6u*S}!=LOi!onN|pJ z{UaQbvFH@3=2irQF3~mkEkjv1gUQi*k-j?$ly#q-?u_n2c^esuvU$xysvFY=QXTGa zgw2}myvO;UH|a#3v0>wuSej9l31BkI8yKF1cm1^A6ABC}Je$Vl&U~HiQ{3W2JXRFl zm{KUIMcMlv-Pb4hl^A@-sAAHaQ@R z@3vpvN+cwBfF4O?Q~yIM~AWl17sT|23F_dDdBwBP&?LmHA~c9LenVh88ZC( z@V9U4$04z(Z?zKxy`ncS*Qfl*HE~QM3^D$m3%+;9=IWUk{>M|+9j#>q8}=sFvRLvTVlr%w#>0JG778X*ULXJq7j1=@Nm@p1FF2u1 zK%q|uEPx90GL?H*gIi7ByTrDMt;7X_~L_-LgE6L%y6dH?x?1)tGp5c(=ljnK!hB zn!QSgHmL1PD|kXB>I;Ht_UBVXI}mOOUv-xBKauKeJ!-G#7XWR&vzlTb zts3&x`+z3o87VV5XQvYQvfUV*8|`!q#hkQP(qePE@nGyH3`@U88_Qe24_4Q<^eWwM1F*O)Fx^}6< z|CdS5vkxLwZ`AxUIX~VMGC8=VdD&htxoSp3z35%5C)V%mkzyRe8N%bdm5+OX zpGU7Fzj1brV5ts_hL;s|e(oK&lk_UAxB1sQujqNwetZ=T1g6N=X`_*Nsv30La&RH~ zr6JnE<}ya-GsauOlW%ytYzdGV)Rr@hX$>4LPxQmSi5G#LybM%tY3h9BdO>(t$9w=l z2?`&VVOY2CoRPuxfeh(Jw41;}Zt}=OgVH#`hD1uf(L(y0y@5|Yeq-5keslGvfH)tQ zr~(XwnBF@+n}j&EO^>$A;wP^fv$DMKLm@@G!1=?-%cno(TPWr3#kGR~lByk$uo zC*bHJU1QeLQafV(V;0G?C*?tUqA>YI)sWz+HSTR)X?s-ks!3@VavFEaBR_X?`hQADb?`c)+gw7pLaT15{i;YOkCpo-=`bQE%hYs__OPm-_EXZgEVcG4@$l+q86a;wV=M+bWqX{4 zVcofoHqxI|GeEERs1vk#D0Dl$>=Y>yeA?en)I8`aw!16Mvg<9GI^}r!ba_>BR`D1) zh7$nVvB5+uCoJx`s^F=wyH?)wIK*PX35Vo1;c{DC8wcEg?h{Iq4Ay*SSWR`A8*;IMZtq-Tca~Ve;+i;1>WxZ7(WV2JRY;`u=$l8q-DzcPnv`*=kZxTTT$2@2%Uq zlFkz7;n>iaE#w@ZoX+QD{zB<8K`#MV>y9nh8K_ZbmHlu42GyA>}@e$Hwac2KT11mKFBNS-{1jd`pMtY?`|CE`9wpg zW$XAl@azlt4Io*j7tR;!U5*pP#(AR_$gndD8Y6Yj+&p+xAs|a`mH9`L-;RG1DB~vm z(`lsj;U)Pr%;EeYL7%kYHD^GeTDz&5;@RVAiNZx_B$yqlrbyG2Res#;{m!Dxu4vAz zcJsLNytr2_g-ti@*dbk3&UJ@#@5US!fE6R<7-`YMAdogR7${OQ4nbAf;^8fx7P$wv zF0|0LE1%OPNh6!ST-VgNUnJEf7svf2Ci4dBx&Ra5A<&6I(QS(#Z9vtS^)4{o280T) zgq=TG{9YsRa%o!a8fwd}SZ@5LK*o;#pl`PCt%@`IX!)L92O;`qcKlncDkcD#18!x8 z1$5)-$9X4OB$qy`bKf&)eNLaIu%GMePS1WDB>F`rGmMbLm|Rag*u}Z60TiPS!H)xQ zK)6dwwlmFI=Wo>v7IWC=uu!BrX`1%1$-2oXit^awww}D%yg^%Cq>SiHt=&E6US;{? zsLtO6iNXBm8R}q|{=`AMEj?Zqo4Wb!VOt~magr0oTbO;kp%4F$IV9=FzHM`XgE!}k zita)o*ZgBoUv?qT03c7~Jk@!;S`en@?g-AqsQ@lM2KlIFiaJY>QIbDrJo(lTKif}| zQf3)8cU@xjRlY8-6yy#k@bZfHoP7nsM4L#6Xwcm!m49RakLXwxVh< zY0r;nRp!AAF84&WM2lV@heLT&M3$1dg{7MsKrb{J&<%L1oW;TD1-2G$l(<$qf~f^W z-dXUvg}D-&qnX%$6XPZ*gpinyI)kP4F zNm3I#iYZj*cFQKgrla$_Cui=zU3*ywo4nOf>*3!geB-U9xkrTrzkf_&+(1m0<8}U& z5Qh*D;@_FQe;E+s*tz9K+;>XJk?Kx#n_%#|23Qi&ejVai$qn0EI%#i9$f0^TTnCNL zA(5=R1dcj#Lpr)F1zo+{U?y3HA7XBa!EniF35aN5P>~aYZZONGsBXy_n_pWUHo{oY z2b?I{v$}BJd`snf!_tn#@ezDBAc3)O!6ZPX=4b$D@x(JA&2+t+Hkx$t=|M+Ak|6d%;HcWA{s*f zn_!<7QZk9xJ(2p=CAnt%RH-r|rwZKFMi<;|TfG1%dEpg6l~UnVjF!PnK%z%ibH!tu zlt~_bzs7kX5y}1_XLw`!%K6^hsU@@uHu(h%0Am9=uX8$+V&=)PR=){Y)Fd%U9lyxZ zy~NeD?F)Xup4}O-IcNGVkrgo0&%7aY6W+_5Z?~$*z6x0q0#EheV^bRdI4f{8;*=~2 z8xwUb4d5jf0$vGeUy#O%zyM-!@%tqd>IFseu;($yW0LXMvG# zNNmww64x~tYO!}JSa81kWAj(Uczs^cynLss`SK^WSs$9>lowN~FYZnv9wp5P_gqxX zLR>Z_fEU4JL;GxrJmLsSfHmk+m#LpTIw#isI3X98(b+sM_^L+|_ssfMa{8)+2EAIm zM&%8lV&5R_!M{W;7Vz}Je7^}+IR1i?f9A2G+I1kLUvk^;ED-06eZ6QDAp>_tSN0ef zvg|C5w&)gZ{ECY5yQa{;t!~wEd~?J=?~z%i+O6-2f;{&eI1UgIZD>PiEQA`c9)#PA zf6kcHQ~=%@z78YM(_`2Y<1Po@Q4O*%xk)mRBV(sgXQ`s-B~*cxk>i+wtH=j^`lU|aoIo!SceuYVjvo%< zPjeJwHzoNHK8l}dtA@q~Uk;w<;m1V9L7dK2k8{y0?e=?wJmL$8|uvdD%AmX3q zAQLRxpRz`^P%dQ&Th@;I8Okgj+-PZPt~wLDE$;bPkEVLI50&S_d_QE>Y^UPtzs}=B zDE0xEz7>G(ZP&u9;H*dCpunXBP7|zSu1hdaUER1?`PyWi>eVb0bN8`tqS3b{czGOV z?a$X~{Hu6G&R79JTJ|=et9_hYe(*i(9ckp;$F0&Uv^PMHDV{B(diA-HheF+ffUoV^Kply)Hb zndb;FdNi@Jfc0<{PdSMx{gO>Pil_%t$S#m?s@S}=KaMWPPx^?_RQIgu_j5Q#v->~b z{#tqEJRd-l1;^m20gP*9xDy)u{2^wo2AzRyN{VRFMuB$RJkN8VRYPr<-{l+H(~404NK&S0QO0_8z5IfwR0eokt3t$7DaKs zj%j-1*_&i_6PIo407lQ3G{l;9$PElrHjs!X16BE-tJS6)wSc{v(*b712KShZ_zotj zynp?{vM0dtnG0Z%$j;6o`J)oeR;;B;^F?Ub^+@QicR8sr^OY@4eh`(nlZo%AQMOeJfEx~m)0`K<>6)Mk>fAui^d zXfgx)IkS+fTL9|EDthk^kQ1!vLQJbDATbF5{>Ix-VOWve0v+hV!YvNc>e|+Zu{!FQ z2g_s7he54Y7KSy*%ffHN+}0jf7IV0jM@7&z>J zrBD$k^=Us57;GbH#Uhs~r|&JDuc)v_w1TmfojI(BgK^muSbsmc9Q_f_+i$-^tABhW zdUMyHyFR&KUrQ&6Ut#UEdMgKA7%UMyms6jHgz^ABk)03vUi$*28f1z3rpF#!+pg4g z2A@}Eq3f_DS*<7LZGoividyj&Xx2R|q`G+|`L7g}dvY6krVH!GQ&zsicUh!$%t;`1 zYZ7}pCVvw!En~#voJXAf8)qNFO~pz zw>&EZY66Z}luY<#^!#vr{4l}kRvm)c;63Mt@UvoxUA~l?_10yd8W`*8i#0o`b|9!t z2n}Mx8hZw~6Oe8Mt~4LdlaKDfM=T@(@!2@1-voV4Vjb)K^MdCotz!LWnl5iA+xJ58 zvgg??hJnj&LH3=k{59AtH}A!)$H<*9gOd!MSQLI(zEk}%WGL5LFfTseMR*ngyeJC7 z1bGa_UJ2+iC{btIY`uaF!ZdWw*tFR%&BeA%5ha-XCg_BpFM|&mqpRnSt>7tU(soTH^bPsm$H^FOP z1ad4GXp}?Em=geI2>}SLQ&a6XR;Q}R*8vRuN|fRb>6xn{(l*=}{-9=DU249|UQAuE zdIab~X?mkR$HTsu)Y>a(`iV7jLi4D!zL&>9LT$_AyPwaa+U!681RRy0q0WNIcnjyd z9=Bp^%P`)QpVNhJv|oTy1(U~R2xnMBhrIBNfK3#Eqes)O)p+N@h?j-pyq8pu$NgN~ z)d^uu(?eF)bJ~Ytk@MZ4oiv5_lXn>w`e|5)+G%_&J`A)cTdBO)yK|KD zU*<5@2e4bhtl$qvfsT=Zs24`gDJ}v-p)JfGaHg2$sPGKHEhEYfKrolY>f>q*yw+Tf<&=oOD5Tl(GF1fuC-Ow zMUGL-b*2O+amAh0c{HB>KkU5=Jd|tOHa;pTrAd(_jZ!I+>?N5bBuSDKG0C2gN~ke+ zkxe8a6lIERA}0H?naMtc>_ZweB-_l`j4?ak#oDzj&-1SJKJWkk`_}ud^HJ?5VK z+8x(%9_M*oXP(bWaIE>CLD5EAA@%*>5ubA!zR1w6m;k~`^wk_P91xb2s`5fO{EMf{ z#OTRtc7kZqT}!*mUrhIV(i%jPwx5>H7njt)S%b64W?`X-Jg6eH;S zCdZ;SJK=X4@OKcq=>D{t%KpwyqF%n=z2Vha=O2q^B-{=YvOlASI0m|qC4lUSu7H*g zsc)tl+``Dwqsuyrv{#MF7}I&k!?jYMs+YZZU7aYW+P7vSf5qG?$$f%uxsDsP28}j0 zyv6el;O#A*WR}lB_A0C#8kmGWWH*gti3#d!^ddK1z~r>O7E{0V4r75u-+=(9NC+J%lRcYDdhf*Mw00c8nOy zC8ARHY;lW|K%=Q?$l(!w$=h!~AAzn1EW5>%x#%#}`Qt!2=hyIJ7fy*CLvWH=j%mAr z40Kf!l?jB%4_l#3MJIFDvKW8gn^qn)`@MHuoxNAfuP(W|)Hj>kdf9r5h@+NTf)f&> zVW0s5*m2MWgP=CBhP>Ck3uiF(xZd19k4J`5#P5={ZRPGLq+z$XZWwVGR6aDVTS~9=eEFr+f z*l?d&m`5^4a0c;!422*~W^r8p3{_a##R2z=9-j`!Yq6l%S+XD!b9j>Tq zW5|?1IRT&133!KMN?2@}g*Dq0qh&;)CDCcD&=e9xZfKr57#Fk)S7(s(XH$Er@z4Z8 zYSVk{bizn#2Q(y1ieVhXJG1?uzFwr0D^oHL#qjsE#fN8{bE#`9LDeU-L=A)BUMpAI^Spn-=4h+Hvu+M%_ z_D?k_Cl@5;M2v^RZxLuGiVn`gl4@^oj-@eLL1iyPHEQZh!0DZ;lxa?^^f1YDm@ZI^ z>hsoF1%wm~_T|W=p%%u```O|rC=0+AT<7XRzQ(bh*o``aGg{8n&caSMtZr{Io^TzJ znuSRSGtHn5n?e`951M6z!N=2mu!1HO3Bxn>!f_t$5!Ydk#e=j z!j&axXD}A(*D1kys#w5?TVYZ^AVY-)*QwtO-ccKA43TDGO<^-#G^E>%Neh9Z84F2q zR*5pzw;=nZU%^@V?xr)@Blt=@IPBI(e7$qSLq2PBES z7e#=n7XpkJ!#Y#^4d&Kq+zVvSz1JHFJvd@^$v2LsDS?v^Q;g}TR2U5>Bc`F#7@g8q zT$5BY~8F4i75mVKKu$M!>y?zEKL+=pd+XjeJU*VivQWjZi zT(hukdqZYn7AHaGnI*Zy3=;lEILsSgbe&I;`S7lH5Vp9#> z#RNxjRaau#h&1C%gsIh(I`19lv$|u`eF#gCJ$-?5^RJbVU)l}k{fU@S470rl%i8Q9 z6boS0EVzs00w`*-{&jreEvV01lk){ky6tG32oQLq2<*bS%-{3_BX*tmV9^s&xq4)&I)zPCX^~aONvFofa{K&9RH!3mLYz9+O8;Tv&WVW*0)7fH0Q#X@U5x;Qd_nm=EHjZq~gdHx8UTM zU?db#nJ={+0r)yM)JKxO0YF*Fb zHZc*ItTZs9dm`6*p(tli9Uppefr_qd?c5-C_B|A98yQ)~NTAlQhbWnVehCdU3}oRg zP@i1MIu)*WF-u!GvS`aDv^%N6pYfi$Au@j83$HnBXp@h|p0)arY~kC9J9=vO#Qnsy zuO!~)-GF}{Pk7WYFab!2FM^_{k0K?dQEJON2^G35UCPa#q>RpXAGMum^{D)|tQSUQ zHlp9-C0ujM>_p1~BgO87hbe??J#p?OR3eqDH>!7%5{@>ElDSooe;-Lg7E+X1;_qE! zsJZ;9)z&f5aZ4P=QkEXjq*?70PFTN81^0U3w}Y1B2?XC`nK45{_UY;A2@bX~CM!1| zP1y6H>K1HS_>GH+I8iXI1JJ5eo{F(gLcOkjY7(2XJrm0DOWP)kcka5sJ!Z&hW$#@9 z+MbbA_@(|^+t^P*BR)s0Ksq*T)P3eDRFR(MNVuSyo1?r*pZ266J<$E$mvaX{$R>`y zzJACyPfmMPa^1vU?;pmv)5I{a07tocLc0*Ox9sqC(!m->D`3&Nr!{QUaK1!U_8m=b zx|kJwym)oO$h6G0ixt_HRO=Cw6@1>#Ol?o2UWq`v{0LI?ef(xmJzxQ7c*F0i33}n` z+;)1}_xYaA=1;NU&Dt;VD)s0X*CjtYY=SMnPNz@ zhtNF;>`{zPp9;3upp|0@2D)zG54?zLl$e7UIZen8NvzAjQFTap$>dtIn^FOkyhkzR zF^`1|%M={9=pU5UTal#WN}OD_q|Q$XzZ)u1M;lYJ%i<(sQ0qJqrc|L@mU^KZJgxLv zc4AE^Ew*P#c25+fmig>YyuV+)VNcRdx1wFkLa()Rc6erMu%B{vo@F`F%X(Y`V-7Y1 zkaH;~qLb;V4du!d$3Zt&npv#Y?Kr&^WWSvgtK&}eIs0vVz4RFsF)AbEgMqWGsZdA{ zeHq%BiYmQok8q~gX0p>V=&9ewj|zWxd47M$>E?>YQ@V-eN)6jx~uDp zN8VG6XpX5=;rHg;?u;9ua4ljI_BwNDswAL#H zA+IL8oV=8-kasuxgl2mbv;cDOegEMf7wbik>_1tk1U zNKz~+_q>@ywMh5z!pOsw+pit&u$+FXQ+&O(4Ab=5^ZHnie=$55EtBfmT;{=Fwc&Y! z1H(GzX~l@X-0mfv`z(x4X=bHJI4bizZwd;2DY(P^nwEBpNN{#$D2dQ1VbP{0h#TG% zP(ln+UB=jTr)w}eKqqecoSf__X}^r;ayI)`3CD>oU9z&wlDHJsoF1QXszV;LF?(bz{UY$#pny%ylGJ{=){mHy zxMgoXA{|@<8N>hu*Skt{$H8|ajvKyY9rmAe$}f0v>U_X`kZ^_mNb$*KHBYn9Fl&$T z*TNHn#-+_CQ%0S(w`W8fm}C?>vRYrcHRF_bNsZm)sE*`JsOJHrtNK9ckNpW=g99V~ zU^(JqAxqSZN<(KCrzSm`^E^%%_aZIIEZhCH2`PXj#E_Ba@V=GEFC_x+`e3sK?lXgR z0KnW-$v3FP#17D0(imHHcxtMM2au6Y1Z|oVCf-N?#yR2+aEZv?D^Z28RUCyVdVy#H zU2=M)4;s4IN|@Tz=2U~J;J8^-0a3Fie;n#bLuB8cg}n?tgP6HAtjI)dMAEf?;yG&D zfi!Lf=g55I+!=@u;@BWxEUej*XRXLS5w}^``Pi9FaX%Jd90}G!{wn@EeoJ^xL4BVD z^NJuozS)494Ek&zXucQa3kmaLWvNAN#~I1R`GH?AuIJPg6gIV4hINjCNzMkg)yzxU z?LVVBfWP6nwaB7hM_A0vtd;I4_#{OY;;hPC8Oz}<^tex4g$4$1vN?v}l1A0xtO|gG z)rZ?0Ki7pswkq8RpLY9cb^)A)0&F0n7dyibl=^u#u+#e<6XQM%QS@uC3b6$BXs!~7 zak-(gS(x-w$D*+jOxZZj2#g7jEE3n~W5h9q6NnQaC9rr#pl` zH^2w@nPXsGm~dlnUr5~l5p)&`I>8Xdl&%I05?W%FfnVHaU^?OgrD)**lBuMbfmH5`oB2n_Q#Z!fS9NBoW{)^Of9=Nl z4jqjP)AEci1F?vN5-hNfgx9~b5T(BG;B0&IrYJkB{_)M_*fax&!qJl*C|%x83*9wU zd!xqR*YH=vc9(d7;VMLzx1xUI2sleVMig0}R% z(o;u8H2YAopi*G^8pH*q0b62_^|+k)^ir9gJHi{4^bcKGSfF85-MzFjRd`U z3VLLyCD?Rv;qYCoEXZ~QCY}oN>lOqTH1gE*<}6GAoaLCxJ!{_61SpJ~$^)Px?6$4nToF!D^T~%;6p5nS%&a8ymmD z(+(KJ_-(kvp7u**&~rkZ2=T9;y__SFKf``Qd5nnTTM+jC73V#w;uw{4#Qn=LfL)@Ibb>afiY3*A-|Bgj^yD?Y-JB8{taicQ z?*5oo<6Z@6b;Ho^tv+UH)dId{$e627{6wWDsOZ(*czb`ber(zL z(^CzigJ6NrNrB1GLrKtGx^ZyfnFp~SMtQ#Ph0J*+q3C_?=_4Tzrdc2 z&bYRrpZYihX~ceB#1-#ovcV&6KgB!o>x=Z&6#Z9SI(y`HZw-5hH@>}Wt=BRWOVkrA z<*WfW2r1kW4W)R>_aH{PQavZmQu2fG;*K$6_gE{PQW8JhP|Q&_k#)YOvwb@MRQK~W zsB0%O8y8<7X3AMy7m@s|Z;C7;Z)Ia)OZCXip;#(A($n;If)NA|p=coFBKWBJ{h z0oo%0*sC)3uDxEDLI48ro*9gyNwpKyMPQsaSUYc?r?A7FSvdM`gOLx=kZUUs$F%dS zEgM+%14x@%2uw3ArrZN(&kw75+MUo!lYwg_8bsqk@Zhc~9zlMN~c~~^!yh#~>qVp74QowT`BR>fC zp14sPNDYBnm0@1w75E*%!-x5H#_PhH@x2%7*d4qV_0yGWvPO=q?(dF5zDfCK$o|n^ z!2)>f6IZ$u{QtFQ^g*yn0Ace4UL4nE%1Q(mA6E54C1=rwqm=AYBEy}!<0fm@XiO7C z29oKy2{mh6L>me$Kuz&p5}yJHU(Jx&Hg5trya$-FVR2}imw-V^Wi(?xc=LQSMP#!q zP%Hs6+C}7)sw2b*8g6B{@}HP-w&}wdl&#Hk(q!q3xC4DS5K91_yr0sOpmmrgXb-TP z4<2OFW+6#m&pa_a?s@Y#6@L5c+eX$(ccs|0!OjOktG?=<=Fo&O)k|LlnS7U8>Z8HD zQlvv8vhivnOm6zRgH9EjT!UB|ZijoJz0Hikj$fU4fYbRvPt$C~LJAL1_=!31ciBFQM`4fZg}BaJygz6`3&qbV`hF%4%Z(acYOvaofh@rWb!J4QI-F_0Zjy&t*CLT$ z=zlaa{A}OZpaQuEn!Ck(Rwy<>Wd$Imr3_;$N*GBAZXwX?ARQz{7le3d5l6lOp|hck zFeh|AlbST$Y-cLa%dKx8-i;MD33yrKa(?U#w2MgjPUu|42{frRU~QX{;mGT-4&Z3O z*%~iM1zO^YVm%NW)joAq%ZXD6mUXP&m@PE)75U9>94vurhS|>u1Ab`hIhEtoEUZ^y zkq0tSF#P4CmYfVD&h@|WrHJ8NXl4>mL;UlVf9&c1OB)u|Gz%L+^y(u>(<28cc8A)h zoaHs!uOXKV#9$JV9ffqAJ(53HB$sS{t-t;O_5J-s z0xzu$qRRuLH3)Y*B?C2e1v`ajU$A( z0}VJ*h@8~``^dmr^Q$5u7@LZefxfK*(NpQ0f{?8>P<`1y-}5(Vw?wE1%cw{qP{(Ll zg|7?pigRMg>DXw6b+5v}3PO5tx#p;fSZE3^X_y>J7nfjpbDDtfaT}0HOv+km#b_7F zm}Jvy?b_|18;VQX-0csiH9wY^PV>V6fGp8^HbLllrM`y-j58E4&cX?&rN)7A#tn}J z#+fA*$}er;g$CQpbB8Hqd3L%CpwsQ4(BGnVrxJiflPF$~2Rhps%nGv^Bn3EdJAfys zW%OkzD_3!-kcOOyLEX6w+&CvgJJ8?_>PtWf6&Y+1MKj~6^@C5SwoFRIN z{pnXaNFvasL+=#9$)N#^gBitCiE_lMA|o?SCz=#$oz={}%#KXx@5z4e(l@c=;@i`HOKxw(-FWtIl*So7 z&PpV32^P*pu8usWd(7MVliZ+Pfvpds03Moi>LJ?kIRO;}o-mdatBi!onZ1q=+8y{y zyZ*a>r53^&?JHV`YQ;GgeHR*$0(xsg9Nt%qvz-l(B;!a%Kxb?K`r;H%`LBfN7h?1; z{@ns7_A;>ch7vl>I5jU&j3D|Ad^;`(1RG$f(@Z_6<1{e+4N-8D&Z(K}NcK=N9oyf~ zk<~D*iX?^h`4D6wmw_S>G7i7T#tYI7=E&dd{Rg>?6> zeMxL+GRo`oNnDh%1(tDYKRoLuyymS_LlD?v1!rEw)ZwM5xWGxo3QwzJ)Hbj6MSO@kb6USiRjgXr_T>I;#XKXLAKOsABM;_W@>v7ctJ8an^|ty09U;g7 zg)6EbLM=7+Lc~(o2W%Cvj~OV6Yj3g-!5+&kaaWCtJhqxnEX(>p8+4y8%i-N zRW&FJT^qVqKh4v~h|rRoe$)9Ct-tOFEs9+K#pcOOS>2mG!P$7yj4pG3J$f$iHIQXa z-4IIABnJdf$^_5|JdnNl6+ZDJ%?bl9?d2B2_c_8zO)f4OTWs?S)~`s=wYtCYxc-$l z4u|tBfjHCi0wFlc5>7+A`fAhB#B7lIc!|Ms-DCx2yYgwJwZo`SSBH1Ie_M5V14UOX zS82vxT%vx>;TGaDLJ!b`gwO{QSZnDhGW#lt-B3d87(SohI;n2}LM6byFZ+?LaiTjr zhq_5-Hw{-rNkkp(e^k>}>lY}0QPco<%&8Z9OJed%Rw!ZvYMJW8$hF(4Phx`gud5k2 zTkXwdzg52%h1bpBid!8PoZuGeb673BM-k>dFXW*fp>lF!>_!Ed*653r=}-|#zZ2J_${Jv&k>&scb8xt-l&}IUY3=1x z?O}yh&)CpTH@8iAbHf`TRPjA?#Uvu~qUVjSYIYF_vrD*zBp0^?a7-=4GQbAD%D1&5 zkOXan9c7?K2fzi^H@$L2+PPx0o*^0Wo-4<$SDnJx4YmTaF&6vk4=AaT3cXkA<-AoM zS3LOJYXz?HXx2K2W9Y#IvCbXxl(D&J!2#ZxxlsGX;QxkO#}?~+;0rfe`-3ZdVYuM0 zWs`Df1G4X>XEdiYAH~=|JX%8!C0DT`Wx&M$bY^%KrgPAHxduy@fsm>|mCkvq#IZoD z8G_&aQz4Kba^|2NX9e&AAfOx&JaUvUB}kd_#-RkD5@BTT7%d9SqL)IPc>ESz?(p~s z#B4R7BI~f(HrVeV^dC{pjq$=XU!DOwrjdc_L|)cb;8a4bZy#{Rcyk&Jy$F;u27wrG z9Wi%Z;LOZ{yuAoy^^=Yv{Boz}2~AGb2vV}IFMpiig6g<13v1PA(cze?Z_QwiL{>UJ z@IvMDjDTRo=Z;85Al)C2lYdIdo>Z6L<(K)8_?V#uJVzynMDB$P*l*qQPgniWRcIb6 z4FTc~tEeK$2ws-xe3zIIBPpoLfuaVwltg)`s~={~oX{BLbUuwe1bXVR9WQ-9&Y*4+ z)>^%_jPA2kXf&588Hen9K7;^W5>zZPl0Y2KSX%LM2Fk;Yq(DRQb8mPC;bUc?k>*Kt zqdm!&P9q*OL_uGbW6{6&iWqixS6DjjnW){o@36n__As9pj?4AddBWE8-`f6zDEv0` z4k`yk>Dr6%X%D}%P^JWgjOGMmGf{QVoHj5XUN;)$>#O-#xGchf$LT_k?|rA_AN;?t z|1n_Aup*CD8t|c4P^^YIQmx`mIXQ7s#*n1$*Eca|R&JKn+LRMsGjiy3$hlCD z;Dnc8cT4>`->)&*l5(d^g5Lm#l=$!F{~tl)EsCFYb`}<%NJcSvyP<(^xM%N?cafT3 zJ=5r?*{Hs&lZIN}8q}>nI?c2MOR$}GCAz&@9}#EX__N3EM}_Mrb!*v9TLyWpy4D!D zN&j8S$(ijJR=4iT&srt=Rj||(q*acln3RcPdXKlc-xVv&^4lw;7P~4oC1-$mz=C`< z!TR>mWxi6o-Zh+XY`72EBUYkS+9%EBO7Iut^ z=#0>z+NLqJFdxovc-pSP;hssTz-g>yi(>jVbJI%V76B?3B-bewYZoCKV0gFLNiOrV zK$`a&b=1hjq`C*!s*7T*hQ@*(brDP(VwJiay$y^844fVfI7|g*TT^5lNNCE^bnw1u zn|f&H(TibEVcVC!S-svA;?99K+gtG5Cz6E%(K2L+|L)T`=An;vjeBCYVYD_(n0LRq zARjdmi0n36Eus7wh&i2w^-_$=(gClE{JMHp6Zr+KnQzi@0vnC<6& z5}CCi2X6MgkLFqeZOz(^wVP9gw;$eD^Nyk+{9aL7$HPI8{pz)Wz||7fjeYmER)_E2 zD5=roqf+t={s8KU(=5Xy*!jpy(h`R@Nr(7&b{%4h#$mr|@jj#Y2N%|c>{IgZewrX$ zchhcEm}GD-Zfo2Z1Ahxux*JJaUFsb7r22M>aX&$^{4psZobS{J?dP77@B8AesGf#a zA}_e!M#0cdAf9g}#f&85gVu5uDcg|tjIL?W?0Qj0#QcoCr3qKSvZX#MibFS&S-vjF z;Rs0l5CX*8Nq}v#LJ*L;B9LHp05RJ5TR33A_5cNUJebhYz^TRtKy&+E4w)p2hV|=R z2PiN5d2fAt)PaC8J7TP>OTE_9vzeO*qLqFgo74k8drEmVP@rKK^dwD=qOEE28gI zq=3oJZCPpR*6D2bMvV64%QxC}fGM8c^kZ$g|6qrI#szZrK-H(HGHgE=!sONVkJgBC z?DO#=W0oWaH@=^-D<1!h{@_QyJ}!o{1JkI!icX?FR^xU9P7*%*0--xog?6o4-xF3V z$J8e{tLh4d6df>WPQ$7m6)($bh6XjEP?^&V#l z*09<6SzgnI&&Sj*6RZ%*A6AFF$u^D5vF}@=7FB)zIx5$$f&d3zVr*F&Vy(sC7J*i~ zwj$+}ya=~znZ+;m5j%@Mt=8DR;tY2IEC6g%5lqgv7;PiATTTd|70J#ADoweQ(q4S& z1gA=~E;>1-c`XY&5s)CYX2rDNjUcI~;lE$|wO}_ISo{$jb+F2Ty-Q)xkQ8Z%X@TDb zELu6Jia06_DEuiIwifyz%BlS;m~zvpSTYogw5>&c9+=z88_o-swN0+z@3UAy%E~h7 zX#iS6D*iJr2J?dg3U+a0p+#vC8|y5vkGp1&$HvEks3Yu5 z@I~uqVaDR%CN0Qv_hEva`qWqC#)}%G12g0CCZugbr-yiz5h3YBeF zh6~z)Y($?UgL6=%$}M(NI(Uw@xgT89Hg>YJfEffAx; zE(MC}IsEQ#`K35Ow!oThO!GrKkp+lg?AX%NMk#3}sJXGT5z$-47;p$Ni3brw$?;xN zV-~v9tbK%Bux!NXum#d)VQfv7u0=y16BF5o5KZV{nschFIH~5qch86@(zU4HYmy*d zU0OArsonwXv;Kx>3wg`Gao&BEp>GFUS>wlOSHUp10|9y}y z8ni1(EdEaf3N3`DuE>R5$5`!4kC;?92_pD`Fm4?rVDc@9b&K`-V%Po$X8D-O9QBGN zgKaoC?m6n^PTPU@^#qD{&nw~vXe828YECPVdRYR3$RKmROsEuUH)>{uI#L@tmq=rC zt45x<&B7Gr=A_q?W9v-bcw>hxz~&U4Y+4RG0vbsI9X=#VJ~rhhSG;?Rg)n9cVFSd{ zp17WcHu~vJzb=hNEx*0~pIIhP9qRcMCJElmF78zX2eucCKt_fq+pL?ghXhxlw=xH~qeWr_+%8n52Fw`k$jzsmq z=?O)879n1k(I)~{V+q5ZyEBhRB=xzwPZ@=wWLbRdM9l6o=5_Q@x;a%5zxnB^GCXfH z+WCdK=k-dO@MuqAi{b$zz7G-g!%~tCq-h-iD>;7OTTWF6jRwKm6Y7Ja7$So4+Zs75 z&?l)FKMJS4XKZv;hQipS;#ROkP*AR+55gtqPZp4e}_EanM`;XA$`b$Nfm}|Uk_7;&`mV8;ceM1sadYSc1 z$$L{6Gw(-)`$r)BmktHIQIpjK5=?m^;7{-rpPTY~aA{Isv2Yy_S#plEkBOF~=y0B* z&z(DoVW>KxSJSZBY^naxu4xjFA6|v!#EvSG?nUtpSnQ=#rcn=%SPZJx-7#rXzNsco z-f#55-`LtaYn#e@6`NE0m*5ka$flz8v>Y%(Um~p&faoSN#@0mZnMWpmmk)pFJ?YI& zaqU6*5bRvJCHz@jB*bdEcv6J0tfr7DcJV!nJu1GZn^nKF=xnw#*2zF7JwZ zMSM~7NA-<#u$nF#qZfkXh(WO6#Grx=2Q$O`D=mSa(EVaAbMSvdA z6HUyH&!MEj{o_QJ3Bf|?QD*G~Kmxm6hT!A^Fbg(25M#1b9a(|i^S z_--I>Io*L2WX>qz8yU`|@8UFrI96;Ra;)ds%D?;d;XgR^aKBX>txL7wET!s|zlo8V z0ea2GSy)`11?OkwS8sYwvbor3=v@Gx85LsFb}_FZCOT!9BPK1_^%qSgW%5De9R%zJ zUx9G(<=h0!$UA6BdCqCnuO;!o}s|;xa z$Zt8Q=}*u0=xJ&FQb-v62sPLf#xf6`jS33>rJ&RG3{;>IB3`_eDJ>}UYbo@%=j8gU zj~xmK{vwt`Igz3*yumEA(>T(1DfQG|jrZW}hdEDs9mYI#7Ixz$M`9+Mb}5@(A5FKK z5yM5ZcFq%vSr}+zKrIkI;Y^BDzYI^E0FrVBx`(k2OTq|xB19go21lZ`SKxE~Bpk#u z;-?L~#xc2omW_IEY3K}~fk>&WL~lSsUGJt1804AG!Wul0W90S*VxC~R9H$w)ef0j> zZUV^xwOMKj)Td8XPP}$Hy5PfBgcsr@ARr(Q%8xW)?zPg{D9^{D#*HOs&IqrDpLA$B z$~xq-fck{SV=^6z{+uLvM9%PptKR3;UUV{ z^%xZ$N`yB3sv8N{(OKV-TMO}5cma?NcEz61KV>Gh|9PZ%c87yv!QI6BJqlSp@u^W_ zTR{BJfBobZ6%<#p|5GY~1ouNbB;3^wBeS4zR`3x)j8|g)Esw>=7 zg9k^f$GgNfMlvd;z`S2L(9aQaQKNiRyB?WQV~UBvYs8vwbQD#&avxoFNF-RKT9KaU zEprO*&}8#eEJWk=Y2J$u!nW?;h)deF^c!}O$!oaC7-ehJa!efoj zJVXfsprlKQI7`3E<4>@UJ>cHHS4~H;&xErMufJd6t?MO{zr_7%?-xoVTch+YXO-(- zH<47Yj=!~^;0vvq9P>e}Kuh%$Z?3t9U13j)*%9{8r+=0Gsg2Y8M90clO5fMR^0O%JdXno45lkf zk)6acPxJIBEvQe8+wn2|A|BtUNQ66DY-zoa7xs8v??{Ya(fXVn4{?uDjKqZ-1h|G3 zPOgD?0e37)CJ{z$lF=3fs&T$QONLx`3hYbiH(27xJXOEdS?zL(LVm)BH|A}D`TTtu zwh}6L$i=3&c%>rgNGh%jv871f>lNL=h||`5jg30_F=HoF?X{Ojp7NEBZmm4yGwSCl z?_+OCc3nw)=yM|#wku<4IU&dPE(z6XR*K^NF70kYh2NVLH7Qpz;ja+R3L+ZBR0>CF z@7;W~4qACA<(*%|o;O^fn=y?A61R}{C>TqzD7V$79kcDzP^W*anyhx)1D&Mwv=cio zl3E{`S7kfyJ7BisvK$w&QR^}SuU_nf&*Y^~RJSH3bo8DIiiyL9au&d=5&JObJC47-%0&T^(#Q$kPDou07} zg_N<el{xZS+{l=ZFF)X6q&LL#pldU?*wACqg9+$^y#pJ%Rv!tNoUp z)F(tf9Up}>S6;fK`BMF+OWRwezxQ9s{$gIIFt*2SZNJv(mA9URLni=2)xtr>gOMr{ zvZJ;)w3N7}%9#>M`ZmH&akx>RkY?`5EHjDu=BFqlDDOb6a7&vp$$LI#QNLR)Eq2iS zY?VsM!-UlvDEYUGL?~4>*GzD-Ap+Q602gdZ$jA+~-l@T>(vZtLE!3+T_t*(33vrJ~ zPdgeOYOdRE7T%#Ln%O?=EWkzYWvW1>ioll?*Tq>&99>UB(4AvtMhx<1x;PayCzQC| zQ)YuiZP!RBVK_rd3?@a1vr&d*no*hI`!lF5!nQ+=Y>?dr82nPal z6Z~XZy=Q+x6P5dksD#OrJiQV=z+Oc3G>mXDk9nH(RQmNmD={BCg+iu=QENZhZ#q^* zPBY*E1kR?wVDhGR5KT{JB+6)A>0rS@P?t;FrhU-@*IaKAbClAUYG@0(7Fntm=P$Hj zg09&U?T5>84J@Tqn_^!14@z(`>_i- zH-=^g+=7hL`2kz3zgjj1YBh*Fx(C0CItOTM5KxwJmFD6mYy!b%Y#m)1v&Iv|+mUVh zvu%1&ymX<%EzeqWE-?6}h6cZECBzI=UA-w-kz>6*uTdZW<&5T6|Lzc`GWJeckDVWq z#0w}d9|X4h*H19vmRP186UkX`7MeE$R>4OyG*l;x1toaJVaABIgv<8N;1#HlxRtS$ z*c@EtBj91Nq$^V*$Yj=`VsO-8oCM{1npdwk@|bSpq}Mg6l&Pbq^sc&WT`uKht0@te zEtRbf9U@qQPAl`|bj*|>DPSk43fK*ZJc3IF%h!)`(BJ4ae70k;taEdj-sZB-$*Js9 zk^e32-2R_0|M|3YvcF}WlLZ;*be%2jZ1gR!I*DDo;%>t$bHv8V)!IhPOjc~4Ij_tw ziRP5{f$urREAvaDIqgf9*KB_JQ(kp--k($Cc|I8}k>!HHV5QHd44hXQJcGe*Wpk~v zgK;fVqxoCT*GTEt>L`J4ov-D8yE=a%iQasrWfkXI5Y+6~n#%pYrhnIzde33<|D@FW z-;q*}0|A#F?B4~k|MTAeUG1|dge%P<%N*dz?o-_V8|2CV2aqQ#FZZVrT;cb)_OB4! z>cU3ugbM|LcG>*J3{alJWx1{C5Q;F__vvO!EH~Kw1s+z)`prC3USOX6E4&zO$kbb6xcMCwwYx1zQ}ew>@Y%QL#QbvZe0+=8 zrrq>$-RGv$Wx4wWa+c@sKkCF@su8RSy%RYSxUAdJ-I2O?ZQ*yjW%?!4@)MXk%$evR>D0)5Bw1I-3g{>uy}@^AZjVuA(|#KA|QY#_jaxl|@lA zUsS@y;md6W*sfid8tU~ux7=|~dY0Faf74daq5b>S>^$|4UHWfbBu6zlda>Q@W_qR) z)a!-NSHj!o>-9IkQ`_d4~I&S72|qn|AB z`GNE!ZZ2S|e^cD#lKclZ|F;l17I$;baER4OpQfgj85!SSoVD~9kl9{e#haQCUj6{K zIowIF0=tH#(X-XXy?fQ!My)Sn;-j=vW?o%xg)UPfnQyP&j}1sSq6~LekymYK{*I}_ zE+qrPo(Uc?OQCzyZg>;2psEj6R-|Q6&88oTqJR}y#@JYqmTxbFC)zR`S1qQ^g#_*n}binJ{uJ0CB1*Yy6e%}ef!mTa~&uV6*v5` zDcvQc(6tQ?2}O;>x-C!Tb*w2FgHdNz-I2xZ5fRam5S(hb!*cEkk?OU(jW!^IfK>bZ zO-WBlt38f<&H?5nQLjKwYW)A5B3f$Imy(Qx{WD3Cxph=UxJ z$o)drvA%8NA?`~9DE=Z%lJ}aiB7?q|2LPHF3v`N)gKgPe^|NxBLzb7&&nvu3si=G z#XqbrJX;UeV~0iUmHC^@D=5F&E6RV_-ctNc$(IGs|Cj9*<+&F7aot^Div3O3T^Rfy z0p)+oy8B1vdvQeg#r{`P_yG|9vH(6<{R2EqI{~8cBa(e>#0}m z5q_(H%3n6H7F6J`Bf+gyPyZ=Fi|GkLtU-`ZkMU458J+EjeEB-2Zs{AL$ z@1K`ERTkK{{{}Jswd6T}lLZt)$@M7&H3^213d0uz!m?l@aXuDviZLS9{&!? zW*$h*PF|HRVL%8z+_wF7YX)~>NKMC4%c4iwyMlHuUGp{4zjgc9qg8^foYp+`&CLXR zIKK{QXS3NMhiy@x1}FC9z4a9LT4tkr5^sg9DU#`iaozsnS-^L3n0B5nDC(b}6za6| zWl9>VxU8$=Q@6-x4TUV374Oyh`KEpDt{AXiT9tv>K#!{}Z)0r#vbjCJ&81ha9L!b+!1F|Urf5)FX3S!Mk(W9AGHH+K=_ zmsd7czr!V|Ia4JJ1A42aE}I5qzpG{prbw z_wBI5Np`n#ip}P>P;{<0&SPpd_$ivNH}@PH-7zs)`||F&_$6nn?X4CrTe$GE*Ef@$&Yu5XyT^L;%nb2?{Dkt$S70A&`qNcp zWpE7A^X|bI+u~P)oi5KZ^3O!&XO(fkzxIjLcvfn;!Nb1I_u+yeTCl}VH26=iL5nWj z^BDV+B`xAnC$*J;~PNtDVwXV z?pLgA<}UsGM;b0JuJeELGmqD|v39UL?CL3IHV5yD`xW=@oBvNtMM3W8m*#UpvcLs5 z|6KF;nR_+&ESj#DT(1~iwzRSln=78wG`cMIvo1IH5`^Pkcd)XVUsOQZ?w1Sm3<2Cz zM$7Y>j?py`j645v9V1JzpP%ZdtIA?O2POPel$93)KXVnE`|L@}Yu9Y9xXgWWuBZ(v zKYtf(Sy?ggGhcsg6|rCFhwMHv@blBv{bD~!1#_P}YjDxg#_Fe!>N?9RDvQni&i@@K zf{@<1-(QQ0p!jnI=ic29ia)Ckpa|TLbHBg*G0;S1=XFug5#U`Qh|K-|@-8rUWamwu zpWg+yQu+0%z=QqT-oNO@W@6^QU7WkmFP-p9?C<^sddI(FTBGJ>p(AfXFk>jvH&~Tb z_a)&K8{U83u<`+{Wc7mpF}QEFweJPhj%;Bu2r`e(d+7*eNJbUzsd>UxzdwDb$&Yn3 zOhC(?5_rdRF2mZmv(I-Ux!hz zg2`_NB_5e;GIK)>SQB*jt1K*rUGJq}Z1?$HC_e38zVj4>EM|=!ib>9}GuD2T;c`Gk zb0pP3Juf%d{8E7?QN0a6crUb?2iXkwL3F0yC4JmFxH30c)EVYidQ?Z4m6L~WYH(+Rt@^0p?cYHT^se9UaKxFn4~n5U*sj+%&2A1eY1;qqx(D_Rgz+ogUCrcQDT!{$k?IPv6xn|pviEF)JDRlY za%|J!tJX%(7aO>8F8YBsXh=k z_wL==_ty8_-KwqncI*DdQ_MU)-KYDU?*5(MIcGINz-x6-uU-D!ApUlT;g%_)G^0AQ zG>&(ni2snXH~fcuTR1<|D#5t{GK%dri_1J(PEs}N!q0oU($~3maQUS0WQ6x^A=nK+ zAnFmEUUV5TjO=28WAcQrLVjnnR& zxMTc9pX804aMv$aEaRd7qz-JI7bl2vdYdZ1%Jj*3Nq7i%r;{Z2qlH4ZUbtdO=cG+h z0+rz;Q$SJI-@kKzVhSgpj-qM&A=)Srgspm{v($jMvi!t1ol`{phW$Y<1AzpU*Ph)^ zbXr#SgK=8Zc$ra_a+zpIM$?%#>0v`|hO~3c(N6=Xn9BowZ#9o%PvaE}tF*?dzl%fIw%WxK9Br6^?h6A`lX{wQoCYB25mDCF>T$;(|CtAT53s!Hx7C$BC^B0tX*YTU^;)#f^qm>QPa+>I3bd$RkF!M0bv44?dz zQ0!c;Jr?)xD_<^q83mn#8RnBm7nhPYI=z79%n9~$cfO@^HphiCx*MGx*Bwy@ILVuekT4i(jGwpdpi4Gv42s|u|28}wA!*z3pXFqPI_;bxW^yaGIhHrS%5ha0u(Xu(f~+iU4Q^hM zDb{Y1*tK!=4t*sv#I-_z`as$dfbHI3(T}c+Pt4@sf98*tPMx5gF z&sutAF1%HPR0hqC&h=S8V)hM^Gd^8D&KxgK&F>yj-dco8JHMtQu)FM@AIH$*3>zJ8 z2j~S0HzL?|Rb^`wvJ+&ofNFmt&yPFq95hDQcMVtWsh7jA>TqJ)&CwkNhM)lAPn+9? zjx9X_1svX1tIkn&Y*1tty`kJSUxuqBZ+`^iogR2@&QMzQ8xjY{r>HN}^PTK(H5WIw z*ECu$+^{Y13+t(4r1L4OCT_LNQ<3GgR$&8cSsUjXDn`Xu&Zy?|Jk)P4Y8tzT+C4Wp zmZb#HXwe$aQt$=w+-G}j$)^%APmTgdGkI2T#jIT#H^<>!soPzZ*$;VI>kIPcf6x^d z80qJ&c(qbB;uWbYhe532cAnb=3Klu*E}0SKYh6y+gVgZIZ*_%n=-zAYhN*5O+(j9; zN-+~l-)(k^$AW_jAsc4o(k-|qznUic0rtHMd(tSNfbtG#9r5M^y;hB#0%+7x*_v$CwU(TIJn7km5qjQQ5tQ1+OC zs6*sbQjokk0)Hx!50=nFEp45fczUov((`iBDWbZeTVq3IICmPdRhe2QRU<{>zWpWU z`wP`qylPZQM;YcaNAB5BupkRh8wb5mDz@D@UBTK)&iQZ5a(a=qEmU zZN_V3Ue#G3O>r;fb1^oJM=JiBHx#(#_0op&jceAgQotJLvFpsgqUD&?1K#Gk$y?qR zV33@(wxkK)5LDKv^$*|jRrIeYx;ZO0b^GS^c+XQ}pB!ZNMm+{K_e6D53Nn;SHW>h6 z-g4y=YpF+E5)nvy>w9)9kDS~${s{YXnF8LW6F)cWEQuw z-OF=Q%A#=19c&J=%0nOTV0hg+A-26QcifAIsjJe99m_;9KX*uA9bM`2B>uDFW`1EX zcQ8D|je~(~YWgCIN7=%>C|~#&D)V?aSuA8Vyb!{KgJp>ZxZq7uo1S4f;;V{7kP|!U zMMEa4=Ox@cUia0Q1VFn-Ci{UJ^*vHAl& zP&OwmX_=;witc8sz}*7Fh5EfTJt)*9f3bL?vEH3AtzS&vURbF~f?l+~;?POsVaYSq zhw1dVU(^OhR`N@$*eRBrvUQ&$(+p-l+(6ELfv2%4^H1=Q~CH$R%*B?ej&r~|sf?Kg28!w)S8lI@JU zvkZ*V)V&sv!l5%?-L6z6_t?{6D8>57d3ajvm~sP`8c60B^09`g1XjcyoOs5S0JZSI zrJ%h#88+H}AEyCyRtrsCbKugN(J%*Mb1c(oMt`3s{?TEv^@lZ%i*`!X{Mf91(0+DG zy?0GC)f-mJ8Mjazc$4`vYB)oVu|qJJd2cnH!BubF-H>j0GV3<~k}Sp?7JSN#0Yn|T z2Ax5={92JL1|D^Y3n#W&44oZXvZ)8iqMm}4Zi>V$W_+>Ag-fG;YB%4TyaHWbElB<= zCtm^o`=kMB$%LHNv1fU*ylBFDcHz}*$dQO>eTKtls&T36;IEv!F;h3@qAF&P{~eJl zYW++Ou`nG#u&#HWogbEcHk%;nHf08)r#im1%Am`2W!sNg{z-ZTH=Mss%8XT@B&>i# z=AMCJNa|Q9ERzj>YcDO;zm5(-BPOwtT$@|Lsz5b}L}3&UDIcd_E=4uy!MsULt#2<- zIhWe@Y$5d~OU?NFMO}`7E7Vcn#ZvYir~%oo-CPGJKypS{!yj^+&Kk zGqdA4qj7Zg$5{dET;8`=6TzY`D0{NoD~)v8y={1VUlFca1R7(?gWTV#VWpEsc}^Z$ zJ1$7%c?wITqWEB;Gv(*MUAK(&f-b1Tc$HBID`QJ5CSJ*KcDYY%!kor5xVvFmn~usg#g_3qRQ{W~2TTJT z(j5H3-P8h49k85Uk0BaNOQ`xHV|NE`1EqakdVB~KOZBvnCZk(6*Xa*{rAQdV6yg=e z%(qyoksPW_{M#Tq)oFJ4Z2@h-xn8CNRamvZ+DPmSrT&jkoT_c9Sq)#qLiNfvLPKM$ zd}d0jbNWi~J|Tu5)U(w`P>DsOuWx-y%uOaBjH$J_%9U4c!WGN&C)&XS)9I3q}_&#L^>Ksv-U(%@Dh9l#TtnxLjM4we- zcP;N1Gu0gYE6IUqDDGEr%Q;;2(3Iz!7jZ+!Y}W^ELb6E&8Kz~2afU#xHY--zw3OqN zowwky%wh+r-0Y;!1@5C>Y4vG0qoc7PuJa^QO5n8tQVM0RPL`pzVTXsYN}`E*H}0#3 z)4h|rbSF8*`LLnlzR}p>QnbEj8d}pqx2v{~i8RC18i*x7M`V_DygNLlr`|wld6=gW&wzJ1BX`RLfLaCJCvHG(0qUi$-)O|8Pj>`YP9;5+}!otGyV>@q zqfa&2)UHPSm`TK0+km{EK~zRdA2nd!(Y~`*=fhw)Xkpd3f`2 zK_46$#J=}PgKNyaj~`&<=Y?vnWwt-b5Ks+VN_mB7p#;e%0=aKy=qhW@)E6_25K-5E zxKn)_i@&Z#6zD)r2TjuT<>k2Oqxz;vh_BQaXZiyZh?_>)3dC*WB z{(fZyYaQ*dDuQ<(MCH@XVpg(!{V-nWIq}EJ-nbAM>Q|eI6dD~f+l>?`@G?lpX4G+MSW%W*TjwEV{0(|hfOR_) zeAE1hnA%?LE=R+FbPXrK&Xa!THa(8*iv62fD={E1G2cD@`qyrUU_^W*x$5iz_fO}? zkM|?R-5pFYR!;T@L7lzAOghM);!~P=0BD?m+Anp;?r$S_U`UDaW#tVeQZcU<%{=gU zD<;cgQ`*k>%n9taVWL*`$!m|uI^3k~y?n1b&g~eom@Wyh_h1kAn6T$VHp@b*u6Jxi zlNonKbUd~f1Oo2ccec4U;tnoFYZY@!8S)CcMBbiCGG>`RGz9dOukqqJrC_9v$^bp& zM@BkUmW@-w1*Y64>k<{A-Ay;Lk1N7UACQXAnWoFWZ0Kw2?sfF`1xI+p`R@mP!fxVB zpS#I3fQ@cW-8gGtTZ!zU4|wDBL}s4>;x7 zELC7Os z8Rc)xkNEcJKBi>4E?H^RRrhJDU-<-JqR54`p_b3Zj(`E^bhuH(|ith2B+2ahYJd4RpFTl!uIcd)17Y;&$MuegF&Ugrz2*ZOSp#JoPOm0aqiJvnf}z1*(`0mhj8-Op*+ylon820E-b1Ii9E z!aP0?^$k@1n=mpJ@K(H!a^1&T>ve_>U$^Bya7$I;aj%%C=Ph%=B5%Vf6a2D9z}4$C zN`zzMUi`R-edt!ux?llS;pe@Uck$^*C=n8j>XMsHJD3c$qgw<5US0i8xNz^_x%4pL zOeDz$@BuW43|sZzbfOCMhI(4wYH;!RCsAQV)on^)cl2`2JI2hHotN>#gfzY}?{n%^ zaltv(&}dljMu8cHrtHtO{}x)hSVrdv68RMm>YWZvr%dPKK+D88Wz@%z)K*6}v`Nps zE_L%fh=U$1uzkGJMoaUF3^z|-`bZRn55K(aAxEReJv3L+@Uy$Jx}vl^t3J)Z2H>HU zzRoc?af?Maie`ASPw*0+;1jezQ2m2jl~2y3cXc4~^1T|6XkAU@k-|7lqQb>>&ifO$ zE(qy1gu8=46E_-|m_Mfd#Ijrz#u#Ww}F%62)tZ5<12Yk`|TU6$pA-IQK@h z4sgxzar}m2ZO0n+3xWL>AQkog`5S%SAxP+tGwtx+2Tut(nFo9e z8osCUJ&RXjv|bCk(u(A~-a9)-gj}(sSjIs4S|;A9T1EbX3%y=O`TJjvWNdFS)>#`G z#;ZSSJENAQY00-`!8iDC_&M^z6-Jh3L=LY`z)7*v@)Ku_mkk=UWI*qeK@q3b*W1k_ z1kmYWOn7`{NT;Qk9FJt3U}rdCPHv4H|H(|r9^1%#lg8B@U|!{Hm-C=`^*E?Zut?7`1G0hd(fFTC5&d;)PD+5fQ6GbmAkTga)^S>o_G_X#V^6f3fC7~6#Gw|7rH@}9lhbl= z?G3*K%d;rPG0g6BQmBN=DuG!EyQB&`AKigH-=^l0d18! zSMg=?gDO}B@}Fi-zhuR!SQ=*%YE&rOqayr3`%=3u&v3&#JmK~!yTm26QPr5HfhL|# zsf+U?ir`i)n^M;Ue=77$$tc|pxmCDL&$SQFmh7#-FOonPWmG^L;i5;as_T5}a$Clz ztR=PVntQE;GiSNxv8!ZJIHintqrFt;2lY`MZ&yEcH$dAYrgcE^`9VQlm^r<&_oTK) z(_zMAbZgHAc#Crq*x`EP(Jx%d<@FXUc)vK$;9`Gag$|xUMtk+v$E?xhB2ejP?rmM} zcN=aiQJzcp_^6eM`hg_xO^}PHod*AbmrQ23;m3b)2zUfao%#VG zhOaBY(Pq7?-S;mJn@uV^RTw09(W~s=rko#cH7o(W8ht~jE5S+8IoCmsX5YmK=@6?x zE7?YWDb7YhE7^i{PL$l7wBIqv4dPh|18p7`y!+}{jT&>S?2uE*Yb%4!_z|vt#^?Ps zx7JkTk6?&r2x4I;zgZjT{|Dr~y}bR#+cOqfWEs6Xw7L@CQqwgS>ichHQRIRkQ5f+^ z?WMBk>B#2Q7Sov+rBTfD99+kf=M8N){*W&@eHvGTO9(iRb8b|Z`7!n*8YO*N7mF^` zCK^FrmsYGYnPx@G2%ozf;)=Sqxb=GZ?L~qqB3aT#M*Qs{2w76WlRqzaK97Er|0 z$gY~G*2vSSlJ?1IyE4Q&t^AtE=lSgXg_-BG`*l?Zna2^P=h5Fcj-LOpaRC3aaqz=T zg<+yW<5Gs#x{X)RRLp{_bc&dvi;{cuBR!_4_->#CO4zFy0=q z33Zg%8o~P7rxDiL3EJvn5R=l9y;tfl)#EzcqD4m`Wilf1b|PECp{`oFHQtN16;8yY z^LZ3<&@fs(oa^5ioQV%9U|r@sjV{~?h2FRX#z zR01vt|KRTggFiD){z{a91U@?(IJw&yfA}NBM7${NF;L{Bwxf|0^KnU!VW?t-+>p!Mx{^N@{=wjcP$K`%iu^+?zlZnlSdo8-^KWDRD=U(P>93T_ziqnz7gl8HP7|t+U}w*y zA5a}zizA@x>_qPK2R~!jOO#6#7tVL1Clv9oFYf>y5h`=1@-C%o-gz|>UFkEYHd^Ef zB^@nCr?!IN`iDo~lE!lZaOuM{_;D>bsldhB@u3*$Wqpb>=j9X>Pl6Y~Yk^XvQ|SgvRq=GrCnfk<+k2By@tQ_B2>rDTQ_ZjY9aDGo;UmMK2j$EGpe=sW}XV> zrNdt#DEp|KXsN$GfyZlmjQSb)bVwrC+u7&=PBPu_iOxQqYro@)`cy61bVD&QwnpwV zv&MDzxDr=U+BvrE2B~0Nq<;`ahSO>8;cCBy-oELf*68o-&oeE!_O5->)~WEzqK|nN z1cE!tqaBr=8Ru$JY!w~IMh(gFyE-G zjxJSps>74$YmIm>7WOaqHDdy^;sN_sl;*mg5{t8^(#?um5{KO-_HlIJM2(*if{-}@B$t0A;O56*8^dm~o1wR&5<@-WDRp;qzV$La*H zC1v%-rCm*WZ-uSc_-q%!+Wk07)rfj<2}%T#oLM<;&(G%Z*!?M?tp(*Pl2)L4 zNu5<{r8G%V834zZP|ovTnDCv3ANFyY9xoEQ96vPbdqAsQEOtaT;b;1XRBJT(PCCXU zgIi7MBX{VD9a%UXLm|z@gUnwIxNc@f?e-B9Teb$+r4%Yyl>ubIIPc z{csF>#?e)+Z~Us$|4qoi2=pXU-^}}Ho*pCxJMo*$Kim0a8grEVuh!A; zqh<>Bu;}e0x-W>cjgbtEhQH0b%~<-BPve-bxYdqCE9s8~yg|Ym#If#e)h|TA3VJ1h z5$YL8n@)R&Z#NofkN>q4_xYQPInIj~a~3@|k_o_O=+!6;6Q(;TXKzkbN93>tGE&p7X?s zFDRK`z2)e0af>hwIXb>~oP0az?y+4-k0dYLgVDy8Wb&U^rj_H1%@0>T_CqJ>=PZ$x zh^V|E&1d*pU*9K`X2y(Sn7s752tf@<=lbZgl!8fe13ir?2q!IdA~T?9tE8s;3yazU zesAX{Jw3nSKz28DhPl*eG{H}p~9Tc%*qyfwHzyg?T-Dd=nM69x%)ul12LY473M zh;^#hf!;;QBo{8-Cz$9K!DVO{Scbpq0^XvFd_|~o6Bt4BVz%2hM}_IY(R){^a=97a z%s`=O^IBI$WXY9MVU^QHVU*s4X?L=uj3;zV(&C+Y*=0zC<4jAUwN_Z)Dq=2WS&0d= z;-x`gffwioBmThMA?{;aHcqB`eKu*Esh>!7UV|(et-+7-;3}#K*ezVyIO$5W?$XSc z0n;~M-ktlZUWg93n+`h*5J*`%y?s)|h_S!wI%_tLboWCm<;g1F-j|Varz=gmyiVcH zl=mq&Lrf5YG9RxBfStxEbgoS$a(gwsSDaWkMfylQA_EApTUnyaId#Z8oDgu)7z8Av z8;l$EUn_^b`>BVGb=x5k;0--b5~ZmZfikm#xiGZd95rk|SWDI~?Y(}b%I`HyHNqdl|u>89N+8 zQ<-2Z86#}U)U{tu#lRg{%RW33JDVTVVsuz2U#XnAA#1=(CSBDgkWe z3*J2mGl9uz?yX5!coob|hraGTrtjYTyN`QS*L9y`4_5UL*;SdxntE&64}Sf48F38G z-#^)|8k;c!AW2VFdOE5Xlwvpcve>pmn!daybyde|4*4DjS?!~}Fmd|pViN)ze? z610mI*gIZoM>K}qtX*H{&ry*O+Z_IwWc#p6IwtNiN-z7SN2hU>^=Y{3Zj0>gM`-;I z`e<7HN}NZu1>*>lQ&DpPSk&t2fcm9+DZ_LG*L!;`I-! ztNQhWM9v-KNBhz{TnDR_v27y#rIFqX5Yg0O3~vNfwy3X~xbK3j>eyis*SYJ=jDr2O znyRvk*)@`99!d#JN;+3}Yr4Ge-Tn3bBA_o=*fkuZ?Q^Temj}BC_y#K==2>VR{PB zWiBccOPT?l7T&9PQZZHllY?f`XQX4(8z;^7jG8U1WnRBCHR|Q?TkWQSn!}&+%ko<~ z6+Y^6dIH+AUSi6y+bnVl+;2V^-YHT}L~zL86li^bqPcKn67AMOL{K12CC5~%jWw}w z0CYRHVi=D{!pZA0v*#kbiW879QHmlFiu%e>^TKZItMm9BR*3uz9?9pag9_F`xoG~u zi5Ai^gdNC3sbwn(Vctf=)nXye5VQ8$*W}R0>WJ3CMht0xZ4+G263%|1S4L6vjH^_v zn0!iBOOye!lDViOS&G**vNHwOm|7eoiR7n>LsntkCj&0^sY{4rn&Gtq8bVS;lvhHD z`#T2S>%>E;kRIJEP3;s*TV*1p+NiLG7lhy7?kedwv?ckqGK;Js@$M;>Fr#$eaN_Xf zL5qehfnL|f8t3xZKLwZ*&pPuKBu84pj6g7K0}pZB-NfYg+c@_$N>Tg$097rtuGm2U z-={hLA~K*2!iYWeAzN7WM|b5HG`&KY&}K1TV&3x_ctsAa^3&qU<*#+1b-x7Olj8fk zpUURX?JZ!>Iisz;4G^#TiC!#@y|VJpdsk61TRJq1j_<(J0@;DwsL>wBc5~E@0c$9x z^G)t9$T3LgX{rXt10!#L^{sB$dqoqN;k3Z_20hL>JR^Jq_XEs0n6_?oB4kKW-DzP& zrm20J=H*^xFJYfp9S4b8{1i$1oTfe!igc6aGs{gMUSV?h2(fnfpo%KyP~z7nB+R)* zp#kKLo=}G-7@qrD+b2bzL+oi4&mDU_zU3#Z4bPDa2Xe=UBK+9>spJw&iTtG`>j$z{ zS(TpZWn9VF7-`Nsf`ElQDp8M^)0TE+G-Xu^JJ8Y(m38h?})pHQZ);-$sWHjluU(R)32Oaj?ec_11jNK(VYrYKK3Xs2_dW z%Rl#O;XW>noYCl~rf(i%zHZoBE>D;jLo*MFfYU6=@gVN`*=PjvF!LWiXLaW+q&WVa`gu$nF^V}dNep=(2Bs#>RRVasSf+&nDo)e|A>*kRh z|Hypl%d1z>3zP+9D>^J`P7CyMEo=*k6v8kfofwb)tqhb8P6#IMeB1J02TL=5$i*$C zI|mzwfK=qA7~XlSPi@~s7K`>Cy%L0@5%KTUNPZ-f0#{d3eBs4H&kV0Z$e|H5+H#n2 zn4_S7yC82pcw1b{|HR_lP>2ji9yXy^gv{ zr@02B&RjL%>@}^KNayD_vIpTPoPOg`?xcg`6Jc)P^mmHAuT4-M^4?^B=+r#f2zvIA zF@NVm-kv5e&aUsM&!Z(Ps|WeLgeD3>ZBx&O#JZDJhQTRsMp>Vx2Bqy(FjKAvVk4bu z`z|@6dNFObu9O8jZ7eysb?2eQeAhW5z3VOMUO-6543S-h_-0)&9W#RL1{vQ6gb|!p zTPna|(mP{5ZxBX7h$3HxVK*V|4v;mM1QeH$XWD|95vnLR-J82UjwEfV@go3vvbDZ}^Eh87uB049?cI^6w6`yo$iEJr%YFZQSpLRv;QLyUPc>KU zaTJ)SI(LCR1N;rNgnZL3-E6)NYKq0QAUJzh@;`*56?lvq+_bqv2LwTGM< z3oJoa1HKHp&V?E5FOnuB1R^3TPMjvTtPU@yM0{k^n(Z<^Ef|Fn5bL) z*)hl;KeDTRC;B0e`|?*%YlRwF|st8yUS^);B8K(9n1B+Frvr2s4qqNoOq zU!TjMRAJSh(uZG{Wp>oPqSb)Y|AtANkD8kU^W_6+;iE=(J9KTMUp65%{|&D=(%9MO z&?E0%RxxN`F53Zvjc6M{OI3u->K7G6fa#fCn2VKY<{0yC8ef2~M=^N9dF zICSq&d^jJ%09-gf$Q2f9tU=cEeY!7Odg1s8U-YQo)%CSdjxWcX(@6_u6(|q`R1+Z` zv+z@<4AM8waht_=p(g^%QmB4fW zmi~vvjE7sym{zQvhAj>-?t2_02g(ODxMm;13x!SQ@|Nn$D9QYo#FvO{ZX&Io0$2e| zI?CiV2Ym)O-C6{^%CZabv1*vi>`1wH35rJogN3NU`mL)v_efjm*i}_wv)&A^!V%Om zZ$ew3u{f#w4c^$Ay(#QqbkkA6w|Pn@+1$HV*Rd@$`E{jTD&3WVEAKpu-Q1;wJF;9W zcCN~nz<|Zyc<{Ap%_#^vNb4FhT&-&#LbQehSB&p84L;u+1Xx203CV_b3dP8E(%!M& zr%0ak5ju6_386oP4NuB$zuAf18maYguel`usFVIm3j^F_R|`a_=HZlS7nh&F-88Ei zC0Ct{DD-fsdf=0fd?}d(;MjVe9BKs@5=22lj|v1o2LN{|9~9X?Y4PsX5pLKr=n@Hl zqyNIr+pQhNcWkr9Ms)t zHkfl|e1WUG%$oVLd;Aah_&27^&cXU`>3CR}{*3hhKb*WAk1S4oEd9VHo_!2h*m&)}tBf}5pTs5XKYg3EB5 zt^xEvK`FqTmBCAMpVw11^nkhY__YB^vU;B*=l!Fc7-?bQ&Y*so6?6*OcS(q5MkP?=8%57S=X z^&v0A^*>O8F&nokd-1>Oj$8t2#E@2Q#>08^JOM(0#@JMx^xg-JJiK}32S9x zbfapY*KyolwVYFd1 zh}%9g{Wkb92)pr%c8Ooa6x`~yDrax0tgrk9Y$#k2Owu1LKrCRJ%OtE;8tEg5pJ$-xz&23w1G^H$W8UCo|jpoV^|t@xX=K zi9Ty5=Mx&^$v7#lS9HkS*&V=QnM2T2@@?8b7^Hu0b>hv>r?JpHlXsdu3;wW0WgyMe(;2hyHYklgLV?N5B$ZUJ>8f!+>n=?E2+BB;u9_zDu238-2b(nyTf6UP7R7TOhl@RE;@LUMd2fTrL5*9q=oCGuCC5 zenK2o&Q_HYnLX5X2`%6SDmtqUyASe5w{fs`z}L2O@(b0jb}u(KxvPPt~jf>D6U zGV-U{q$PqpX5F#Ay_e=@U6=}AsX6Qy?p0;O*HxFq?|i$}!Ggd~+rH6Wl$%)rFHm@G zmPKF|Ap3b>o0xsR*)8eFz}_NEn>_oDIq7g#EJ|H2)G&d?(AcXRW6Z08QphT1138;M zqJUTd;|UPxGYbJM>`l5LJWXf4>22|Rr`Q}ekB=F+r~W(@|5;V+%C1AXlNo+oFv9mj zNf*hB15~>m4eMsRwclSE&eQm9J4haLcrybHe#I8CuKHaZZl-65*U}id(ItJ~bfEEw z(KjK1_?%{4NER$SF!Q4XnB-zVnh&?6w;ZI^?}BQfX?$WaLK!3+o1lk_1f3e)@Vo&T(I$E-Ruz9%{Y14_J`wXJF=a))%PVuTb9jVqUwD z^j}gS%NHn-h0|9rP(i!{zTnc_XQG6Qh3CM^WtbNz1lNccsCzXbV)0+P+`hfj9e6KL zQ}vHRzFSeitQRPn14sq?d@o4B|@va0`)oys2knE z@jNAnW^L*lsEe(&Z3rsdGL5n}{=U0YXH6#G=*F-exj3rNS0zo*Fax!SKPT~~15$hW z&mx1=ows9f1f$cNli~j;;gvhZj zczXWc3lpSN3F7VJxprk1DfPBX73r^`uxHl5Tiz^I(er~cc!zs4`RA2P{AbmG0_ko~ zp13|LnGs)zpJP4`65)er3*F+5C1y;fu6+rRvCI=6blMB@&zDJ@>f^+k!tS?M@IRKs zl%?feg}g#O+UU!$Rl8W|ZTD2Tcn+rwxj9DU+1{6(R@~-wnPX6-Fe~qis~HHAc%PP$ zAbt`DMbXCk541+&&zks6KnP?ESvrKE3_vG{GO_jI1!@ptT#bE)8-oP^Z!tSAa?| zCU!R-Wse|+7hcw8W3Trotr=%|!lQ?UFt%}3fMRV;OW66NplsNHhI-x1CluCIcV05Y z#|BDkPsV>vjPC2%7fRb3Ct{CQU}X@*^mkDMeYfrgv8v|SJCPTUT~g&5x7G}%7d7kq zJ6DKkEyF!S6j_dD$nrvC-lwZgy+GBv_UVSaK%v*Q>nec!F7}Xv6v6|eC8u{6e$Lh7 z>c2}$+*yIKMaSY&2PEoX#I2qZK}x>=+1&lZjfcP#BC@+}-!9#iBi&`}Eylo;4zeY; z-kyeMG+?8Dnrg7rEXCu;OIhQh#Yuq=?kKW!@(7i92{bCTse)$2Z@dg3N1({(L1O%8 zd^i6sCqdZLwy#_G8Dzba6>f2pO0x_%?-XuR09CBQZ(6D%Y|w{J+oSqdu3UWoY*zl! zj=SYUe$jYJ_^9ywOR%P)a+}ew^P-ZE7gEWH)gqH7^SD3tD|q_zGW}`Jq($Oo!?D80 zRv!Zj3bV;L%&)<9zTNDdrde3elMA|aWT0B{uf)&joe|3~P~lDn40>6o57uKY;cvPx zGa76z)2-qyBio9$EB^UycsvWTg>Po)V)D^L&Q=Ij7X#JV%l(h^UBr{(%YnN2=`NTh-VV z$$4w~6b~lc%%JRXC4#N~b-HIfWx7DDoh0jCL7pjUIrwpGW!FIKBlP0yZ-^dq|2n?> z4>@riy+HX1Zsunpc=-aQd!7-47Pb?^E8IpdzY0nak%El3WufP9w|O6#ZL$^HNAVmUyxYi*K4cE_F{f%;-q2I5JvquNt`~xChLj`!TP4 zPe>j=dC7rFfu8`;-#e(IUyYW7selYwdBVHPb3H zBB|7;p(U zGN0jgB=&YtzCd=KSte;+XGe9E;9IviY9e)m*bGb~CviF`gb`#&PT!TkLr(Fp7dF5q zt!BGTEmbPiia+9ya+V*bIf97FlGqHEuT7_})h70z-R|23f{qXyg&iivMz3- z{j#n(wILQJ^X>&IQZ;K41i32!1;MboJ8E;ZFHmHUDc7=?SB+qP!%fpC#05bRWjo|m zWysn2jW&n?864?q`n-9U1-6Mk@$vpS0nz4$NT{A=a>OFRBYn-0eRVC4=wFK&sy6JN7JDp_vk z978PYuczqf7pN>qg7+@t=T8qAzB|5-0?|1gb`X151xA6`!_*fjh)u=Tg&0JTCvrFP z18ybc=%(QO+h{%y4Zc84LT)^pEH6+W{yX392(N3AK2|S?IEyku3dR{CBWswss4=S8NW#|O*zqql1>Q1J;*5QyZY zWW)CeciUs1MIiETUXY?nO{3c6m5++ruMN?Lc2Uy^U_YS2dc+{{BT9=wc^N-4c%eNN zc3?kG=@PUVZZjfz!PW+E->mYiHO;gcms&u$R+?rmsn%tT1gR=biSItvO2qbs4An5H zIOP5x_TDqBsdifzj-nz0A|PEr0R^RrbOZt-O+-Yb3wagk0wMxI0|Dt>KtVx>bdeG| zNDG7}AYFP12}&=CN|=zsneSSAefzBS?!CYBp8Z|xoa?*Rk6dAfnK?7ZeCBxWagTe9 zM?U^;SzeEe`r^NRt~mnV*kb6*FISQhB5)sTd|X zdWU?M@Oo$NCvN-0ME0+80(JQ!T8An1fuO|QoTa@-DEW*~1djV7)5=(ehmaa{AsSQV z0{wArPMDIo2BijN9zagsre#1^wCWEa*w8y5LfF}{tQg@S|L6g<1-9>@}*n~V=2 zIw1WBC>0(+#1Nnv{_$(SNZ_TK)6!cR=v?0ladZw=lLJVyk$8sIsavge;-=^vcY_w+dlmz+;BEG*nqqiCTJE&2gEJ%w zn!@73&g0{lz@^nAmi29%##M9X{0ZZR+oqU@NlQ)$-Sj27IC&QH8z0s3ReKGgGEN)d z3={^tc>sCu8%bv<1i;PXEpHDXTI+07MiXN3R|~R!qTm19PNole9EAbhUxWLMR>%c4 zWVk&816VhillcPw$C)0cH!%RK-KM@nZ-BVZ(SmXSxjo1^B)T#!k@MGe#{c&IA0eiF zrIshOI^?(S$cISEr8?Yx1UxJFFCdEHXCM89+yO+qxEMJlJ`VjAYKAVyII!(0u!W<@ z7hPfdhFpl}AiMyl{FJdV%tp$(@V<7@#3ZaDlA6wl9i*JDM$^P%ni^0)R8h3&k@S>9 zOJIKSG8Q?hOkaAt`qWhS*^3i@`*Ht__djQVzgrL;{SM=S+f#*23DbK^cj?(#;^TK+Brp7`btQ={!WTH&ACc`clT&~5wZ>zeV=N^l z43d%;Aul95k^e9t-m~Spfb=8v2be>ML-wq#;mC$NiL|p{*EeJ*+v&y(cxPISjU_!< z7bXP4Nj>Pd9bYes*nT(trJFCAXXE|>X5n8Is+|g>2l(CT-Gl@=;(0 zZ^G0qH7`Mu4c=*%HH;CBzR-}4g%fl&Vy|8bol!+U$O(q3AkI@Psmio$qzh^))DA!v z>B}S%WwC1XPm4=0M$9!CM+f2sKa6gtIjzXBw#Lz3CCYQ(nzX8h0<)EiK5RWcZ%Eu>h=K23yvBY-RC#D;f&W zh@72JR-{Mbl)KG%kUUkNM9x5xbnYauGT*Bl!k3S}rJf_`TSk{uuRnkB`J)5uinD-S z-LXfPDNp`r%YQlCe-GRL=EeRvy8gd#xLv;!9d?o(SrWA7&0i)=E{q-NOPB@8QV{`Y zZKrE^{R{eqG(?!}=Q5b9sNd{EXGQY%#@Ir$4!(P1a{7n%(5Fvw1BcA9Dvuku5>QIwiL{~v|pZs z%XUs<$dO@f5lhSV)m61>(s6a#ylpHa#!tT;(-E~5@oc-Kr3g;TZ>R5R^0$y`Qx>*E zrctf9Fr~+?=OZ!KKy4XD`#IfgQ4DsNorYL@-cz}hG2$Lw#LUb=5J z{6#hQCzwCTz7jYWvLytGA$uLEOd!N+1oKtJYZU$#RUqjAaxsl4PK((-faIWyH{8sj ziBO8q0mQhKTm@UWk6g#mzr8WlJw15(pV|BAPhZ|)%oV6tA|S!jDI5W<*6(mfAE){O zjti2ouz6)-Vdw&YBnWDDX%p%d4XUF(YXsiT>oz7x=vBP*=)F`LmLJ_Cx$kAKPtl?( z0Brb-=i6rxcZnd4rlEP!UZI)97_;$o<@Kb5K}VYMr7M0P%vt76A8LJn(w)pV@{7}( z&~HDnNIifEQO%13-7S1vr?pI=JuxHLFMCRIN~_PdQejd7$-NFod{K3pb(=4(0eaV^U3L>8nxwdVjl>Pvm|tsue7~9m2 zjs^%%m#-)()m928WwB}8za6v@*Mq4_RsnUYeQo>B9kR#W8jjUD9?Q>lPxW!#CHs`E zl$CzhIg?brRT9@q;fDZec<~6TDMcjcE3V4v9g4F>1fY*D`o({o1Zss(yZ>Ap-{m1s zKUkAu??18 zgHy`wYF#OeF(u<8wwv7KzK(|6we(t4pu=;G%(J^o@K2|_vbn78Ub$$ zEUF0O44a~~qbir%`h{EPL7BdWfF7q>Pr#E2WlNtyg)|->`Cgntim`fS@5ZyHxW{Ui zul^I7`VY?9vKz_){eFdh1Pp`h4j^FVP+Ws#+U!RKrW7-GC7 zgr7FmI{MFg{YM%6K!HCx^}kZ^5KAnMXbYWs-ifL93fbUkYvCGh5py?MK=T662C@Fn zGV?R1=iE|H*=m>CFc(;5*^0xYD|`F6v(H(~g&`Z-6j!d41igL|9o+YFG< zJ?FnpYs^}b8>H+xe1GVC*{|wNQ@UW>6Y5fVgKmT+CvIB7L%eGH=d!k{L)qBv^%y}TdQvFZoE+W7FaQ(o7!^;b93SgifD|UDqPgx zSkDD&f+VSWAgxh&bKI#Wr9FsWEqH{3c-?oEC+OtK81jO z6aor*|3FDh4A=Zj+XUURxFkjN05W9`Dg(aCcl-i%$l$FLK0`G)fV}DhIO&~W`hM7Q zjI8*_Y5nU*q!5z4OwS0}bi%Y^!JrsJ>j81p#Vm>6Py5e${rSr~8uU159?Ek7ab^`K zcM&7oFi}}dKy>lyGtW!{l4E{$)kZwd^I`Q@&#hk>O|~uX!aeaBn-grJ=aR2FCrDH= zc?$$3PV~WQEF+yjsXiO=6{cFa6CIh}xmg&4FeB5ryRRob96eiKlm772^J1pgXDe-s zUCvErPo3eju@Gowgo4?Q=FuRbDa1|SJ;+MY1>s$ZXJ9phPND?UxsoZ3%n zh*42|A$Dq}Yy3^J%2)Z>&rBYnUXwMX0|=EPbn!O;lch(ho#;$3Ls^k9^xr2Bq%IN~TtWWt1&_G*xj7$d|%vdAoSv*(NWft{z*r*XHM>gr?7 z!XMcT5M1)j86Vl6+&LDk@srF=@=RHTCE~csd`%9+3-M{4?yR!y(@q$C=^gUGe(#`R zxYxjI8I(qmT+gG8{YbG$j=YcN*FHc^CKBnrm`bHgii#bOW}neXmj&V%p=T7U*6k%o z()~?oX~VX~u`V1}U9#&U=4I6$Bz1Dc^^06j@0*J${|X!y~+$pAi}sYK^ZwndX@ zwbI=V**LmjB~X1DUZ?|Nw3zsWq>m29b)y1^!%B>S`PHT^hO>-#nAt=tlnC>RqhAD6 ziGrRbRPROMi1|}O>?FHi4ZD#tVwIUxeXsihD;At~UHJ9iaXglgk$X05-n_f%}I$-0v7!6Fat8J(8w~m82C;y>zL;v3GT*f zvg;SX{rYsq4E;yT6r%{u^fB%`mk(RL5LA)RmT>&3bv4woJP6FQ9){wJppI?Ie>JwTm?QYm@rcf0g!fQNg<5K z`ji4P-_`Yn%6A{ks}!aV>?^*It(a#HurTFUASIp2?Vo+4vAfw!f!WZzp^O(M?hlKT zkTGcLq&gH|?4IqRRHOd5>BrKYvU4wZMN(Z0B(N%k2V9dm%7ZN@i6-5NaZsL?Q}C)T z*m1_N^R%oc)#6!NW|MK@oNR*Pdc1;_E^DZc=pMHtKR&L`oikKSrx#mgX-Ki8V}q1v zA0K@KG7I3l-8g3YSsX$kqg@&=sPR*{LpKaR#;J?}B5r z7>6-c$j)uR1v-Umwb!H%{4O30!?mXeVaUSJP2mR=yK0|3O{Xzj)t8w@w`IQ80m+_! ztXXCihC22JC z$pin}=flmj*z5(Fea-(M1_PD}`qTngD~c?Mp~tkKD~j&Y)j=KmAWfNJ zx*r)54rcL@l;r!mr_I!F|1%hpzn$aHG9`OBGC;Zn4^+Q|rkJ?ks$yniTlKO}hMy(z z3hB?$zk=AwGz(FJ>~6)Ol3SvF*GWG@#i=bPAl)<|aLI*;M$)nYVEMri${=56?4kS}RmGHUpax+IgQa^;(x`9q+d;YbUBBS522{4I)b=i9)JBjq~W z9V?mL5>L>OHySBbSm*haKpgx{Y;=*m&qw$*XV1^_yXmt>^<>zl6cZhocG zLKxyW3D!CX)w`S_X=h`{+g`+n7?l5Pth9xHPL>@&_Al+Xbmf}?pf9x;ss#8y7*r6~dH&i<>`DK|;npr8FOd9!Kb6hBj&>RS=4~*3IoR zQv>gf$i?m-Vs8|mvod>;!9-Duf&3Vp$|c_#g*t9;Vm5HRUAwS4f%mMvl5CrF z5iqan1ZK`c27i~TQIJuX6~27r0!ZYL8X&X(I>f)*;y>_Vk1{$M%90ct-PC;Z{HngZ zRCsB}$A4w{gn`7BD_ZOGO(uVo)BTlHJN!RCiGS)z+2ia=7aXVpbHwq)lJOOO4OuL! z&ts!Ql~-hPk36IPc;CA7i)&{N(S86?^*(?!fc$Ko@2?%-2P=AmhVu?C} zHfHe>8o5W(=5b4trn+3c0r>weRcmD-CflKLGbLEc17sIe-Tlf-w7jC8y%9Y-31W(s zCqs;2sK$yRI?!V#+F{g-k3c2acVQyuZv@E#Sg%WVD zIbmXlFt}4P_4l3Jz@6eJDh?n_$X}qRJFgA{EDj)r$i2(Rb}uTJInSvff|%!oEtIZm zi(`Yj;39E6ik}n)Pr#S4Lg&BU51Z|A&tK=>O%c<6eKTD2$+ZYazOF0nq!s=e_ zcdyGkCNMCE`a0-qmN+f;0ODY%4n~?m$15im#;MTUdu#I|m9JL(n2^QRle630?C znBQhDlm>7bf0w*zy%ZuEqwK7*lt~JuGbQ0S-N~+z?U<9A!U##=J|WP*vxS4CA59pM zrp7Xl=DS;@hj%!+lqPK*H`wC7kSsPk!iv58MgKX)C8#g!EKuQ0T<<`#E)mDm7E$3s zQYKuk+|vy`CtrWus%$9#R9z1@{T5~D5g;>lNBQAXotg-3$PY}SFwwLR!;Rn^-KMg$ zMYjk6gW3RQVVeP{Yp08jdgvABw|`jYf9lgFaxCkZQLJQB9?@XU;$~jRtIZ|kLII9w z@wNq2m7;_M@LA!c=IA@tCLf>Is#JS9 zIXr<}cn6l_(J!vHh?8J3H718`5Z6f)ohC=&qo(DfGFy4W)$!u(6SY^Q-*NUF?)QE? zGy^Wy-OkaJa*3c|H`YfV1KA=>Vvr&rK)FUe2l$jw#S>d$0yV|pVQt;!&o*LWEr!cv z(=V27*c|ux7Gsr{c_zR64Zql%#0%GgU$UX09=P~t=#2>q57i!s&$eCNeTEBG=PChG zOkU80jI7I~Hk|6C&)L+JjVH=qJzPIvO}<@UM6Y4(I!8MsyTECEbNgFg3`@^Fw}YN8oDNHhCyk zRNe{AD^#)JAWmK4mO$xsxMlk@S`D>fIc`&`FqJ{ICFW^FTbU4(dY-#`oTQ%JCzT9s z@M%bgXOKH4=%)b(GGbI+&bgnsInp`9qj1Q9g)546=)c1F-j~>*) zy{6}uUtZtz@#M3(yx#U@nup3M+kvaVMQNS}P-Mhcs+@l@^(qj^)-G+PM|xE?V-3%} z5pmy#Wod0%)qZ^IYHH^0@$-5-S7bV|>5zS&1qCF>CIX7|B58Ut;6T>h@e!IT>*ed} z5%|c|z*V|T$l`?-rOj0Rqn5=i)1?+B{NS|zB5c#0ltwTISu(&v=rmCoi(xljpkz99 z?%RJ_(Dn$-wSwrWIKC1WLNz(Myy2V!wJW>?LJv8Yb(ew5wBn1-?#x46Nn_ zjkIusLKRzFIR9X5S<{L66C}HWlHGmJOa|t*0M^Zy@iJmB^|r6PIqyR4lt8QuxTnw( zz&u_?mIe*=jh2e*P{V~Q8n!UG2uY9Z?3H|fC$P8U9_xBGdCG?Cs8%?&|NDv5L;i6u z53Qv^iFc4kS1=GwNnqD{2;rEm+*YbxjXDMR{TQEI*CV!hXf&PDKeK&0{z+XbmUAiG z@2$3EXbdQd2W$A|`2i@wi)%_eL{l87x&`Qmfv$4Y0Z-8DOw60a-urE65nP9syndWe3$Y#q! z#Nf2vgNO1aZcg)Seyc+efp?ElXOIg?Pu!q2!X4-{uCU_=5GQmTxA5s2Ud5t^z-tc$ zo5F~)@d0K-hX|{UvX(J7!rXZ)t5(x*X)HP{kia^EvEN{)5aXz#hT4+A9Mm+ccWs=& z&3cBUUQwx*G~X~9q3So%3hT$8RuxX`d)#MBarLZdauE%O zMkq3zXbwKy6#HMJEXgkDLN11wjBIbFt0A$%WDEd`!0@nj%#`rM!D-D28VdUQy8}u- zNNEwM&=O3;ZciKGC%RdEtVh+k7PpVWF?Wa?S+|N^bKFxK!uB1$#aHFs>gRmO9truz zAGyf3X-MoN2Q-$~frM@c>@b`^&@xtns*Rp@O$-=-`iUnQ{p{{b2Xfo?F<1;+&?u@x z1B5XdXr{?kZcWHUnWAmx1%n3(IBay@Ol9-vxkJC%;vZ_iS}-`1;6Kq!pMq6ehBOJf zzn_77VdvR^T(B8HLh85>+bEy(a^l?z(dTw{cK4e~Mb0U|mHKoEtCbX)d{+;$e{0|e zxSE1wY=A@7{8J8HsYiTbcdqcVw;g$M9G&?GCS#c_Ov}>WcuP4)RRi1w?S;W{O-RkC9ryiq`opXp*Q^%nm#Eni55OpbLE)Hqz6$WD8Plm zFNOpK>|wmfl_=!*IZz_jF?;}F?ptJ|v9nPde+QxIdtN*3hYlc`>)_x~0+TJTg^lS& z4w$S&`e{&Rw&%L}$}$?fuRj0~dSBN$fXJ*v=@%Lj!*Cqx&j|+*4r6yhVkDFpwYvIf zB!8K_!889b`_*x>-XXrD30o+cs}p)W(L{JmMeZ#wv(&7e6C{}Gjr5ou4^b8qR>I1i z*RBI8Ms||JDSLW~XHYpef8CHkcY`>!p$WwW^}xiS80k`W^KcV#5Gk??dP*@b^;;>b z!vikhKnwX`ckI|WJ4ar$N3d-4)1SxV->0mYKxn}^7!BycMYPB&X|etRv-U|4PDSxE1b8l!u|7DB?=2O<|qP3#;mUXb@HnVFty&xg6O`b0lnS4rRLe3wcR8|sZ++TLsV z4hftBEhFfHVymXOH$S%?sW!6hn+a5!_qeuo)n&P%{`LL35Wdf>Qk4yQQJT*F=8)v0 zLMo*3Xks5$Eiy{ouw>Ov;b4TzsnPal z6YUv6GwSY+t}K?^E-VKSHHDI@o{DegX?+mdjU3Ds z=ytux+cKve4Is38IrS#Nm@4NGjFTYa?P0{B_tOAO7t=`bS@pZ~S;`|%;sYXznRjz2 z>`2~?C|l_|A33OCP%pB|D;Trz9x04;0pTn4F>&iHiL+z=1d#awuBGbZYG7|nu&R9sV8J~9&I_SIa$1}Khebgnd?fX>=FCEEV$r>B;>0yT-=k!8 z-|h>_J^5JwJdxZHua|Iy>X}bgUOjr2;a5uxl?pUc91(W`c1Kdm zLQ~7-6f2-7fMCMrD$KkyGk2v|b-99cxa8ElIy?5|jYs0u<6=)7F5T%@4sB%20Olz6 zK_f^`sEcfTx-iy5l2Ed^uvEwv@$0Gw^L1kWcv2ZGUSsfc>G;@81N~f76MpupJHRg)#>TC`YqJYVrdNTAK3uCZ`0I z+s9KeGavDxv1l2&O>rNf!Y8@oX=uK_UP!(Hcg`;^!{NvnIUG zv+8tod>EE0d0OsL4omXm_bkco?O+J=zpf6~1by(k`UA)u$al{)>_2PyhwWyTb~>nf z2ni~*kla9qgUSZ`fZo4U?1Ngj|J`@4NRT=1x&HM4vfhOQi{n!3Bu}){Z(IOBwFf)D z?VqVW)Tk@JX^I>)IDl+t>rdw#K(dk!Ah>Ik)tl^CWej*uQv=L7XlyEa66WI%x%captZ-ILkC+*_X_)&{I) zSXvNeDKj14K5sm{mQb8j<{_%u?ZJS>O{42|b;(K#y%(y! z%H&+Pz@|ucJ!yxKA^G@3Kpck!;iGJ5+qfpDcaARMIh5aUd2M1sxvrr<|BJHH?u7D_ zn-j`cN@|DB^ovGVz2?2bS~EcP2SW)n#1UG4lPMw4wkzvspaqg&g!S3HwEvyT^099Q zsS;b_)h`HF{Xbp5ez#t3?=!nn{j^*WsgArwtP2ie1dO`rtPMk&=Yi*)^YTOLq8`t4 z)?fBLL{{(E2CB@S@3?k1rAIzZLax4Gt|znoDtQe&V*;F!d>$}fjK2}+-?qP<*mMrR z*QCuD@{J^2lTh(dhkvWL!~e^NyPQqeTOqe37^XC(sM13%DpVh(E+$}K$$zRzbD#`WW&&a%g-+Oe(c#V$+u76G@H?wSJ0 zS9=!Hj2a@Cq=&~AeVxr%D!V>^PuBH2S;A@pk`L}97$;1yy$TRtHnYa_4D4SBMG}m! zF&{CMDX6QeO(xupwoBr_mQ;Rw;C=FyRv&vyqB7XcGmmNwG~;oHfl&NJ2PV8ll$4d| zT?TjxbIq)lvPDUIP*WcNmX7_gB`4R# zVkz*P4Ve3MU|D04)yn+Y`o$|a*YbPkUoX}Ue<}>`TU_e*g9&3COd?R#ONsBN!1h+B z=7mofI1X(~$;v2X>R)%#76?q<8Zju7Za;ehd-3$;+s9S7zH3T=Cn^W@!B`-y%6y0} zjIbqPf)R|*eF}ldF1paL$JSG0HCqcw|8k99ySe;E$!MXGd0#VuU_&!Iug*bG&lVCS zn0R;^%)oY_xYTt?@;B9%Bc940wdo8DC|Zq4s&YH}JyjAet(AUmX;8tfU*uz|rvw8A zV56wOp=3AWckn$lXY^qmbHZq|Oy-zJ}&{n*sur*lI?vh|WjR18Z($ED!QN4;@i zCj`Y0><+iugcYabsN`=0i;)to{bVs&CZu{U)jeSGT!dJJHP5+MFMG9q z{-uoK`qMyxMcF6>(*hEqi!%#ARQZY*8GT*QCU8`iix|c$MA+_khDS z;um{mQK`I?OjtOkd>K3VA{S2pVA!NpCSpO~ozbRCNw_&RSEc>Xu3hi&0E3qX!}|0p zZ{vF7_epjp?WhDzK_Iokqq$~gwSk9|hKm&*w*es6G8k!j)vb|aP+PL(V=Z2yrn!~!?^*L)*oO3#j!Psrz5={`<86WVLZZs6A^VJ0GH zqDbbNooWU8L2R}I7?ais8iTP-+IX6UF#8(!u=Sd9gLt%}@zI*72cHwJc2?AfdyXBt zl=B!c3+d*XUBOi=2dnE6C(KD%sKrD^92|Ph@Y~m&nLwv$W93^`Jcus$;3bs~_n(?e z0{Y^IKf)Kud4MCayVHg{oB)fOKSCsbB82M?S8tlYs;e8v+A}|T5R$ci9#dxx{x)?$1CEow64*T;8E@7~G zYv3MoD+{?f7pMXIyDj?&a0ZtFi_bA;#av`4_C<^YTK)UqFw6h;JGS!n0pwJTt_Ev- zJ#=@rrt$AXLl*`t57!Zhk@0?A@jd?G z&p)Q+&0X)~`J~gs%LEbr3 z=f)I_B?*z8$fIx`f^S_c!ZzFO*;dh_h6UlPYh7)U@e%(N6ZJlKf5rU4shokEH`l@^ zP<1Zv+4?}i1A>?2+)*qWm8DFqYe(|Kz1p(WY40`9xbI&G@x@bOS+y5NcUaFU8oSx4 zzfT>x$Raf`lB3yYCKZ!i374H&#BqfrNIG(GBVOr8PRiPUgEvgv3jpWPLyLySI%vAV<>o2Eh^*4IYpQzDGR<PGSDksN?u{lVZ^f zOk@8`Z4!gGMqUKL%D+vZGQ-8_ti@-Vd`_^6S1|6(B0#~fZ`w>?TU0>#iie*^sY#52 z^;7pu-D{G3xiuL)?A@ssDJzQ)Ow02hcYl|iTJK8lrgEYdmAj#=@Cp2K2kp5I5J_SK zTM**WoN#??T8miq*K=PV1UF}5r}U+2Cr%l0cE3#$b)n{<;}*BvBp3)t0qTv379Q}y z(rQv9rQ89mN%qU_ptj|Xx+-fy3Vvd&Mo`==_O5$%O>@lG&$V4vg#_y}*GdHY!XJ>Q~78GzHoeT8)sI9gzV&a-ThK}-*>Zr zmHxGP;fPtHT$$%%rXv$;lI%nNV-(~KfHI!5D$w=)i35oKdAR?7s{j2v`SzcaSReYy zM*ZGRUtOlpO^lBH-NuTO@Q-aO^Nv~t%z-Ka7I*v{_-|{8N(7XqNQ`$?#JQE08H)Du zOV`>#U-~V_4Y{-E1-94e(-Kw&xqa}nwRx!PAobhT6*;S_K$s4S__7qzN_g6-e5x9zb@ygsYe7rw$;r22eCT)lCLNw}@C$ z|3D;|FfLx?38D8t*u{8}V3E+OlKg2>;j7Ak__ro+>t$5$`eaGYxD*%aoXUIm(ax_@ zwIZOv^iEv1&e5I=)oIl!b(!f^C#V&GEX9bbO)EHnczDG^t9+Le5yr$_EfhgHO7RfE zwdUfeCFvyU(fHalV`LeVq}zSi{H>LB1-Y9AylqZd(64KIi=8myO;iM30dQVKvbu2q z2|9~V{(DsIP|Fz7*)fD{=?&2-|AKq^{56do4tK&LRh%tl;(DL6rK{`EPe3X6R$EkQ zAvXVX%Du}#;t*;u5Nxbc%iKfrw~Lt#U{b0=3lYBU&chud*1 z&CLmE%-^f*>J#%!NN%WnIr*L~8snBYE#HOY2oj!0r~xVNcoc9eh?DvZaCG-AfMZo#g`I`z!O~z7hTvoZL-z(3%r@bj;B78 zB9g_=R~}ly5zV}~-C7QVaNC1E^lU4JB%D=}@?Q+dis2W7Dfs3B`?gs(w97?43rk z&Ft!7V?DaLOJ1_c)rUzR^Er@LxboRqz9jL5y@$OV`Fc0x|4b;F3}iNaJ? zA}XrMgn){)7aY?BXGT+!g665Oj>ED|Mn$tYjThKDZ+7pac~0}zwb~-`0&jFw&D-|n zL0>{N#2sG??QF0BO9ctbA=E>QeKVOl9h%39;DX^EIc`_xL?QO;Vs={-$HRt;t2HJ2QiB z*X7tx6F+|(E|#!Z3ck7>j61vtFyJY)3lp6|DkMFWkDq6$evD#~Vn(LwjZ1GF8ZwmG zgzlFA%u5RKYxltZ?%td+$J{}=11b)4hHA8E5{2aa#mWXw${PB3(8o0?;)S{90nZ7O zNRt@IZW^nj*qzx~6DjnC3(oNlKVB5bql$wV5bP-nk&)<9&nD-^L?Ji+%&EqPF@!0S ztFuq3Q!A;P<@QV)?+K_si)opW+|f5FOIcUJA?WY2kLmJahi|vR*fk{(q7&*)!$t%v z>N(`YTKluBz2zZgPaeTZ=3R^=7hdT^H?;@=L9rHc^tH)}kImzHlM*;mxW z+XcKhS$)g}b{f~Kij18Qdk#~~vak75qReBzr3^?egZRH)iyDxw{$=8WBh z!hqERp!TOVW=u-9pkk;i#rv?1)MfprXbH!c#n(q(d|A7m6n?Im0(OSDRm#{&7bhlQ z3aDBD8ZXNUx71F-{&atKt0~z{^X#bD>kH4HPnBh7zI$s1Plw7pbbgY2!BrCi-b+RG zqZAcgq8pTL&0aE9Hl)F#CKm{l^~Arrr~R>qC54t3b+_?c$PvdIzi~DOs6vFy7qfYxel=y^Ly{()^E|MAftuiqc z`+)CRf+#r=v~3;Y8WGinim?|ao{V)U(kJ?@X74QA^Y|ju$8k*T!&!z=;Z77W3n31MqGV>8EXDOHm@TV-UAx~< z{nJMLN4`$)=f>K~EbSwf$@G8du4X?-fRAkMU|^rbq&x@0j$(#Xu0Y-DRy zx>*=9ZJlr3la$ZQuXSsR83NHv{-ctxtdGn~%ilt}Cr-s`k!o}EblH!x?>+}TK1BjG68(pRu`r$UHT8#=E zgYGdDPU_HuWT_d{#O#$nes{u=2*rb9o5S$h=YxC*OOWeZHcB4OPH3mIH+m@dzG+}r zehcv(4tE5@;dtYsoiP+cO*BV~k(4*bh`DXJlL#20 z-=uTMdd2=I=|~IL*wS;!luK?Epw2%#On+(aX1|nMv}ZCOU$Aj^%uWL}98i6~2CKqt z=8_`GQKX>PJ|wn<-LN2Oc#3gjWdfi0C&2az&glv~d4B9lom|r`k@~<0!n_!cUG8mi zJqz0?CIM5u8wz#8go=056)<0ap;-3DE!q}`Wzn)W?mdLM+A!-j=GnLQt~uJgv5%eF z7#JB_O{N{%g{!krALih06J52#u6M-D64~MMR>aXN6|n%5 zt4U+!vdFe;Ej(_h6G3cL*-GFONwN#c*}`@YVN{DE=w+8$t&&~cbCJ&W(oM?l1va*N zPq#Pa9*pv_*L!6)m1{xvabWM~Tm_SzuW91?$b1Dp(>gRgkN0gM`WCU=nzdzk5IWpW|eX-l)6jBflM zwA@e8PwR63f>|g;5{tmd0esFd#A=YOXg5Y;^^xEg>)wKM5hy0Ws>XVOhb#yGd}BGe zOUvz}4QyBMVKg8?Lm&g5pN%*PSQEVXfdUFewq1yAq^zddezzwXS!q3U?Wc)s8h>?S zt%B2Z%op!qrdG5vzziyTj{xQrL--by8F03l@Sqxc7b>CM^MOe0bX~+2*gGT1hA^+8 zH$7Jve={kgy_Qd)?2-sG)V$f>=Er*gr8@+1NJ zi6o*VUO&F3nbDTilw^#5p6yV!#@!&4AD9adT8!%qEYkKQ`*}7-e9wA#5tYF;g$Sfo z2JzFsJW~pNz9`Ju?u0Nu7pqfMUR6Izj{r-95xbE!y|9ERHPInGG+G znWz5jD!t{~fROgW!gxPIbP+mT)e1chT__Y11hNU4u1#_aARah2af`TB^wH{`^@ZYq zljXatu4kU;RSKlV5R?s0>{TB2D>@sqmqFG9r18k<&~^|roAmQ^J(G8vKhsF;?sz`a z%uTcQ*bZ*0lsr1C+7ZPU%KMH>n*ZCG+l(73XX6sIb1+h%`Hx}RaMNsEu!@O@>Qx2I ziJ-Cc`NYx{Q>*I^wIkI&oce_Ir=o`yxf^WC?=5~A*VB+3gnGar({L2I2UyQX*aAsJ zOT67`Lv=0S`T@R(ZO9xiDsaI~`4zKvN1)G+NsC0dY-^5NOA}nf){N5h;!iW|j1qXL z!Jsf3y$++Dd5y>YQH56IT4CQtG{Y7ZxnX9eV{{6n#|z00?zCJ9IWJVNdUtc>44Y)5 zVDTS_n*X_TQ!Fi)&g6=z#%$~^q9biOMr~K^)rmB4te`JMF^I|8%`}}{M-fcViO!zb z1n1>Ax^Peru9_{1E<)7+9kGWIUVaVAfKV)&g6mWGm*`eh2x=>m>w3V0j}_e z$L1MS`}rRSBBCQUa|`+ejGbjnTX`|E;1`n4||!4+eWEzo(DZf?Z~# zpxX<%lv^|OptA=M%!^=QvP#g{@}B7)#V;U3kJj>bJtp}-*;V{MJI25M@dva1pEXH| zFk1{bmTUM=n8^D9xXvZt^p)gG!HpQ+oiLfKY$Qc zz$stf032A9Z7RPJh$4p=^>uwvp!!bu=K&<}01|451i%&C*hiqtbP8C4k_@J4o*o(= zzPC&jQPZb_8V%&a2#hY12wZ=fxOV^n8!NQsVW@VHr%(U?`FoDwP9;(e&kFYMd;n$C zEjPf4><{tQ`izIVbgs?3j%t0fe@I=IcuRn}ZIy?UsHh?yQ``JaSs3(i2^D<;V2?Ne zZ^d~45pj3GX>jF$J1UTSElI3INQ)MV8s?%o=!W@Bt$ltx;U!ZW|qKIV_jl4~t)x4SFI z2vO zWDhYyNw#FG$Rr_2qO!(R$Zjf2qcBDGm`W&q2q9S}SwjY6Ns=sC%a}pRI%64MX6gTN zUDtV@>-qh<&VAkY{ha5V|2g+$I+M)!tnc;pe!T$!odD9lOh&NJS~=k?W!dBouLG%L zR9-=6BQBQb<5e3@)|GCM79i$g-B24kgu5ij@F$jewUo)tdb_e1yQv#v8uYzypBxdb zN+-`7*$q~_&l9f7GRT;a1E4G4;)?rJr za(qe=M%C0w+eakKX_nUX7rC7t2AQ zM)ZO#S1W@0gEVZ*PQZ`rvUlD_0T&;i{qi|H6J$IIZ}2QBR3n-xyFy@Vm@<#*(l7pk z<$6N`;3CO@JJ+WC1LSM|6FU$GTc2i2OEC@r;*m-wFn5~a;2uthVE?=}4N;(&Irulj z4UV3_0fMZykl@5(WSSEWl%jxb7;&!Vj%RAVywnB1A26yDdT8`gSxtYA+Usx|^IfGb z8Y>Tv7(HxzmrDQ6dcicMauW@<_Ua23c+}!>21-!XVABRSz3Ji4fkPczTfeT|;uo}6 zNR)Eai(cw^Qpe@gS$92;u{*4%K?@`jH7PivdTh|xE(1Nt_Etf~NNTif=BW9=3hTsB zx3~Xp;SQCm1xdY_%zY`xB?X$^Ux#f)|C=Wiq>{ZYM>Ho2=2C+)b^8?{qhjW<8d^{) zc^1h(GUUZeaWdg&osim}Ce>E6SwLsQ zvFo(*smI@KGO|^bwO&oWKWq0#W+k4gPA`Z0$iSiIWopv0%%SU5$lVp*qx0J_HvI3^ z^tE3)jGAIL0!J@d$bE~d@;p@&du4t8>8{r^#5xwpBzb4J(7hn95$rv!Z<;Mgk;+m2 z(Qj~ze%;FCyplhh1Hb2C~2qkm>!||wh0X`!RLsR%MQ(NAB#(6f5yx9ZqHb8}Tgt#76m!hc>9>*4X!r<(`e`}k-y z>3jBd*tYgYOGu8;h~s0Phq^;4xZ&mTz=c=}QhanqMkvaX=Vvwlm3+16JjV{9J<&Ur z8p1a$Rj>0VXB9`iL;hwLL~pVAv>873VNHbcr?ilcyw1W|$u3;9R^S&knXx8ywW*;u zUymxE+7ru_bhNERJ|<39rSl?kJd05Ay%2cl-YxSb&_v^y+Lr+Sp^{S73U!{DF_F5S zkB@@G_38x92K!xj^RQzN&l|N<&ijEB{i;6 z_^?gZA-5Q2%s|MOJa2jd(xbG}7I1e8F*sr-Jc_Q0C5ya1u3)E~q}`I8{t4-NML`TV zEm$dGcDifSeR09uAn8w+dDnOVAt|;xiMPd zrk+bq>`vi+puca?KYM; z9$jd99V^m6B*c=YTAJ*Fhh~XEX|2HB6M1A$)OsnAviH%qX3o!=Woz2Yi*4%Aeo`xb zJA|E3Y|YvMsz$y;N>oJ4pyam7e3W4jTVZg#@1uE<^XMgo=CQBGyALLcN1az6PFELO zZRCFQ*Rx;!H{i)(f_rzk%(1@ui{st*NWA)cDZYC$iUWP6nr*~%t0E^nzP4*wDVI*( zIv?@=s@`C^@quok+JmmwCG2*G!;Q}Vo-i8NpDc!6h%J@0X@2fv3m}Q#Ol=042zW#w zOR7!0Iz_BFrP}|Sy)#j}Sh!r@_f`O&UoKX(Psqep@h7N{nj+mpz8;J<*cJ8>RJU^k zmYgT1EfS^88*isP0>zrzX&{$Bs4W$nN%x>Mh3lC*rbnH#dtZ9)CWrP%0A79&rsW)B z0U^{|-?@;x+M|H!ZoZo=ke@CN83rFAr?9Kn2OOmML$t&5BMo|vgvnK<99yLe7`6^KGmK82L(YuB)f*emtXPC3Q!;V6M z#TMEP$rIgh5_EgX+ zUeHrobl&SJraiiyXX&ll4D6&!_vtohE5inqUnQqsz!7ya^{afPuX^L4Q%wF+jO)Rq zFw*`Rn-q%6k`7sHo}f18cj<1(8kIpm%X%JSN)sn9#8z zrgxoY*!0&cJs%z-ef{dSc01=-?}_+>;f{}8#VE&{_fv~@UlFwu*(&qa_&T=2eO_an zG;Bnk16*dGvatm}#U&F;A90lRs%v`}0X}{kDU4iId7S-Zu!7q~o@j+Q*y4V?CMyH! z1CJ(DUKz}xo~;fHeu;6wl&of`TlcC5_?|ZlK39+Oc=IkwD&~G1uL-8{a!L608$X}G ztn6hD(6k4m{j}~^eGUxu4b)qClW8ti&7aq1HT2DL+Fasbq45bhA+y?(EpE3CE!A?* z%V#rs^RZU6i^&!#>M5D~OqnbM&zO^sSy$(YZ5aI^=WfvOrzY z!tFnap0}0>N23$92+@P*L-cy}l}a&%&Kkb%lw-~lr~4+YCqAm{iwz!9;;nhPv+5Kq znOnXHIL0S{2ENVQ%E}?QE)ETnqnp2>Eg_X^B>Y8hfL{8nH1>SIuyxN>8^?}E&L6%K zgPVg-g}ndd=>K5*5^@(|{11Xyy#;ykK^AZQkrE~{dc2?=D}2d&W1t}P*a#-+c*Hr6 zbelI-Ri_-r#?N+WB)VtHi;tu$?Q8A+7I2R9YV74$E0F`Te9yPTxV-}Z`+VNqA5c_B z#;rOqDTffdIHk$T6i06^vs^wvxvG48*S4)@(!rn+x%L#2YL&5%K@WoVkX1P;(Fp-r z@$B8S=?9m~-qH|l(&A@Pe2}Po*}G?cYU8~n#VLW$dM+E+To1Q**>|!H{zF=X1L|fR z#nevNvXU0GcCA{-U!X2V5PXo_o({>!e)E7FpX#^oO?)q8mJGmbqHibDR!*H2GYJ zyq0i9sk%#6oMi!;E{KA@FI<)sxEClp1k%Lp8{&oD+2|un`$p9 zPDd8fFN_+b`}>_a)#>FcG%3^6a}qL{!p*`n^GmxBb2{ z3!la&XR8{{ck!7CckBwyd*pheai_G|`;7(AB;z9sMABUrcZMhkGcQ7|6Lul)FMw{T zjtn5gMH6pxZOFvtK}MFia~h4G`P0**s&vA|QA5nZ0I&BjVLMggey z98-z57On3FWYxH6*8O_kam2PCGBT_JRV~JyMGpN0GEx))nW|6v8d;EbV`5U5F70;} z8ttqyJL0vh>O#gfE=FL%g&RFj1b7!s)|dwM=7$*?@Iq1xw;{7@^I+gZ@vr-f!F&H_=XCooIgqb}9OE=x`{yb0H)n$C4oE$twAYBe1Ob z7sAmqUywdXe#``sj^$}Ugq*HsJr7vi;We`3+4Gr0Oe3eGmV#>OS{tR$)gJGk!>fL+ zZQonoXfq>{&^hn6@(xMHMKlP_VyiQsQM-w3F6!F6Z(s=~`aE^JPL)nogKACRLddcF zkNf%>tn}K}1Ogh{pDYhAFAJlJSI%)ybu)$VO)}i^^f%P1a_ZWIcw>iRJhA#UCcar_ z3pJ?lg;(u|+LjKr8nsIEH`PH)&*jXY4vatBXEAw1bR*&aA;IuJm#X|{>y^i*C z^9ztY%%^UI_Cen~fBlLJ_`H*DL7pyd)}|-;)X%v2xr2{5bnr0vt=4?%CZ0Y4Za2Y? z7+pB&=7M&0<1;Ye`^Uh44gDI2?L2K_W&-2j;DEV;Kd@h;FeBI&4vx*Qe>^z1g0@+l zoZGm#IJa_dKW^6>ESaC7qs@bU3)2M=!E9dLo|J2qc$e#qwAH{S)mw)1fF zZ2rW5?(wS;Cdk9l3O>R|^aQgK=yHqum_vKOP)gIJvfN14H8D2R~4` z6AYh|a|;;kRxU2^)1l!1VO)Y+h4yF|ZWFe;!Yy}0l91fHPjSD}0WEDE-NQ$Y8l5yYF+F8=`uv59Hnw*54lb^4*W5ikz5D|LgKlAh zZ%5pZjEatljeDH*BsnGZ>9e$)+!uNI1uqLDtN-|?Zhum8)y z;Lz|0nKCgs^?mxs&l%d%^2#cG4O-vWoEHa-^Y7F8Uo-pDyad6#wtzk0;@+GW$Cg{* z$tlRSb&tk2Aww(fD>sDY4&CDsIq@jFtch1%)0!%J^=1#Bn1U90FKu&bf1BCAH?i>l z(#-zX#QyiZMqt}HIl$&|3c`>u7BeSq9YKG|$~D*vD(vd?bs0KLg~63Yju`9 z8Snb~^U+MIq)nP%S4L$?LVZDp_p<_fv)~AY8*OLX75HEqlsGD4%a1TU7H*|m3{y_& zZV#YM6IJ0Svo6%X8)Ry`Aw7ss7iRO@ImT^tlK3$*OHqcB?R~x8U&y` z8h7J}41OFDpS44Ut)yu>UgF=nvEAkxVz6tJ{T`dghZl11OYPOW2C7m~mDN?1 zDZ47BzASL@71EP~M=($3F(-{XLZ2gYv}_ZZVk~^fF`9ZaR#c%9*K!L^MLO33n6sLC zNeLzOe0}-r%K9{nnBtJtL@iE2FofLJdX9IQL4Xb{MxdD-RP04+d$@rjX4)D029Wb- z^pBB!`7J7vY@^QzI(F=B?Ma)_vlA8Q=kdROb1{+x+=!V2%F}R=!>ZC3YmkD3i)M6? zqG6JkLQX^R@JRX33l+Y)^SvK^0~HxMIdAHVM04YHl0H>D{BXLdtV(Y{v6TcVM~8>) zf+pH;Uwbx=jL+H`fQ>vKn%*|1K+V4=x_~1Gr|eDhaJ!Xx4qmm=E1tXa zl^)5Qdhd}JXN;K)2z0C-7n<-% z&<>3_bNhm1X@;Bs(KEDXIo=-XFW$1g#_V$3Im|68&J=-f?zd?(foe?%&)fo`D2}1Z zVBQn|5q{nJ`s$$`W!|Y}9i=!A zdU@64Ie5)WeDY>R{MJjKLnLT(%mbB>B`vpwAS~SMfPIih{hsh*$npl-GpIK^(LRml zo14NbH@t8CgxDi4OSQ8qKM~b#(f3!fM)X?twNt7Sb0AGT(fgH$&WOoVzltB9p1Ivp zxqY);0qxIceEk~s*vBd6)Puu<*|3eUI4UWUL_OCXjgm1q`oozE!rpj^nQ=lj_h8x< z9eN%s1tf4=*0c|GO?Jt>u?Sq=m3=apuWfE7Mi-$2=G+rDJf_czC%AToo+p30hbLju zTQ=y=$c)gd&7azqR5|Bu=>y+QqGm8DW-rW~WS#JcG~2F`yMSPAAr4w@&Z=GkPGdLV zd>lszfr#UDYj=W-d~Ye!7#Y1I;yFG}i>0kLwkI&GO4BgUu^HiWBRM_bDd+TcXb{va zi0P8WBe1Ts@CUj&Z0#gsFVq0vGLzt$pjQSnsH_eYr{u^+@N7FqdT6wl^Ri z6l!mLolw5mmQG3>+fh599`B8tOM~1rOw;&&S*``joPoT9J>$NrGGrY`R2W( z?)Lb5S#qps5J^RdGcU7VBE2kkKsZ}=Pfx>cXrbGLI!_qB63sB^wGeBYn)oKEZ1ybw zQS~YNs5#ENFxZB390**DNYTss4LG5El6fB+&O||vzT2y=tc3~p`CO|gKe3Q5X6{v zTyM@l%1W6$a}6_~$-iZ|?KtR3)*u0P2ShQN&W7Bfn$vmu4HO_tvN!;o^I>xO+HR{y zEA-Wy<^603t)t7IG?=Rm9spDpi%G0@N}9*R)bP-iE)y2*k~1^ zydj>-aPBSE*LZ#j!95}sZ@=QLSC}X8%HCX`KuEDn59T~P0fQG9>;dh#wba99^diV9 zI5Hvb7Yw2APsYRT0c&PzQ<`@2*D9UmJv+ZS>zRA|y!pC*^VCDfsi7^_vUMJuKSz`& zu<;=8b?zSRD3NYTyVVRAE{7B+)LW82S6Xj`Ty^Z++q-JNuOeCTK?hppmQ4)4+BNR; zn`y4_#Ss*nk3{a?@)NsDYmo=Cq~Kz5AY0EnSMbop$S(D}9?1`tTW@ zkiT^K*&gn-$m2e+&;(=5W>9LBl2S)&2mJyO6DSc9)(ex>hJdd~qix?UxkSw0NCH!9`2Tdc zdCBvQnL)bG>tPjvU1=Y52?@;3D2CxSpM_D$hw#!L_^dEqu*Jsu$7pvZ<_n0vmW?D~ z_HGF0*z2cFg2Q)t^w=3uyp?aoDn9Oi(R-*qEI@_&sq9RV?7oAV58#lB<-8sRgc<3( zzUYUNaXSskzDDLW#c0)1?IYvi9wo)4fpyAv-Zckcn$v^btXtd+zw$lgfo(*^t&7uL zSkKw}u}y{z8b3*b^?R|w)I~aAuLAw6o~^u>vV)4-aaDphq_h)LG@e#*)nqL$B=AL8 zviXlO&OoVjSICMQHhmn*LNv`Hc7ql*H1W`?P?b~;PzBVvp1{_S)Cd~@B-Nt0P|4a z+U-ffZ^w8yvbR&`2bpr2@;&o&mD2DFZ)^I)KD%Pp)^kqDSGc)m+MRxQZn6>0lK08WSH!i;;#9ED6JBmZ|)8CjKglr(=D&txBE2l zccdJ)hC5Pi$GO{Zktm@R#y9N5{94N*U)S!knKWktS@qC|8C{JmHAnLV1HJ2aPl+6| z*j@MVk3$c6VQaUQCs5&_4N!L!N|Mdx6k-dQEk#50sHx_Ccx{36ZMVm8zP@>$U0$DX zK0#mW`#yfk7N6_+7-b^3D6}P_3Ig`q)+5xxR@{RINvaHi%Aj;Nhhp1pY{kb!P*Oi0 z4z*HT!!=Yo{62rRc;gzgp1{Svkj5{Rdt0fso2Ajj)Xcy=NzPjJkSU4&3Ug<}<(W3)Yu|(%FB;Kex@sI@3y}V2icMt}O;Z5U^gh8oeDL zj3?G2+Tqa}0HF&mXRELB*&cm~0v~$^q_CH@>XV?+-J(HNwVvihTX-t3gBqFnSISca zsj#s@(i_W21LDMDG-|iLQ$FB@yQhDVCf803LJkXS+58xExEHQ`zs4iFTRz>}$awKvIwHJ1HjhK~ZT-)z@@j~sByNR!w zEuZR$!w?odC7sqq{`B%|6;Q95DT z{kc5>(*CVSRbL#vmL0m^MW9S)?Yuc!q3)ESzldQve@2VaGJ1HF&1Xmx2AE=z=!wPV z3`??Ni-mb}<~Ev6Le5XgjO41slnpN7pR^9uZ_AY%AE}=vzn;9BXvVc8d%{d}7mRT; zZe6npMYUe!WFBKB;lt#-H@aI8B1B}1v~A;taq_3wYa{IHSM9I9ju_|LjSNL5TGfi% z*~bLM$u1wfJnw{T#z9KA?l;KIgz5EYX93!LC~yJ@76e*!#z2H-laBU%<>YzXKwb5W zW~c8BLClE$i+0z$%5$KBZ_g83fX@JKQ3Vp-aLA6SHsC@oxf82KZRFofI9_$_Ha%2CJ&3B2BbJkZ26>bW?fJH4}tGRFcLM0pljmH_zMGvP&_K+t2ss_rGX=>@09>I!f>2h>aNPdTOlI z8|D7ij_+h%P}yO8!;k0iID-4)uv9yno0UfJA;4$Cq#d15lx|$TTM2X(UNwrOSLU(q z9~?Pt@2V{R^oOlap2Usit-G|7s7dt0P!c&SKI^qwA(l)ONNqwz)^#z6?@rgE?TBXxus?=vr=`yI zQP44C%8>WClz>{OZ8LVKPrV)mv2Di86TO{k6i}Vgn(MMl<@2{g8nHJMVcHwIH;#@p zE;XDm$xDYN-PQbT+mu3}`rFPq1^e#qVV)mwK62sc8%VfiJCD3m1OC zXFRn51jjP6AE%Z$x2oD`;qH?v)aQH^=lRFc985$Rl$RTFg%(vgp}rmS2PTtfQPGn> zAnM>9YCT3CxS6uNcwnGI_nF|uWvB>D@Q&bz$O2t&}QNkIJ~b-sNh zJC$)_OnO^$uf2|Zd3)@5vWBdU-c1f`URpO48%+l;Y))PYC@JEmAlQbvY`H6}2iPBl z-dM;G0%rU}kBtoMB-S5ZY|VCC%k4pWz=z@X&?u1L8r106Rm&aiub9f%`we@ks2DYc z+WYe6FP(-&t2D%gUO(Pd(0M>q>bji}2h9-&DX7N~+||Rgw&<&p1sv_5!eZ#oMAf~C zZgD8dCS|0TZgKQOueo+I@x5;R9lK&OPh>`w82{s;p9IQ2fU;r7r2wsd9}$CH--i3m z$Y%lp?G5XrL7Dk_>KJY>>m_zP1HdFxY1I?VhJCC*>NRN$CnzFRzF{eoS_iVlV7*3q)S1aREn zFn3zn!mkIlMtx0`)V1{P9Qtf=LqF*8x~5^&mg_t|g+8`m&jk;%+mI_4DhW(krqM6h zdo66s8DtrbC8~-BIZxzHPO)`33+@?F2Wj3!94WK!iHe78;I}LU*FH{*Q&=9e5QSBCWR8pL^ zmg66d`8r8w>tMU&V_kJVJ$S(tx;l%cUIcj&P*Pb@Jx6$fxz%*kls-`IJwf32J~YaD zCFNU{a{EhO*T?kyfb(y5WmHAHts)yLa873ZS4L~sn^~=IO{KGhDa+deo4Hg?7a65nC=gVSiZgdB=*iQVC79pBL8}#3kTVzYX>)4)xV=|8!X}Ph3(2p1eMCbJB(+X_8M`Y z`v%}D1`;5JFLexS{AC3#3I%;o3_m9Kp(nyP7%TFj`4nPNcARsp_;&~GH>=h^`wJ$| zc=~tAvl~4x&Df7wp6H%;zXj|C-MRWKX?=AHj{B!h!)|ImfzqX<+8{AwrQOjGHN$(& z+wplZE`x7B|m9eaLrjY7{7mXL3w2b8df7(LSl za;!*#2O*Y3J!|=ZEkLLq%&Y0wcgu!wtyYgJEUWZRt z1+;Qxf0QUm$ghZxo3@|@0g?>3b?2#!7R2^dRE55x$$-;|Hs94pG##Nm<{7$Rbaia;!s^Poj;ptOtZngguIr>C8Y_h3Q6gV z;!mRXnX2Wja`O-O0Qt-%-0n@m91w;t+yAT~tGk#>3usIEdYK8qk37mtlt4d^7A(AW1OdRvSO8m; zr=pt8;W3iBZE!(MYRi}yEtaO8kdT3iwJ7d5yGHVgLcZ2s&3h75G*up}uq-3N zz3?S`zSEaW_&l4B#yEm0pck{^)I%i3Sv!z|-r~;tsb7|d%x-Y;s+N?#bqNe;EeLoJ z87^U0c*M7cBNhgfb@WRn7+v8`RyDFj# z6^w_Pi%V%4i@*edeJRzK0(V$)XVD{Efm( z`fp64PBlhK;64QvjFtX^v1M|p?d(VrjsUqZ-G9M8fO4oA2Cx`(O8pt**vnc1I z+6Az+PuTC%*4k0`WF(TvDH+e47sAq_Dcr;(VLLFW@wF)J4E57}>Z`K?wl;&S0vAif+|jQ) zR5V72qR&TbEj2RF%$?hzNBGT>{dR5R558T(Hz9{KCvMHnGE~Ca8dUr01$-&+SVZ|B zX;W42#%%}Y=BN980$nqC6Dr9MM_BoLCQoHgUT{046sSF)Rc6`T{opq6=y4OKZHO4s zj>}LmnXns!B-WbT^9Zavc6ve6P3O5=+>g<^{eJ|1n9TnXZZ27z_#Rp${AJB@|GKa$ z&EG-4d11N(Z7`9o9wG$|Q}YF+Yye8(1j9-L!rIj9*kmg9Rw@UEZ*+0lK|M5EigShwp2-3Bi)@#ZVsZY$Ak#5#>}y?2cdBS!LzZe|Xs@Ws zvc990BVWs1jem1w)7_};*zspsf+4_++P3zSP~L#|Ex_nf0^i+x8#hA#u3U5qJzq(D zOQwhfxBK$>N->T5!4#gK~ zS39_>q_tk0UG+xHZ_4+{S2Otz3uSh@Am#mv1Rnu#24 zn1cpJ?Pw({NZ}H6yCH_hN6GUz)e;SK6_NBe$BKOayO4{B=8j zdrxlNzBL#5+%v1fDCCT#aLD;2dr#LVKm9RlcB#b1dI4U})7}xTBFbVHmtL20-rdEC z5@Bu!SIa%bnhI#m$y!~g)8&@KC~|xJDn8zTFLnO&k($9uM~sWuwtnO@5gS|KnN-0e z$KPgLw=`TKF#)X)j>S(vV5#j;H)uu>fF<^a0b%pGj7H|gYk)K| z#@X03_>uk7Pz`DX{S*{U#(`Xc?qDDs{xqOF62+s9;)h=OV|@UV+U+L;BXXwOdiHn% zlE+5U&Hx#dimqBH;@@1nkR~z;QUu{gY&7Z(s)^-&nwpUS=q>T#Scwp`iGFJGSeY*$ z6m8zGt?G2f>QYg?;3e%mroV~nWzkgcd4-8es(TZD1U`Xhis-dxiLPeB)SF6_9iTnP zd-@uI{-r}+x1-WuNgJ2SKmO_K`sgC@RPX+n&RwSl525`f8Mc2}&cGia`(r!rHr_qb zZAufEj>x0Inbv7|`o0qH63GADXS9zWyKC#`gn4{+)Rm`dm#+t1F1{P?Y3Dwb3jDb7 zWMH|dfrYs?)dv8xivo~oJJ=Pr9L5|tMKpOUn$5FU-ZJ~*K5U2+>MFB7c|Q}f#``Od zNFLepGGWid>P|YYc`+Ixf^>&NO4Gn75o)EjU!+A7L4&lxF{!$0noM%>&xh^ga<}|_ zS=ZH7Oa0_(+_vqJ)%mG$V5p58#}EVPpfA9r8_xu(bfzjp6@$3Y%hW8e1Yl!CJ7H(Y z+1J!ob_rUnX`o&oj-$?M`V^n=cD!cgMog(!CYQ^Vu<4JB=lSKi=%s6B)NH3L8dH?Xbhs zbS|jGa~v0!dH5Z5Eq1ZuW#!A_d8Y0wui%Ol`|QLM^s3&Rg~wx8Dqf?L4mWYF|JHT? zOteY+{y@t4!H0{5ts~ZE8xLoJ+-|AMf)v)~a;d%W?KsGSE$Kztp~f^V5I6xyT+g4b zElWCw*6mt)p`mgp>zkhV=n`7NeQ^_c-~lehkFbx3%EdMoKe_vE*dEl(*g=|7M!={P zj?Y{2_BSnnXO)ZfQ+0_E6gi~BzkN>Db=-DPRJdTjfqfD3(8S>mXEo3??}Eth*y9af zVc+Xau;1z~X)`S$PWDMBDRzA}xSm_FK9U8@2tVX(5>_4svR-$Qlg2%S*$)U7%$7vu zW&rj-{Ks_z6;Lu@yDqt6WgM0ha`@lGD{-)Zd}}(4oRUFsVCOP0z>%^@S)E&*Kv2)Z z*G;1vQ4B?AkTU3Vdw1tp7HGyd*S&opFi1@*%MA2z`Q(K?nnexNcXnrr zx|`4;r`%t#pM4JaPnK_3%76oZ$J6*Oup`AkkI|^rCSZj5m8cAY8(o`$-*&#i(ijwd z|AL))(SiR z3d}o+7xWgkMCY{@V;pUIN-ATom;}3&zpbl^<1e^i z8v6SEw3jBwT?=C>H=9otfB~O_zEer#@i^(3@9U*PB&$^NVvJ9KXTsaSRKMICZqm<) zCNuDi!bvTh=AMML-66p%?!)4MjSU;2gOtIN9nB{W54OtN zSi-BcI{WhXz5F4q^}YWj@~UGS*VUnqdll}LD~irnuFIEV7R{uW@B`j@v4 zxCJn5Jt%GFV|FJ|x&gH?_7NVCTg@mE|6O(~!~h;({n=JzsyMr2Fq*J3jCSsJ2KGMJ z_%GNKOvqM{p9v%{vUD5=%Lm6Xgo*AiZ1G_g?9O!H>7#Gjr#+Lr6vzG4UWu}uiE zo4fNqJ{LRq1i1mj&qn~~n3{A8_J?`Gh=FXS;0nt{ELslhW&zJirAv-S)drK zsbB_#SDXPwc)w*d-=8W7{?)&cCBWw3X66#d)j_TWj{W&&>|JKP3!As;7i>Qj;s=U* zmPp$0sm8nG8)?|~tRiOj7vSkO<8qkcar;aCFXzPVhy6!SJO?WhJ2`>$Ml%jnp*Es0 z*WPW^bJInC!IB=ZN(ghWhOsje8IY30?g9zlDHu$kUaYeOn~VUP`~fnZiykAqIJ_le=>R}*Y+S-MVFvJO{`Od4 zi>L^GF;>ar}Pl z3I}R*TOo+OkK#5aN$&?~$Z`0(U;uh!2@LJH=o*uQ4bUXY%LbP5$Oy|XY?F5)R;ZU* zJAS8BfA>AC17LOhi*CaJV(LF%QPe$fzHvaQW))olEeR3E>tH6AzBm1oOyT%fuYYs% z?yUY!4Q4pSM@{!$0ID=C>mGu7^P~Z2sOd!-CHqB!9<>%h4H66qI=&t|K5?p^1ReP5 zOyUnvXC3vfq$v(7Z`(@ecwlj4q{369;wD<|~%s?^qm*4gWZN>axbW+Fa3lEm0Pe zgG~sZuyiX_YAvA!E8WQe+;#K{R4j7mRY0^yvz}?|Bl4G?(br0o#>YDvvfqauM3ifG zcuO6rQKH||zjyyGta2mrFQkV5bDaNS)&28vj>w|kP}n@qzM&0bKad*%gWeQU8Qc&B z3S66-cdnDD7m4%K>f@W5H+#PkM zkPWE=$hb=Or)cTG`AgWT>SEiKK-8x!rce%Cna$V9IPymzZ5zmzy&Nb*^|*!EQuM&Z zEyPA4A8nwcNlW{2P~Li$9>$-|+jrSO4zfkjQd=$KNg}}5%hATcf3WxW7fV_8p>1>% z^&YFL%ul_2to?|t{V~Z`wQdpC9NnxA?Tx-?u!Ctxtt#*YO*D?;BiV=<+oObtdeOp} z>lS1ZuhXX_6SvBQ%l4z4iIjj?KgHxL_I4(P_i*|9@eu}J*MWP*=0%NL7*QfWy&l^O zg=g+;pk0L)7905sfg<5~H&9bvGC1li&pi@cYy9>g|2@Axf$wr=`20VsDVjPA+hok% z&O8V86W|p{iM+*F_xifN63u*PV!_O`RWJ1*Cgp{-86hFkUh09zR5-a&JxdTtQj59Y)vuL_f!|Jf*bmrEX;bGk)CgXQz44z|Ff zkG97W-uP+bp_4gv^%ic=tM4r+UR3v~Dmh@ZJJH24d~#2tVjS%@!-cMx#1?TUemiX` z4i$~(;fa>Q5ZWr#WPy00Pk~l%GHdB(Zhj4@P%q;>shtVgA&w8-cJOJs$4lD;{9HbN zo4zXaAlbdIC7a|+) zU;R32syU}8pAvBGYYpOH_pk$U9(8469!^dv$I|#4QwW?DmQiA3QZ#(HA9~)UAHB+d zOvhXY$2iPpe-BnTCCUH9#_ma5$a`iLUYvz9;8kpfhl^oFLo_Li_cw5@CAa3q#$?LA zG|2wAZAjHJ3b1^6$tXBb1b4f!dbrQ?RP>@<%F^dxur(zein^W3KSwrxEF_nB6I3$` zrLh+aK0XO_y0h}-_E;xv2zviOQmMD?>Z6Crd(F5Cxx%=vdsZ%F+WpCl{lDyd2CL8O zGMqd~Z#sYU&dLbV+A8yA2CIUEz0!_75gPVH2L=oLv5!2JroSx>)3#IZa#Hn{cU}#S zK%l(FjCiAmX9kIq*hpq5#TR8m+jg&zh=>kRdg-mvzBRF~!0D@mYgLqSOw83s$(OGv#X+hUI@=Jkr_~PI{8;1V{BajG()K@m$<(t6F zYe4*6s_tPu9UKDs-nmA95jrr(Ch>y)k1pejLF}UD`lj9-T?AV!4Yn8`qx>CN#(;kyWY>tWQEP^wu0$;K36;b8cyd?A#;4&dx z13}0021P(|wpF4UR@ZScXV+T@M8ta*l1N$?Zf9EaDNkns>D+X(f*{DWr4~f$n^QX} z)5P-=v(Jh{Gzua7smiK10}DCTk0(dr`@Y+keD~OsW^Dd4`IxiV!Ry9m(hJ>)oI2yID1t^uDU> zY|qJ=1rf;&gAa7+)Bk8|Oy+uIF15`}09eQYkplf*3=DleTH$?ly4ah$GUZIQ3%rXVXHnZ25j|M(?MahP4f8 zo*y=pLW_p@m=>)2e+%^$kjkyvkd#+nu&d$&vun2r+7r_uBPcR%G7Qk%GGiy$N@4EP zpvwh~Vcfy+2^$%KKLBS-d;%Mx!bH4u8e!^CGfSv-EjBtqn)-)EJ4?N)m+Vz@zIJkU z?iPGjUx&%}DYsBsT3;NACZi(s{b@Nz8hAiA!X&cg$nFr6vicg@d#W!x`trlpS0@9N z>)ts4$l0jG+~cW}{0ePWhd6dBh_d$NG^jBAms2M)suRLEhuOo3?eh)dAx5;)5{41# zo7dRZ{tDk6-rx4Eud2g`Jyp?nFn5WURZCT+GfLC657xdxBUMAEs78&NAqOCJGMxYG zrT9*qz>gG%3)P&5GoIg*Q}5PK?l!3G|0^H+|F|x{aa|HY9^!8rlU_E6i_Db#o1_H@ zcjBD)4>Y7)zj+<7j&#VLoW(i{#nmI{44Mf+;~k@lIRtR9^G>ltCV>3q|ND_wG-C)k zt|LJYmf=l6m;AMt$fZGW8chJ9rHeOOkYaPggBYUbst=Ny`-310{E|P0fTaWbkDkhn*ej^@ z!`&mJ><=ZW?CeYleAr*jz4D^6>t8ocZ$=HzF9CdeJ3IpjOw=H&K@8*a3wE|a4ll(( zlrf7&!G;x5gMm>1GKe?&fE51!*n11GDA#sv7#ASYC?%i_1|kB|AvGcbA_@v3k|Q7u zj+B7JC@7665(3g7DkY87&?zA)UD7o}3ix$3?)=I@Ecl zbm3r4u0lamzS@Txz8MWHcYCNEN>USqIhZd_z#ms~xTaSNq}!CnHTsHY#964L#iYZA zxhp10%PyALJi@RgJCzJK9S_dP6Pap&j=zQNt0W_KNXKB;8=yGC_pfb6dCE1drJiAxUn)qCDAmJkR9+(RMEl>=OA>HZy;phad@d~mQO8*dvQ7;F2 z`0LgOm=y8mTA3i4Tps4j{r0-lNtGoU3}_}YwR z{9zntE-V>H%7^XEgdThhc(C}IQ{dnCu2FJe)WY^g?TH*g9K#kq1B6(QrwMN-pl(8# z+&%bF#l$!dRU;RS=^Rv=5cPQ0_FWjL(@YHSs3~ceZ0AD^A$P8*BdUtM_&O1G9Rpp9 zRfA`JCLv6XQv!-h(q6?Gt*N&RENZ1cBSdESY@$LBMj87<9M8NRJe)^t_F(Cg1ysVE zGNJxPoG7HPtg^YY`%zM(1pT~QkG2mRT(z>C_HWl|CPBDmthrziL3>6|kk>~QV)|7L zVDuP1K$>PuNHvd%z?&h-_s$e)L(rG76jhLXXstfTf=c(!L|VWobzP0U4qCH@;kD6T z(fr;=uU$=VqcMVfh>m`m;@W)`?s6>rLm^9(8h_Zk1P1i%!;RQolFvvG@FZ%_lz{rg zc^KRFW@tYCm?S+REtL>dUwb+K(+S%zy3Kc5sc&d#ed87xVsUY%mmG)%lWbPpA+pmZ#6ALNW@02;PT zjdH9(7I20D%vKGJe(uGEXRRpBMJZ=*!I@_tX7S4k8owPdv|2jMVIHO)Dhl%Zx&~T@UME@6G{e1eU#wBTnWmCDVsA9KpZqr>b`KSt zj)w~hQcoYK(`R%B%ZO87Tyu55f~J2o{oxay(pe%lV}9^iAoaBB4I+lktC=)4P-lgY z)LUTyw8{W2i40{uczlYya@#^EHVUF{_t z&65=unL|^Y88|p`jFXn&ji=-+oD7ky_u?vvY1t*Y5u}P5eI=MP+EPPb05g2nam2ow z%uKEMWZ=FqaW)HWxyDEGa&s_-$}_GB)kSKabRQ=8XhpRuo=!6OV+Ot3?b1RX$%Gdc z)^I)+IQ-kF{Gw-3XsxK5J&D z!6)9D68zYd$3}D;ME?2R^Xde;y@Hn*VuBG|1|0*P7={!;2@J3h2=?Lv0&kAY(&Jlz z_P^UDS)cb@LPL8Wz}ksl5Zo}-3jH92=r7n1ia+iQC5o!xWqdHem6J@32G+rWI55G2 z`!_R`Ad9_-?TtzdWT8TE7U2L5%fY%(ECbc&BI}e2@t`#DJhFlMr`0$`kfK43{RChO z^>h#bWV6$o9J;xH#P7h|={Jp{){!3|%{o802{?mpoR9>7MQ=O^=BVM(0@bC(3D%!f zb~a%|Pr(YmogB68vEk4!89%rUIOC74KrFOOAw0<0C6SLBttIHB;a68w*1$Ua$NPwZ zsDG#>VuuUK4n+k3oekTD&?~r3tN@cTL2cETn9)Ua**dWez|KG3=0}Zv8X$4NUhhcT z0uDy)d4vq^IX>c#H-UWL{II?(CPWT+#@R01XT-Y=WE`Q1cp3S9cZUA4@pBe$2L9H; z|L^v%9N~Sw-1fa)CCVXY%W=vd z3J08fwgb@h4@8`_Pi{MnY;+QUf7#a$MM0pKrvqR}TQOLqRPbWZhtN4Ulnas04v8%V zL9husQGjF$`hk&%oP^HycwxNWA!-#tRF7W*1!8;#sBD0dfE`i=*^tEoVN4-0hBx%m z1_SZu(^R3yAhKy~izHD~#2!lfP0<8x%49KbK1Hc5-BP1i2-lh{%I3YQt{;m(=N$J@; zV_hN&H{cucLB1vN*=7L|l+{Y7i_>svI|;6zl$gK4{Od0C!Ta zzOVnm&2%_?f4Yr5+=7j_%-)6vDIjH z#ngFD-kwlzIG)=yRbOA}o~;Yw)iVP-Jg@g;ShU`xkLsd`UK@kT{&jAcy?x8L@&+&lSuxI7Kh*jp zq7DMsvdXn4qSZ+X355))p4SoJfM5E4% z6l`4alb6bRgCt=x9h)!%;wbJqg5ZZg_`UzI&l4=?WG4XdZ-WU0#=>h5J>u$Bc`FBq zvGK=LRWIjF481{*I5Zp;AFf zB311a6#m2ujJ58Z0Gn4hp7;2S972)tI&wVINCJb^nE>$+*qA)|IyqXeq}m99sBR6bS-A}t3tczom; zv51M)z;eT^ISd38@pXAypSk$LZA}%kShAF5d+2Iry%tN~{ZGrmXA%VM$)jIx+#mt& zw|(D6*8E5bOm+S(xT+Gk>Af!_TKEy>tGH8~VAOOQR@kUHO8a$&gYjSv2E}jc_kZ=> z>*k*FxCX;Jf?|{8!1*2CY~Xw!`p2;dE15t%qF366bQ~Vr3QU+pyae$>A3pw9*Z%c4 z=1nM`A(W_;Gss75i9sv~PwZ@)R08$T`yj}QEW{}x2DCH?%Cb-xN5d}3iqI|zJ3iI3 z1E`^ELJ3$1F@kZG{d6)?01AUjLT#n?geBx@NxM8V7K{k>%2V$Wj5&SQvJiun5E+2Q zOpTU%@S#G1&8ngD*)zn;@A-|Q{nY*I7SrV_>f0eI^LsU5TJ=8$|&ca-dX{xLJ2=dS|s%SCxwI47@Gg&vXO(9I*hY!pOZ zK?a@qo@=R;g$J*DGTqksXit+93=CIeK*6|AP{N}-!>enoQA&(CsStus2c8Dc~(}#ii68vf3Xe08H)k=U#|Y%r|g=9IqvW-LoEfpK~?7< z@Op`0m=jOA>enL3&&nP}O#y-w8L?gui?@T;55n2sb`9#L2FjheHR-Caar+JTy~*=x zr-W}JtvUv#ruvrw-E0nCjlM>Z1~15YwtMq!VVj_Kk6^iii*fqGy|JP5kq&x|$Iw$Xgb z^uM%p|9wtqr7TcN+0y!ma#;98>&RXGg5Gk7vwZaaD1==2!Ha04 z?V`RaczI$ zchdJ;*xmzJab)2jmh={}Z47fo_8b6w${y^f0A=;pV91$O?8$U|aw7&z>OA9#4ubel zUqP|x8&66lrkgXy|1ON}yZsc?7C%@nO#i4tg<9>bMH*#c_K!Xz&?x zRUjn1oa1Y-^GJ>6BQ%jjo#j>>KV;{PG|&*7j@)#50;N}tOEFZNt@XAICE8yQhESvvy-k<2aacJn?LUxCTi9+>!O-U4(FVqBiCnkk)3Q9qSgg77Udl@a{F0SXXaS*5yLn znRw`zqy@;1KQ<7l%(vcH-?@z_%2|4YSV-R6>l%nu%&2LH;M6u$I=@(dzES=etUc55 zRo{iIkX*k$GE#4B!@u5oMCgLA>dEKcsn+||4!M%h&3u48h7|zB)sll&d9lh!66F`N zTo9Cy3u{ZXVc7}4ueD73rKPis?1dGD&FyiYrZzo5@RH_Bz4wSoV*S>3j zecQT!ob8{9e_Y_brk)VVs z9Eiw^`tZTG*T~kQMUn69ws7ckhvBE^m^)yfJJQCk+Bq^sZn3P1Y1SW)a2-*ndgeyP zpulXOL8;mxAmJau+i*rRNOfsRNr_4OUsdn_P1W~_yx_%?KyKxEs5R|rA(DGq2yb@r zQcBl{oB;Id-cNXSAkxM=z_fT>2G1w(Es8WF@>OQH^S|Uv!5Deww@+aV5K_|ko>Rvn#3 zVY&C@@QU_nk0#jk{RR#i`PILW>=G0UD#s+tWv1!VMa7;IpvO#NO(&s)_u)Q~@m%Ey z|9e9QBXQ?8^s(b%GH{+{j^cm#<{e%@OnzWaN{RHkjb!iHH zdExz>i0PFIPZ3)6J32ucFRnAho?aQ2wkvjfoLc%YnoFl`tS}vrZd+7AP`VlqOU*x^ z)v99DlO_bIupO#>S=pN}k4IfDuRzdM#Fe+`3pa~29t+VYuaOW9MALJEG?Vv)Aff>A zWB(x}UQ8o^C~7UqZs8YF1`t(Gq~LzHHHTR1P=?&Wvj%Bp3#|8QFc|6+^v_0A8H}5zVlY(> zd}}z&6Kvyz#=yEVp+cVB73c180sG0_*?m0Z*fOVn2j?IRYgBtRudus^S5n~UNI6R6 zlt;?CM6XQ7hR!(8lT8gW4{DTAP`29aqMovkso5JfBqG}WXz9tUvP#2SvlS%H;os=# zN(d`*LU5;{5>sEd@~74#@7PXW5NfGHDX=w(ud(78n_OLhxl}Z}{3LabR4Mnp28SiY zG`}1FCg}zz!zULv``7zBhw=+d&*kJ~FCRx1Mp8~bb>&e!^1LZ2Oz8yqC0PcQ!=M&F zCGe65GeK%r>DB z9Dgi+RKwRu8f!lxAkU{uz9D}Sr9FcbuZx~Y38U5gsGQ__rs+$(gR~BapsnVHPP0Js zT?jAeK|o6OXyx<&PL^f~d|ZHB*s~~rS;4et4E_4qhwjHS2;WM@zG#$Z z=`6fTKPg^W_C{~a`nrO6#G_AzFUflX>zMsp=3+ZIUebK&?|*Qr&}#B3d-wJ3mD?5X zkx$OrWgokT?qGa#$Jw}AGnGN*nsqPpr<(<4>I|3L<=q#(20fP=;?5~Myl~$}R0E^( zL!0+^a+|)T1Hk2A9eavcx{ciP+wwilZrlURfkSL60e2V}jT^5oPi1T!5kwuELxP|^ z4kB6$udx>#P<-y&%h4MUUJ=<`gX)OX=*_;kWNVkc{z^z#%jhkEfiA21>DZUyk6M>C zKOY%qG)$ zVf&=Bb;9yp1~A3zg54`}w(@3FmnD2kZ;l{DBHINwaUC|O_$d1+g2b#coYp#Cq|3?h z!HT<_Q5RnKVis?(j6rTl&&5fpvHRCTV`=B>h@UEXazSZ3D3kRAn|gtW5nO>ogU}08 z@5QA$7S4u}cYJzM;_5jCNafPad{4XXWMyV_dzzrx-M3@v0jWhA7k7$)C3yeUzocXQ zFY1w#P=6~Vh%ZMg5}RQ@d;axzs~!ny_MB3odr3EWc+EXgj0B?iT?PHp>}X}e*(jW> z7b1H7C3dvD5*8*KG+FKrwM7hoG^*Z9JoaoWTdZK+vV->m}bpWxsy^*5CXC-M+s|`uChsNyPWFr7-P7oZ{SNFknQ% zEgt@v50nqMFSZ4Vz_!Ts-US%(+O{9z0UORtQK2 zicH8!V8!N=0x6+e$vazIlLJr(pe1V08(qfr$6=p<)fD`42Im3nUtq&)8zp_gc|~kU zQQ-XXAfltDp>eBYXU?^;p{a)059}p3$c83ZjzFhzd)C4jJ?@8EEW6-%K&QD7kPGTy zZ@!WF?OhU&2U6s?L|}V7Ui#7da{YHA>OWHVzE}T#-u_<{CqI2Bsear3AqPX!Kj0avdWyfWorjp&tO)N>m1*9_Xg7WX~y(=Qy3dI1567+yO$6 zImS$=WOn7-Q+xPwwAbV^J_<4-@XWE39fYtP@;#m3c`?Car~iXb#G9POw^JtltGWP0 zEFjZ|+Jp{BO%bg@m;y0r^khy!#)RNd=%jfpN^2@%sch2DXb4u;UCAe@VheemXoGT}kVeWqX>D>2W77vwj_LBJp6^~V)>f1SNK|NP5QEXz< z-cZ&n^Bz_s-NLu7gK_Pa=klr^W5zQg(6g7Zv6*Ao+B)f?7pd6fu_>buIrE}M!_RWBQ z8c1;J*&7mR9_cterDZ_O?*brcGikklAb!7z3Hc#f z?|I_)y!Le!{2~48#i2w>3!G$z2Gx5|6sSt!9&juMnEedvf4Xr4GI)P%9Zf;NGa;;o z5TKIm7V75AosA#uzee_d*KUgGgdbp=0PQfU@q)U32}tI`0=);@h{rb@Acl;0N#b)6 zV;7M3YLLS}`^tn71vfSk(cH|C-+m1(0?LV;$u3Fd6DNb2+<)^EEA^r4*9k?C?L}6? z#%Y`_biGdyH+TKs-{|-sF80$JzrVhxHV{`_&M#^q1*)2dA%Rv+K#`387YujA^t^ zUl1u-ac7P{gqkBCVo8r+8P#||2vdJ2V7~eRLGs^?(D~m!FIuM&iQQw`X7p_G|(t(vChv zGJ(-cN(J>o8S7|2kuxyZK2X?-I9Tt-4FD~8g8EfWeZF%^5hwBoti($L(w>fs<&7u5 zi-c<8Ij~9T9&oJU1dQEs@_MQ(Ql+48>0%Asadl0uFwX^+e^X<)R=<+b9{ezHv0d*O@vx z3H3DAyyLaLO{64yxKba(i~n-y%49}?wLp?Vj^%YJrJ^zrqn z?4+&oQbgeJMOq=5^lcCaiHAT*NKC$kHGd)!&FX8rDf99+P5W`(Qz0+8Ebdd$?Yl44 zEZ%_lo_)U3H~Ar;Qi0+bi^u7!;GDXy=~ZB5@j8Ts)(u)d)3Y8Fe4NQIXm`>7Q)P2< zfT7C?kyi&JOz6q_b3gsLaD`t(3ikf@utP6mgs|NfXvwL^36$cYenPG`n1K9ZLx-t4 zMD89(CG;T}1EAlPmG{83NlFJt*2!xM?>$Hb!VXHASzElR(0jk-`6xP!ac?;-cr z)m__rQ2CBpXr46-O1(2uv(hB#O0b2jPNq*n4ZwVIc(HJtuGJW84qn@C0!fX{zwx5l z=p672RQBZi>uVelx+*ZYewNiaS)k61FFK(8m{cPD&E&voFM7NUs}d9e!Q$ zXvLGJ=VrJQ${#;Ik@P0r$a!-*k%s=sR{UusiY{6*#A%sS6@BG7hc1=fe^qeF;Zh@;%*G#WxF6Yd|D$~#U_~TH>W&d9t=<* zy9x$%704diKReLzW)XH1P#?cUqHc72MmAs&d5FfbU?fxJF-y)<=vQO3D&Arla4M{| zA?ejF+mpQlD>DxHqlRr_tNiv1GfFooAHE86K#r#%^C6D`>Ac`mD7A;o(c&7YUqU`6 zDQ!{uX_oWUDy@-CJX25kjkfeg=7yYUqd~t4cd691Y5-}Zn!!*lz`)Ra3RV25 zoCDQ}f#-t$g8*Cs*zso7lTemc&v!x88PNTMM)HlH_$^o^S;?0Kwydw8?`}J(A2y(P zG`C+4CxxgH2bI3!hlmVg%Zw8ctX-_&l19J9h$y7+p>n!S#ky( zvemfbIaQBvTCRm&=ZgJeF&PjhXVX+fjWP`9xC9*(L6{)!z_)>M2>ueALr-kEt$U2c zdb&cqTSfAiYgh=8*kxs zvdt~EDGWjJlEQ~MXDTTPPrO9t*^$cxoS|@wj@79uWl7tgl|s=8 z&(Tpw)8hM;Wnw>P3#1(5E()~6tmQ%YC00Ss11X@pheIj-sye6;HB2xfJ3v-g<7P3O zwNOk427y0S46$2V2WSy&30b&}-6c_8mnDo~irdAwLV&`1c_;r9HI4e&SG_iwmo_vl`~a?c70i%R^?J$vr2bI<-pJuA9LJ^PiI z_NuX?4VROHGhnFwnM9ULUzkhC@OQRZVWEFzn^m?ob~5_|->mDap$@&EK~{<8cP-fO^bU(?%%$y07KJ)P%={JRn_{GTZCUti*{i`~6;`$p`Fe5c?4P1Rl!mw(h=N~(X<-rq&Zes{rC6k^RT+{{M>r`muoc)v%HfKll3t`^%QqHxo=mRG3Qe z&&@Cu2V=M2!7P#QjH!PoFP1yx)M~FWJ)AIQv~8p-^mkeqSE){-Q#yFmfZd+S|Cj~~CWG&iVvFvld^6<*bxwkrDSF)93R_JIfI zo9$m+aS~q@%s6MTq9Y2^eSdNuSM+v7e*Q@CMVALI>B)3y0JI1|mf!us!dKH?sk;9Fxcu6vUkzs|vETdmFYBTIv;Ngo zxj-eT^)qxSvNxu_6`|khsDD=xI{S|Z{l7?u%M#oVTX>)oES8bQaAmNq@QcXj1IFvA zl2qf3g+eY8s1k!C@j^CB2_dC7DrE^Ncr*H^1!`^Z>PlKv;Y?woUen23UpGw-o>waN zhi@Wc&o~(H-i>=hI(eB7Bs5x&`R-WMXbgh9`2E2zR9@?aJJTQIw@S3*T zGtn0hMO2&RK;nIyk>G&n_|q4!c?O9iZ>(K-Eie~LaoQhso*d)U=Y#K(7#?4$zB%Si z&$Ms6M`upbR}5K*SIb4~1SIxH)q_Giv;yW&?3}{g8xoveZ;z{lwzAqsb1AS5?UF!b zE=TYjVM&>kbE!qJ6XjivU=ctwzk1LHLQ}9xVX(ky;k%LH<6>j+<)Z9c)n}2TtZp;9Qv51y-H)CE7i7gm z2jhYfUElE@r;rP{%RO9lxg)ymsH=yaPghAlQ`U}Fr$6RDXOo7qSf-q!_Zy=x)S#MY zuP#Cn^JfWpZCS<(za7{({T_>>V$R#53i>FD`%n|PFU}^?-iSC&V zK!PjWy$jzvMD!Q^{;Js>E8`1rS1$cMvt0a~_*tQ^f4HQ?M1J{dNF^`-+p~PV&fb!= z_biHVTeySPJ!4ZduD#7`idy%$epxB@z5)l|eJfM5uL}v-w)l0&SIq%jQ&7p(Nkz*E zxc9!EuA*hk^^0o$^Il1=U!a4ZHvxY83xvCO?log4Co_k;duQ%#Dub8*dKG2h+576; z123yA#r5k#1$=;C-GF<0&vE_SK6~fg(lD_$GyVBgRXY(Oajw13*QVOrlmwfX}X>ZQSOB{~bb4jR8yJbny5Cb_#^=0==cM#R$Nb_GZ8 z-m(#2M8qtw=D$yrsl5A&DeH5EmAtGiXKZ6zY#Yb!)~Ei?==Z*8_g%DNif8p0gg7j_ zT0gMC4Ts@NCfcCH-mMTzFVya?r5Evucw3_<-w?f=ZKkk*W2Mp5m>1QUL*IO#17EnH z#Z>VS{ch#+T0FAwicq(q0Coy}zY<3aM_!|Y2Lg|Lql5uv zH-5Fh4X)oiTmTJX_a5rIHBpf78PZZ1sGDs7n?m)Wvz;598n)NQ&))FjF=b7El|S?> zrr3bGp{(TW4fXv^jU<(e>drCF_%I3YvTNH%Lk#%e1Tw!Wc|d-{eyGX+w9o03lPz3| zuT(VleUd$ILe(O`m~|(x`TFu3*>`^XRWU`;blie)`8O01vm_xVNw+e`3(v(&hUXt& zQf!5eh7iD6b)r%HZs1QR7U=c~tW6iky&WW^e%qaKtj0h+eeKy-a0));2@j zaY`vBQI=D1u&{>h*hkCq#I^VFfw!hPALJXEw3d8XDxIl)aLsMMIUmcZdaBCfMqEM` z2WCtnn0^|XE6NYnm0_1sbQ8N*(wnEP=X{2f3%uTJcH_(YJY|_$VQSc&Kt*-K{(CFh zqf!|JzAXC2SH2j-u|Q_jrpYpdUE@uiV?udpSlmh3uG+N1TjzAI?z}I%w#&y6E*~TP zrc>jjK409L)Mts+)fepz(+M>WW5JdoIXAYh4(DAiW9yrpz1Ping7zTQ)s^E|QZ`?Yhu z8Fg|Vp0QT9WTwtGAGc554Q;vEKoPdszIU!>?tMjwp5<6pLS)vE_` z*^U?8;?9~QGrjsC1)NxwdaGKej+$(SrrIDgY{lzB@J3N`ZF-$T+JWC&`G!6b+`i|2 zgFnqRf?H?fl*;x>N;$e>#FHFrTQT_Aa6mLIZMT?!n@Dmaj`-XzwK5_y%N|a-R>Hz3 z<@SjA*|j$GwcPPDH&KJ9eP|T?LYgF;x;FCOM2T{1+{pZJ_xxuY-lZ%r*D!~*>Fk)P zAQO8XFc5Po*}NstVRmx`2NY6REHmdA7N<6r6UGq4-cz!z?v;7)F}rx=O!-8f+m?Q} z27SWj?x>utbg%T;0tijzGv`d3QBT`S^I!xnXJ!P#;a*aT!>$CnhGe5yQB;aLhi(0= zT%YhoEtHT*Lo+uS-nnni|my;ok`h!Kk|U9`0} zhn@FkL_!boKJ7T(R4PN)G{~fx?|EtDZJy!+JW*B1;5Nx61=RAJQ%@e7zuCVfW;R5g zO*<&Yo7zAYkaPQFyP4isC$^Yd(K zR0q>(s%Xs5y`pq^DLC#V{j}UZSegT9+`GVC^8 zLxGiLo0twM$B^4v^Ecaj&UP%&QD4l2) zXGiafO~FBXLWzW%n;n+(lLf;z`n6-~idlEo&4vNd)#|*83x&&$X$A$}&2~HQ*rq36 z?@XO7t|6Xm?~%JzR6&*(QKOVcIjkP2ynNU~G~sG4w1I71}~J3JQ3HuGda z4C+GF(EReq2IJWPj** z#-o0}_8TpW>wRl>O^+UvZl0|}rSl>E7enKs&-o2$n>3R4<5)D5LnGvpBW0P~-UKxS z-YGhIf0sh>^+kH_57uSXBXn_Z>lIax>B*FgyV*>yB&BYwzpNhNl*vC%Z&t>GR&14j z6Y4>=9o{-=$umS)v!Gc!C6_57rwM|tSu zoPZLA>)C*W#Tai=5Ayy)IqK6nvP zthjnbLn~E&dVgzZ2mPxRIt>;Ly(@Jb+_@vUX)DM8#uGn<20k`xh$g1WGE0?B-L$V+ zIgl$7b!zJINN2QlcbAU8cg~(6e75NMV?H*TXsZyG+CGDPu2q7P#e2c*+jkB#o{V+mWV=Z& zbDUH`tH^BPH2s*?q(kXv`FB=7eeUH?r>@ptIprV6$#8v>^mriKqb{fF%u|OSrB?>0 z;B(y$D5OcvtLKzx;#9UR`&t zYWY=6iDBfLhaubQo0Voao={=~nZpw1WAzr(cu$;X@Rpg^qqv%x{5V>P7i4j7PvM%J z?p<~p)N?z)u2HpL0e#@rNB%o>QpZZK@4g#2#M?Hi{6f(xsi2l-IX+OAiu7{9^?c>> zi?NcV7Qx6XhXk<`1&XDjXKi=*M@}MczNiXoc}$tfGa1#=6;m0~>|e}z!|BsP%frC% z0ye1=VTDhaC0~f?g*=Jyj}(1+G+gVckh@JYs>kSdmKG1o>o@NrFP)#iFmt-);W?_K z$8Q*x@Vu=FC@`OpPh*y57pOS_-}^7!!azxyJ?piF4&OZ#rDSto?<tPu-PS!}QSi{^hLiZdD$DC|*@tV7@Rs&>8JH4atyF7nr-h|q z!gk9h$0M*FN}bVquRo!Ev>Z5N(K|z*k23GiaLuyod>{}Gfs#w1tSGyaTYj3xp4;5_ zj7O)Qx`1Fgy?$iKqA(-l$jN#eJJPUwC7RU8(=(?k6z<=(DL5iU$J^?lpOS{$8Sb+@ z_iUKOz$T-^j+f(T)A3^GlqVUvLuVkWepixS@HI1G2->!fjIw4*dUOYC%9u6dV;_gI za?2K4nok_^OL*CIPn||EYT|_IvzNJ}=3-Q7EVtmdBs^~OO?T=&^IJo@ubn3HRE0w=D`$D6tD+R+kx)N*QVwF<&mSp4O}9 z*E!3-%M|IDVU|&_P!zF$GjZ)rJo(16m9$t_-F!he++-syoQTe;gkN0u+1*uHUl+`@ zlIN^;9Kx`W4K0%i-c;RpO*a_9Qak#ysS`3z+p>Dce=^+hK8GgmgFj0=^JM9@b8K7? zQf#(NuUqnLRKdaFCoQX%UrZFVGso+C`4R(TQX);N!A9Zr{cMx652*ZS_8ro?b~oCR zTkFbGYnAEia$=YAirbt{ySc3^$i0!JuwqLUr^X)VHVW{fN1o{}T{;bP+6#%3;fltT1E(~` zwAMeS-TKVRCv`5y`2}09s&5G&INh^~(Hw$ZWYcKZPua}v2aJ`c z$RqqVZ`7UH>Wtkyq~E}8(Jv0^^Jx(k($5v*y@_H*|Mcjbq7Z9FYFWb6@rty$Hkopt zFptbJz4`FxWitfNu7MJ~)~%J;gIVZ^g;9IX1qJZFU#_iBC&r)*MO|2f0%Ahem`E-3 zr{>NaJ-logx(A;sZmo^K&-id^F7DpZ!m?N#dIolON;7ezQEo<67lmy&VYnO_C z|IxacaiT%;{=T~3%{Je@-=;4->%e8J~r=jRqFP~gD-5`H+(7}BXv${{RNPXD$M0fjpV)|~+93cX2 zxo*CWI3Ja9Z4Z5LbaF5=w)+i-_zF4f;SgfN;=j8fME?j#{eq(akAbs^liNKruAig5 zsRVVb?l@U;Nt^?IrAua37M4z2;$q@|*2nY}I{FR%_yubDo5$<@bnK`6fBd%pcld1y z_#YHk`7=yCKOa+h1(b{G@cKkNO^AZtIVxCZ#Ds3~kSMK0H~InU>belPsmQ#v=S&I> ztK&g;rlJKF*85|}8Oj_R_*xNn5{5YHIJv+Td|dS>I=m5Y^XhDxFPlS{25tFs-kaMf%Iw*xSv->sIJ#1B z059Judlbz$ITo@arj0(@{(Rg{dUSK6LVUQ9xwo#LmEn94AD@5cr8}OF-yQTmFaJ2X zlAMr@9DlDPZBdOFSZqunFBhLg9-fCV%Jb-9we$;vt`r7c%fDeYRrYDxdu?)magW}u z7B2WR4mY(+4;x^g%gw-(3+JP}iYK77^gc*-aae%-nNKSo7e@DYFNu99jAK;?<-!^k z))c+?Q&gU1S4F9}m3Sn2lTdUs>C{3CSMf}P0{sE5J=#AMxOyV!OB7PI&yv#sHBHV$3$TLCOs7a30S!tO0mIyE~YSL zKE_%#JzAik>sU9wIH?SC*u8?mv`PZ@MU44;OrBq#(Is=7{S^$#cBwXEcrWZ ztww3D2anri#UUALD2x8kfk8*>n-&o#FMUy^krb{ytr+);on+^DAhvii3eUp%Dn9LXM}kI!?qX zw?hYF$FmD3Rw+Dm4(XmJ-cQM)j5r%P{jBNvXEvv);|+`J>e@a|5DgDULZSz395C^! zR6+ct@8)3O`(1}>;`w_Dv!F}wkwbU+k@@m1M4Mv~5}wI-5B5mxlDw4I59no*D|NBC zI8AKmLR_j zlG$b1C_0h8%rcYyNhu;gEWz)ATu!jK9G@OquJE1GTWfZ^7rJ^zANRB08n<{>$B|vL zTo5LCu+2mC9kzQ)vQc9QhAHT>g<5%jf$6%IsRK#T0k9x^R!g z8pwLNH#M?SJ~1IZO-ceuEYO*K>H|9e1~w@Zl&nKotor-ZvL8h@LI+uIb<46Q>5bO% z>s^$7@}>LTf*X#tcgO z50y4=nKtX0>-~5J7Q$j)iG9y}avSWEV)vFysDXWx@hsM;_Ku~e6tqof9_SVG@JYPlGSy`Ey z!X;O{KJh4cVb=qntGlweRo_V9;yUN(6NdzsFTP?B$r1`MlHXX2z?x*Q^V1Axz;FNFhu@j zE~?UBATc1OZ)T-o1|#`l}S!_R0{mE{k4GiRf8U{h(%8!{JiL}hUlP% z2V1qFjG;8Hfu4e@dHS^CEf*G@`WZ(WLZ~U#nN?r9iLeCdm65MzI=3YL}LrECr59Z*29m2AIU$d-VDsA?xnvn&z41n=0F=59uBjpnqS? z0gzhQCjKYXY;6aq`oQ9GeS$;AeT-2LdqTOm0!GVS!^Wi+%~SG-rc0SRlc69iqI$sB z;Grj*l07niwy}eX*n=R)%b-cCrC;{q1twz^+>9Nk3$C<=Wj+liJ?X#DG*=~(C-Uro z_`tP)sVVtgJ@o(nH|CkKf`nz$@v#A!OQ_AU;FD-TNbopEn^@On=LDs*W+yCfjt!)j z3a1qYGhVSL&s<~7-)CxaDUn_^xzYg$tuzmik(^|Mc?gIsj!r>|+It)km$5dxBp3RZ z_W^bunFa(tBauGEGUpX?Vjf0|nA0O9LQ##b9lInEPKesBN{}|&S%^E2n0Sg#*d;kL zM>;piH!FyJpi>Lm0oD2F@xr5`yCle9STMqSft7j#uT-bP+XCfh_mAqbE zdjvmFZx|DO6$ZO+V)e;E8`^AZ>DT$G1`EV9zH1+c>eEl^8EhT6t$Y7UgB!_y@zZ6# zHUqmPe{#4?Q^NW{||d_9uM`}_kmBTlqDgA zG!>$R%9eF1$Ce{$v1cmD7ETExW4=X}EQyLxrtGpz_Oea(BuTc6n1y7U%!o0}((lrJ z?)y3C-)K`>$AK++tf%vC_9K`xe?`XysWIhK)uk_ zxc1%1^N?Ymxq+SG=I-R@?bN$(Y>xQvlQpPaX~$=*uqhA0RXh;1WB8alVNL>Cma>*M z7Eggk9p}Cq86igM?Z}#>HE(v;|2U(P>>luobJ(XS$-AHLr0Zs4HP<^&ASxsp3j-LB zu=SW-{fGVl%mYdyAf{y4(G{feUx;%=ElnkcB&!JXxsne>g zBF5=sYLI7YzMG12qRGXWqpwEQ;K{W)mBlscuKHmu$Vb$+7UYC5bJc*yHHvdnuO)N4SBhV^_6hqk1t?=u@0~ zesN5BV)zrhDjb^fz;<;^!;sB2q_3MthmXd7-`v{bHK{CV=}+uY`e zk6FFJEC+OhsE!nF7LrnN{UN+6cWD7 zI@lz9G~3(%(@qmvs_CM(MiXHMd%Si}fw9+#g;wE>?6lM#(qI%>UMOU|4 z`J(<#xfFt+&U;Okz5bi@ouCi%?Hzo9Q35$@IJ_fpreY_k&6p1Lgt-M~Q8 zv%_oPt7}}g9yflxCq4K5%hMp1l(gy)Tocm`f5zL4jl>o&P+Q3sN)0;~9GK1YJ>5v! z{U<%scRa;+ue%wi^7()y3@AF% znhljh4M!0d<3u6PMf}%pD)fQt4_Yu)UaVDEky*&HH-Tx&pskqqS({MRjR?^?UFKke z{Y>kv8TLuKXhVv39GS&AppQI$POg}fZf@o+{hEJGP{xaw`*=hZ`AjaSqj@=*d)d+~ zMYKyFdV?25H3qq6P9NFeq)CfrhQF1@3KNE!*B0Z;YE=4$13meJ;-nZh#wTx-RRAgapP{O?W1Z~*qo5)k9Qm%cGSPy z=EJw9GD>m8?1FQ$WE4C71#v*s0`#dOJ;biQiVcBiSt?u&w{1K&-FgZX4o~wn>y%2u zS%1yETnD6uz#YrYF3!HI-xiksG8M)6lT#e%#k*)jZjAs?kVOB~Qv;ERQWK0#{6nJk zSdsF4L6HsC#t&NPgXTVB0|G25yB+I{j;|-Ij(ddUt|yZ$2@qq1lh3vTO_$-}HD+Yc z{V<8J1|!rrgXvTT#rn?CIE7h*4sFt@(bnb<9;_aA5V?^gyM`6_qY@JLBTZrGY5X&& zbtVe&EGJw~h~hA1NDpARFyp)^Lg96L`c*TYm(ruotB^a_08Ey4|#n zqEgSyDILw6?7>u9)x892MtO>)SA|@>Uhy+j@4Y)m`|+SCm#Bd}`b3-qp1#m{kSk$l zB4;(e6#N$NmG6AXnNZ=hyNy*)(*_)S2k79c8dD>!nJ0cfAlI(dzu!NpLQ51gLKQZX%k6seDo&cD z^K4xa+Uh-KA5?z`aS<6q+^A3aUq`sZ?Ue^#{OZeie<_t-M)9M-N0`3nd4Kzk@VR^6} z>2L3ng@6t&qNhOju`2EN>L(Lh%&}{R#*;1&7`m%#`Db(A4pTH|g-0IAWS(}G{CVfy zxrIM>Qv49l;4gKB2Cxh(TIWr5;(8>CZ}`3WVCy>^`X}!8=f#O*vq8z|_Wr#W0|M=h zbswy|lY5azVc=ip#Q$*%$ZwKZ+Da87`w&veUX_3$_~to|2WTZ#p>)FU`(+IoU3T?T z&U$lV@QlgUErc7aI$VTmq z5h3a-5@KNFNJX!~b^x&%tm{@)5U*IkZ0}Q^d!=wMCbH|ZpY;{qAzt-W{Wfor6*KII zxal}hEXXo5U!ZJMTVnb2jW?$12;o7qChH_EH ze0NaWZ|`&C8Nq%~u%;ye%XUzj@g}_Cb7RV`upCtDk>|H{19w!El~=~qFR7W5RD_)! z_dCDbqCImQHR3??i9(QY!;(EU$Ut(fNdqCGUMU*8?u^HQM$JdQvXfDS%*3~&O>g=l zj_rMAwl4uQHpw8upn4s=EAi%14ygv4FX=lAV#!0KW)2?t#kL416R+mV67e%yW?UBzzzU;3#|R8X1u4 z)Jmug(I>GAD@R)_eaGQy6-U>jj#Ut6iw z-(U(#ELorE$$H!-sdgQ@&`1)1cZjvH!#@n&vY zrgO?-{uyw`Q?zY$FQE@1G2~#14?N#pxcatQPm@Jpe_YM!TvYm!Zs7@AlDIW(Q118v zkyCrZ-gecu8q|C}i4ryMzRD8X3O6>AYJl)~6JW)$djI_$fRaQHgC{bcr=-7POVzlDn&6-$D3%3l7C^@lJ!|WG1lBJ&~a! zs(0DL%6yHF?~B9hZ8(W?{v?)73262RVB#7JIVD}3pGczmILb( zes)#h#Me(b1@C#V*h;W|`go}4+?E^#Z(N$aLb`of5Xv!MrKvyfSVF#H!|;+%QfYOZ z@^Dg#NwfnOAT&~6!cS5zJ~g8Kdw5oS2INa$_`MOyYVvGR}X5ip!l$PK|xZDrQKvKFUr-J_9^V)@P@t% zDSg8SGyO^~sqMLLx>$ALWQ_(*w1KNe--Qc+$bp50LJ7(z$QQyQUK`S+(+sWlA7C3i4NDt9ZpDvZ>H7wo>4ug|HkZ_CL+?Hn zeuELgd`85UtN>0~NP;g(fVIKTg7Sr@phhJWFE@+{&9L$8({QV1P#yf!H`sMN_vd!* ze*7XGR3}^q7-Iqgz^#86Z}R|jY3BBR<2PuRqD>hJ!tklJnESsUkO!!8>k+f6hTmWi z7?zS(Aiig*56R>QT_)>~9+3$UIDohUF`IR{(y}8- zoQ*m&oJAk*e&kdCx;0&w3Z281l`L&3$0PN^4#Lj*i7BvmRGDyA&w*CSyq2`0fSYf8 zvP?Mu{2PtYE`cwt!*T_&i`e^c+5j9-=W;(Z)BYFY7y#mo6anHSekTqNurBZTZ?HqP zz|*#>n+n9Vorb(;n(pEnrYnI49{|L>3BIbn6m$rh&F4xhjX)g1rO%v2u&nXp0EmChBz}V# zVqScMVZdxguW?TQk+4vMbSCsp)e^KBzY5BX;`5!M6vQG}1v!NK9q1i^S!m$;8}`!` zMqA$GS^&r=7D2>hXmJ}Jv||^1j~JH#pGwk!!r;HB`@apnt$X{gO9)mWc@a$NFC^dq z610Qn$a7Gm3)%-z8}A6HeE=Z&`WP^Q-%l0s`*&Hle1oY&vk=!*Kl?D)Ny~Hre?QV? zLWmkquL0lmZ_~#AeyHC~JEhS%i4e!N0LPryV0qwP#9t_q2Po3|Z}bJHeDqpEBjW{= z{`AZPFSZr#^=Yj{;a9NFpwXdK3g^U+l$XhjTMP#qd3hgNPBLf4z-zeYKfi*;rE<7} z@rwa~E^4epfWmFyfDlE#ADwK-4Zb7^I0B1e2@Ym1o)$5Im=ge>`s?PN!!E7+bx@OD zIIz!MjLJ=ahJJQK`J?XUY!KU}K@n)TtDs)B(!qrQ*Z$ySe}!rnZs zQ=qGrK07YHdjptqg_tW>0#6kMGvm zZWm&1AF33vGr)WS|4)5(P3U#(@<72(P{$&0qWgZr&IzfqrPXHJ|M)2;Y*mP$zzr7? zhe&#Ouox%(g$^%TEe{cw-?@lKeBFpH<=y}zhhD_k3B|$7OcAsDP|tv7TLW%?ofO4+ow(s5#)ln>!*J9 z-cCX*7hMM!EJ>#IJ1-S?rJjdAwNv2SRUemE&?p_-`tMHo|@*F+@^kd{#2C$Xwh*BOTUMm+f47|ELMR{q_JdWq!4kJ z;3XkRdfyifF_w2Cd+c3}HtXcnm@@}Yi8hLcNrzX()cL*(l))GJ8Ej$-u}(3ce-s`0 zn!R`JAuYoFo?VWgzr>Y39NEe-3MLz!a?_}O@d%lJRQX7%CEFLuqo3v6gFJQyGI80f zfDI9Z=b98MK?9ziEYpA>)Jb}8t77GSJ#tjy1TqbRhviq_59Ww$e*o_ zWZpOt70^Eeje#QfZf;^$=m-a9Z*H^{1;AC#awGwY> zo%pzT*|LC0T@2V7Ty*SmU(Fkr(_1aJ=(0M-asCOjKM#;|PHu?2ujSgNNUYTHV5MUl zXNm{M=|jVTC)@n|o%wfBHhFJ-l(`ModTsnXy&{LcvAxNFzpLES!9wPe&~A=(Vb$3G?TxYTKAOdV?@TQ!tZ8J zmP}fQybd-$kwQQB)!HJ8jCxJ)k(!*E5a-)GX;x>aFSdBT!rW7Z>)O%NS^OZ%OuJ3N zzn5qee3al6>;7agP~5tL@k^p|$(AP1yF{K^yY#3b**Eu613>%cci@2zb9Ds9Q7lIyJX$rUu z&(ErZ0o-FY43p&{gF%}@*IUaG63cBd*}9w@l`r$S+uM}NDp3t)!2xQCmo77Isol7J zjgQlWYf)AsQ$II%5{SrdW#yX#AxmS{vo{NJON$lU88eRaK9Wz1K^V%#UTV;pqRNWK z&oQTJ)4g|Vy?*rK;c3bvg7uhLHK+AG2vkE{3{=-u-8Af(a;K(e%t5{Qc8jWxRw7C= zY5TtMQ&-zwwdmUPan~}18HGxwsZB`<9@q=r=PIJQNG!xa#q~qF(h1sIZ~Jy0&7ko! zE_KyNXMC9KzFAlIyt4e!R@oyvFC4zjvuVi03M7I1SGJFA-6gKBSROohbZ~LztM*n* zv8v|@O$%js_7{RC_uTs^#caQSsA0eg4dwpR#4aUIonGcJ zKVCldEBNu-X{^MFmQgRvAb$1=z68O!?=ZtL)U!MUH(tgfZ9XMUTaep{o1yw6enFn* zPuxmBcnq)`yKYpWI^g zHw^S|Es6iuU+RDI{{a}3W{zCc#EC59Nlc(E(PhQq;g{+wEkfz_3X%DBxH2RlCr4TV>mrI%F(4oM)I8V>Nj5F>oQTcjIuhnDZ&Sbi(J@_kL<^4&sC z7Ms?Yp0BP%$@C+d(vO%t-@NK;=Sw`HbHp;7tHV~Hb+!bnk{dp-uXN#j%J!3ORkuH< z^*!YplA%MYYo+a6?#%$rrz%-y7w$=_NQ~ZK$lcuZoG669Fhk&Nf`l>K zm{^Kt7A<)mexpvRXSzm~6YC4@#q8?yE=cUqkTJRtuI9?uP{QN0>fzX@&J_PWkK$sn zB?~R8!e|sTnC@fN&E15;H(#^4kwq)2CF4Y#h6l#`0({%od>x)hQu6ZM>5U@nvfC~w zXTC`#%XIs;N)|sms2}uj2isb!-btU1h!~;0t)%Fhqy;I~5O*5cW!~0(fbO+hBO#n_ zx#jY6lLI_=?>enw9p(;zfN=v10b9~}lPyR$Cx4DXTcxv)_vG}b$BH&tCoS~tZzT(f z7|FH^oKQdmi@{qNL~s>5S{iZa@7KuV<`!ypJXG)MpRq zQ#s8OWu>ug7s@MHCU-^B(9e^?SQ+;?70Nq984oxKk~?F!uus>uorYnV8G06n;HF*6 z?5P2w9qrg?0IR!yyY2wiDO{TDyajeU&u+I5T0NHpaTi8rwo^(pMU=7 z!tdvNb8|MXON$Bj2A%Bs{^@f3w}N>^;r-ty)0vh1DIbmmkDPN>C?ZN!a-Jt&swj(YII7GyNX>#OwK^DDr%vCi? z;X{v=k%!x|rSQMy?|<0X*$M=l0)BKq9m#EY294W@F*MM=Kyyj^2D{VR46*p?0s7%+ zeS$giRV}GmblO8Py4U0Y6XwL%VheO@N z2JzcHd+o#(9$hGXu}SBb_?jnm?n>07i_Tm=fLgC%KIhc*wvZQx=ob&F)k4C?w-m*SjeI+w({c3O;^wFM$?DNbdx^zq3PG%b|h+>=v zoy%}nN=IwI_qkT|=h7FyE!Z6!7If(N?029@65-one7rhGS=uxTj z^POfHe3+-Bj#PQxnNLZRb3Kp z{95LbAY~Jas@s$Azo>PMBp$HpS<2g4BmE=quLUdpl1VP$z5^%LC%ncSC%Dbakh)Zt z#CeiQ;5Qe%qNIG{%Uk86>u>Ckt-8JDIZOs$r)%aYI*NqX?55u};#449^0C`cQ{>i2 zwvuYIps70n6G6)F*v9QM1lrRUfiou@1SXcgU3LLRTN#Lbc zVoK+OSo?efg{cL^ddLmCiG8RG?L*#OC&TQouUJ61zGG_(NU5h3Xx^1?*mIP+t76Og zw-Zu&X{(U^I&}CT#9-2VrX@(G^SI6KbxQQLO?@^?nf8|9bL3zQ!+KM2`qFebYUK8M z**#8Xa>oVYbK7r~}`^Qo{-n95= znt6|%xY;IGfIN_G`vvG5w`dBjwfq!`W=m0~W}DBGem(hf*&YGKACCxc8$52;QC9p+ z;Ywn~bHjJxVG%!z4j$)SMZyi3kbN32(szI)9wf|-x5aIO!jsLs_P(Fx=eX~(-=`Km zT7BwHi-C{6Jw03lPO^bC+L{@Z#WZO~2%&{2mV9pK<-5zy*c>UZ>7JvDT#7VY6WP^T zY;c;8;YK=ZbJ+-H-F4LgAvn&c!aQ>KI(N>QZ*b7T;iqClAF1n4Bcou;q10PoHl5Iq z!9V}8*}8%RxB1XZ?`Mky3Ndn;UF!*cZin=5bu_zxZiZ^wXe)ze(9HVeq2H>#|LouY zfZB}<2UcK(!FpOw6na%gY)~smfju2qzzk@@2>WcQC$-~5+{AU9@_c;OaKp8e%`2#~lUnLR5>#ri8pm!!OVEOh`c>x()sFZ132pc|Rh3yO z<=150ZFoLeoUV5=uuU#W`1Ol{;w=~6@d9trnklA@vsWfFj&cdVMNgOB+JxP7u6w$u z#+*DD6m&*hNqWsadpmnWf$lI0 zcCUdPsd%uA$eO*SCZtCLZGyF&1Wr{P3g;J(guRp21SQ^$kaPK=9^ADgK%P{?# zC*NQx835aV4wU2a;9%r-AOaPkv0R{5cq2H4cIG2-Z(bv}VqE)|Rb`L=Eo$=eJpN8q zS&ZIE)usC|9?}5fL!QFJ*al3fh`p!#s^Izdj$X{JZ!l-W0w=RwciNQSz|SV9rwmc* zqU0^L&&Ve~BI`Os#rfn;=59TFX=^=Rk}3N$vzmq_uPZ0re~0!OL6)QLnwH&tg%6wd zQSq8?$}gn`%nq6Bj;QXga1QrA#9NAKUBFA!c+u5b4OEzqhxy+X_~{BNS#+Tl$k@&1 z6lpKTLH(~Eoy>FzgR3;!UWD-#Tv$^QH>R*Xh>AW8Rw|s;+AbAb=*ot(I zaf}q*_%VK?x>}Y)yH{@ZlTlkIC6~;q(jd?Ks&@)1`Ci9=*;z+?y!yMWy27c1Mn6Fp zAl9Br;!-#&?YkBG2gLbTJ4|U5&XgBo_rh6%t)PQ${?z0mFL#6CH<*SAxA8Ivqw!eY z6c?B60)x6`=5hR=%`krZ{(ppd+y!yZ7?obM1wDvFY_L$ZVg{1!(7~6VdeE8JX2KdB zihHU1EsrjT4}(8X2;(0NsmWH$#5*`{iaFHUr?Cid4Uia252C9%ancLXhv_Dyx<_Qy zflppVz|{_->}X?m^MxX9HjVpNy(!#X<9u22o)afgyqxb9z0~DaGc5QVYYp3+E;d6I zr02ifwzpqTaD)TZ^ZfMU1sxx8)pjng{BnTUJ9C*Milgxc18x;B*+sl}{k;8mC?HPS z#B*B%5Ikl0h%0XJ)v4szoQSIpNm@F{kkMjshUGzdCtK>V-hkP`v2%&DgLgxnUi_t) z^52U-ze3QC!WW++7}9aTS8LPXJ1fK%iQsy~al%JH@#fxpbqCpRmW}J+V57~}*-!pA z#hR`ZN%|kgmpYlS4zbmlLgdt-nXTwkK&x-iH`wi@UQ6eVn!Y-I|AV4wQj_uL&1bnbwn`5Cu%g?a_mtW?neISOcXX3#Xx? zc<|q8qeY`Dw@M$R?V9MlKhZcQ&Mk}6^zcJL=({sn7BvY}_n(H$&)v_3N|7v$*0(NDH=1rUN+^z5X^<5E813O&?v{_(T#`{q*H z^OPTv?6QLxhqqoa_&`l>zi=Pv!pY!jPT)&TrWZzVkyTA8l zOLc%NhaCR~>j0Af*++y z8Eg}FfYk!uhFk4%zD7~yY$6AQYq)=4 zyRdvbh3zq2co^hrxrN(FnD2}z)W|cjQ1QCE8K@hNrOJnfN}Tv#ys>h03>43_ z@ZNdr;U)^XA@`0=555dUk!vxMIB9G@+LUdIXRuOh8XQlXAMJu&2v@2OxH06*J}M^{ zbi>IU2vrVq;wc*d?>8%1mW&XlFny4vHjS}iD+R47=Qe%SV{>rcSwYorKj_sgqGsh; zi;I}skA-5ma7-JqOem7OlMUedCNFcc+9ZMpt&ul?GGR%Lac$Wa1w(eqDIPjeZ2}kH ziiKTRH_W5m(T-K0KCQ1sl>u-5&<%O23VcN6H`~WW&I!d_!(Q)h=$GG6jp z#9c2tir~hcvhusUf7{hdZ*H#R-Ga-@eJmu)3B_M*`v$w9`eA|G-wZuUe)Uh|?m(n_h_9!hX)QRn4~NVDgJQ57eR(l?SxH=4ic&1JII^s1 z{BQYNE>I9+4;&8Vs3h)dT$3f|=lQ2gnk!!Z6+x~EcnL3#3rDNbqbZ#+8u`ln%@PPv zwuvWhr_*?sddktm=@V79l_J`{+Z8O;yc<@1zEAL<@j0JZB3;#-)AIbeMT?~Xu{1?PT{9j|!zm*mLfWzdEBCM|N z_XqyFr{p_KFf|FFe~o_{%)cyx|M<58$p8NW{r@_MQWWzH%M7iVxO!_K{Zhz2($>)9>~owv14&G$mcKX`!HgzZ@>o8lyTBtg zSQh(dv|GP4&F;pa7JU!N46Ue8i@FAG%y1QJt|{*H(b=#wQBxpcx1_*&Qi%2%o43Rt z(4BXGiDMJ{gKj-P|D(bFePxzeFc!It`se<$5dM|k`wyW0%fr~jK=mdNSq`MB2C+f7 z`Aq~BqTL6&H@+V#F=)e<1>;x-kkac`gNtmhR{Htcv?v&xO2go2xJF{x=V?obmOa(r zuVWNBFe@ZQV{yDF}=N9&v>&wnq#0Mhn0ecJ6 zlG4dEQD@FQQee3@=mZ1c<;=anS?c4j=Y95wwGB$0Ge&J*r7(?P>BSAGF$|f0v>s1| zCS_6~-{8^UpH!NvQ18~c^($O(C=ov3zx{Mui|1!3Zg?}ZEuA|EFX`=!)AOT^G-1S& zDB+pvRD>bz^jI9^xq}vQOTbIHrz-3H(flobF1E6J-xTm&Kh6oG&5-dCm`zM2OB(U! zoS;MlSLVI*z7G@jMlsgb)~06Xiw#AdZf{fIgSG9dQTq{q|Eu%$|0XZ_ZX2xNl3vy` z{s_4I-_)u8s`M=X_eYxiOY!-a;sXLd{%-s9|2K+H!6T?iLJIT5)5XQDG9cjSENpi1 za=OYYIZ|4|!PVC_atjcZ%xLb76dNut@M=qEP`S%_HWz_RyaCcFTE=;{veqkyo2q1T}$y_L;P3LV#U3Bjn-GKQkGs{XZ6v)+#X`@LsebAo!nQf-nV2Er-y*ZQ*G(6HUS&|8J?=o%zLJ$3#+di z1TrO9c5HVVu@!lfE6ME4VjpyX-?rDFGQ#zg){aVSlj>3S%BTs}p%(3m_il7h&vg9h z8JqD&z}D|v52g!SX4%BCWITJ15kSK&SGyC~7}2Dbl(9<6lu|xR$^4`r!`#8PkeYLY zV3%dr7N5m0b?DdtKkOhff>;tj<)I)V@j_@zy7UR=&r5MHiGm*fPQu)l7x+YksHc{- z`Nfpm=_Q7erD5mnR#jeq>wD#Mhpw2V8C{nVz#PbC`_rHnhzA=6;v(<0ng&srxD8>AmLdie#c>^y~VCgzYlU%~;;mv}b>sHer-+BtZVVMoK>sN0R! zqsK+5Bcr75ErrLYqoUq(ms$?8cTh|-1J6YnUp*b)wdEO1O;Io2iNzAYbZ8+;5Yx?% zQ3}U<$^G-s73zA+3y*FQ5Jq~~hfOamBpBaJC{B$|_TMdclW)VTA_c~WvM3>fGsE;k zl)5wBnk9c~HAIP_YrukKmtpfidg74C(_UIerCpdVhOW7%W%-+awZ;8=F;@#?-)r)| zY2}fdy?kOMP~k(8bQw$BEj=nd5`qQ~d_^g$B=Mo*b z5Z_TA^GQXt%m}#Kd?j?|ZB8Q?M;Wp7ay)m}OY(=l%7w@nrX@Ed0%XEvgEVB%X9S^h z#`WWfJwr$1Z1J^Fd}yrag!}@6YYN;6zrWYR3o#N9uHnE`KHC%B>ASO8ij!vb;sHtE z{>#z+)87;79{X?BwwjPwz|D%pdY2#pD;y2Ob@~t*xqR`I&QN4|L+N`G-z7tNfNSQA6P@y@>l z_*0Gh8$tFaMp(v>9MPojN=a%)@EK8(XuJ{1USBjUMAn83eIb1MGFB0;NJ<<#=({)a z?X=kOic{vmHdy-;4WNbKbrC7RjdT?*gPO5pX6Vlsg^?{JEN*G^CDtcvY);e7dmKJE zosbvhto|y0$LY1vDrg)T!4^%WR8D(7W^d}PlVnEM*Xhy&8hs)X*a!OyYn%fDvTdit zf7sqIo)b(h?uJ&nAp?5Gv>Az8=b5&auGNfPk7QPS zgEdv8^d#9kh2h|$#O#b*IZ-3AroLgL9!;+KmJ35$FKu1D2$L{40KVN(l`6{=%|)v* zT}Ol@32bBfa2}~s)D7q9;$GyYWi2jI(vh>}3yzu*#pMQMgN9S6fPGu|w1X33son9cY|V>)JP}yUWaP9{;F& zzUCLGUYom{>G0BtpKhJ{6vgYn#Al$9Jq9YC;t~M?*8(DZTqJBc?9ct$+urhyXX9VAmWBkm4ZrUq@Q345vQ%SC21c}8UN9W%X!|6+)F zs#b{Z!6!W#y58FjeGeF)zbAfuYatBD)Ca3(PZu1HXPHe68!!)#1gqAA4etkSO6)5e zeV?*nuX_G^m5$OUJ;Sc}czfd$#d2$%wmWGK^FC!dGiIyl#0Gvy$_>H8)$&-vLfgZV?@4D#KcLtviZThmV2HOff%W2NXM!?Hk8)K!pV!i#L zK%_+b2v6!5lm`_$Ie6F~%gP&nW-DLboIcPd?NHFAmi&GMWxORUvgj^jm=n%E1AJYo zOx?^0>$-JxuZYI#tRy528CA|-4HrTcBT9z{^d`JW$+tqRMOqRZUd5Qad3xl|DjYCn z_bfCL*8z0jvWdS_h<(JR2kixKtd0{h%*ae(Bo*o5HkGD)G!GfL%kM?88O#XQ2Ic}op7Ve$Nv<}-Y;mjGNq41MWH7566Vu?uX$T?r-RhSkFA-K3 zR~eT$RB1Mt9of2R^eLyFC6DQZZ$j&XkF{XF0IjWf?NODjeLBXW?inbjSqjVYz50+A z^@>qyGC9O7C()A?;XIoDG_uEaZ6xna3;`rfpTup(0JRHb{4^nWa+>1?@Z@7*AlPkU z+pcHP6#4t@MCMb<7Yj3&%8CU2V}q;ryR7F7)y$;cn8n`P23Tah8QYzXBx_A~x{y@Y zP3TxQTM|wlfrJgcC^pG+_zkuWcJ;nNemc!1p4SU6udy=Dmfiix4AoG6O`8+>m>x$B zrDwEkQ|o5$r>L%GAE((w)F^LD`XyGsUh}{t_3AF;n4K*Xxkol-l#0aNd46Kp32_z| zvt$!i$InbBwm5C>!|ca&_Frp>%OFmv4Vj-CK?)9^UmJSj{&~^E*ZOF7x*bw)#VJFn zA_X^L{De66X3J)%M5qbG#~CtiR?@Pjn9k%O@bOgHrnHSE&x_0Y)v5Y@x>Lp_FVX_S zzwAm_{n*hop@8&>?^#hP15L+LE$9eiT10G(p(oA6kT!Fx;}M4#I#S+4wCO5ad|l1+ zG;mC^h;nPzS=>xo=bp%(c=;>#acogsGgQ8?{9Zic=5tzBG!wi0-bNYOM$E?A=XGW8 z=BS7J%%>`9Uxe_ce6hX_%XDao-wQj}zQ3rNagF9fHK#Qi(c(hTM!qz2N7_QTU{)A0 zMz*@A+otc*_B}Dj?vJiNSCuGNf5)lDZQ9ZJ^_r`zdbz`h^4nP~B{YJT=_L8iOV472 zc*|*b3C$)?{mp7Si z(;##kDi5f)1c@&~7^OkZRHGEbS?sqIjuf9R}li$9V(kqFlZmB+KwLdFK5rqCF~Qa)f+; zI68AERa)$YPF-QXqNo0zX0bPSox~D8l$7jLtd2}-nN5XCbEu)&n0MRMKv5(Ww!(;I zM4Be8yfFI-L?((kI2Z*nlrjzs4mB}KKRR^q*Var_Y1`&Ey(S-9wOD!v%=Q>64yfwW zYXiwba8PQ+npulOvDqj4FQ&Xb14>5~JyS*Z6sJgv$tN^Un+e8k*J+h{wkG%FB=H%1 zI!Ix9u!xy-vWf|Ge6;NIUN0)u85v%8^(%6Zdd%2Z;NC)mpYQG75?k?T^u?>kLcugF zJ3`M8_{-Zt9Uf=g#uYqY3-Aq~o`!D|VxEm(+NDFA`A;Na(BOlqB)|obkxo09Y7{6u z1sOWu;X{syb)n0&Jfi4d88I%etxPiPEo;cXESS};6y78JayD`&=s=tTTbNunq3np| zIUHeV;2R8V-gWsPfBh4jR*LtuT-x~!R{9Ob-6jZ9>yuyqTI5?ifC?P7KOq?q-~#oa z1jtuyN1KM3K_SLNX5|PJnX)dGh9KS4!V1hYYqX!%b~bmIIj4+S9B4gZeG?b)pbT^D z3133}vH3gBFf~|kn9*{ICciGD3=m9}1uSbasTW#&n897)Ma$`gAbzCbEvFDM9?b>( zpNY~ya$OaHPWFgp4|Pd!us}A@Jn-zd%W3G#*!K!wf*`wM`ml3G-(VoxkF6(#12swR zfuzvoNVdH*gl=vmetMZ25uvBQ!N#t{twf^b;%EQ!GpE!^fVL84pPTX0?4RDL6K?vXP##&D;Y$i#|;HC$`KvwC)vYD0=$IF;Ad6l6UPj*IHD-N@rnZei0PM zmQNzise0fSJ|ftli$Wq2dRGhhC-E1675b5hf1Xo)LHz#Vt5AboFi5Cl0OlPGY~1Gl zh!wtmg~NHA7ihwNcoxL{Y;alN@Dp&H1tDNwJISncf>&nG+kjT_yN6AF_suJl>p7^V z-^j_)L$HpZT*(DQ9`1V0T1qVsXc+adjqZCwGk(y$U&^m$N)|4(PDG-I`WlwGspLW) z-xi)pAEvn~e%z@Snt2W}s}SV9puFLeAi%Zj$N<-vYW&kX<0JHkXUBm#RKnthQEj*^ zfRjWoi}F9q+%Es&*$l2o`^=I=Ig<4S&Q+<=T}ia9%$xLEfA?tI?>-l34u6^_F2H~H z=>L}~OjYYI}mVPDBHZsD;^bfF3TzpU&ajyV#40|Bt z$!$iA^O}%=44h`FtGBuis;_EA1u+tsew3LgLelj) zEF7hDlHL*%ZeiG1k@Bg4P#zWIl2vYVpkkYCMYdxj``2jhApuK>| zZthq@on;c|1t+8GD^~V4Id{r~4XtV17qq@9 zYx=?RTF=~~tGCMMx+`qs)ON`pNT2lFcI>C9dd%fRa7U&>tByhwp3l~Ecx#_Jev{j^ zza*(u-~RH~B(?tAPfZJtE-G+098sqSuuP$b{R|}Y5Q2Qg15bqXg&q@_FRyBKI%aR%kMJe++jZ;K8YENftCH+=mjfTMs&uzFXVdm@1 zk8pieR%!DYuk%n9otEjw(&uIT(w zS3e3So+#PcUWGS8xOEal$-LJ=hc5#adP^2L*z*w0;HmPb!&~hO7=$XaY+1P2#xYJz zyVQ};j$LPAi@7|tOlP`l16~>p_o2Yop;8;UDm2c3OX$fizb!t~V|#w7ce#};%^Mop zd{ykL2>>ri73E|FCYCPSbj<)uqB@UQMyAtcQN}H%!wA8{GWW#qm}tj57+$g^iF~Yb zLAQS3k8G@bKesY1(MFuiIvF&aj)?|5TAazMcM|VsAEoHaTJ+AhJ4kn&j`rgB*<6I% zJ=C&k8>%p0C_-mjGF|8t-K8$oOCoZ<(4hNhUC(B?&RAccd9oMTx%-k&z?H_~i?~jB ztRcCTt$?RlA(;*k?KY>9#n(8ECva^Zfm)CYY}tLB)agO47nXn|NTcg8T@TSLPhufP z6Kzh*VT-Dn#nlsB*$UXQT{lROP~%fK;UPj@PR^v3f8T_B#~ZZ{kuNdo3#+v+M8BPt zX}T*xhL7mZttV;Y;D>%TfEV=NurAvSh|F8{`~ndExN?x!2( zFw<8>A$UzZ>5ga{Puticv9LIgqtgP8OgomzvR?$m|PcD4^S zpM&c4&;fbCrmUBo^Wtw4xPrTcK{z{3wo z$9ekiK0wXr*lhZO;^X3s(n!m4Eum#iDjWvGv-Q{MlCS zhTstkACgTN$_}fm9WqTj`zB`O z?vJL-Tvq&ij&p3q7}<@wBN9|$usRGB*jb<~_*DJyy3(G{ERBcU9essmufBYm`qa{0 z6@f8%eZcdWX1hrpq~82AC4ag5U!B{lAb zLb|RIt&=Un+jtFw3-r6jFxb#nUa0j`Sv8NtbK08#o9LW2A7LM@b0w@j#>^J`{SPVE z4YHV*Strr^nXMydPBuDiV#bmXVyI}tAx>77+Y%>h{tLD|r1BA{N75R;UFPN4hcBiMt7iJS!O*+kW$(Lqg zs3ONEGe;h}Y6Lja5D^%8BopaSTT$cwfx}%>|;w8DxbB?Ivl$i{a9e{h|-REN2z%z1TW0i z=WT>XqG#(8!w)&=aoNHU(|<}trHOv1li)yMR+mf47BMvunWKD zKyK3moJtPJxYz)k|Fk=cOb!Fn%z5(J8!YRV&h`qtquYN}*Ni8MwlF*x9D;Oq9Qx&IG)?*SIYmhFo-8Ob>cO^%XtY=UF~5k-Q4 zIUUBA}nYlCPeRt-*_kZ8_{_hr5 zP*v=z+G~du_TKBac%NORU`|oj1Dra*6v~>&=V+pvXxM7bK5mAK>ec2i6;2Zd(iOts z+FGVsN9V_WKR;Q$8}*yINoX4pOkNNyjm(XXgpYy^kl2{wK91VS`UTxx5fN@S8u>yT z>cGv{BvbzY2J%O(A{vb6>fkd?sGvy%`F>b1ec;*xai8omZ@y+jx_P4-Nt8it-s8$E zOk{-Qw@|Y?smM}9%F{zOqP`Wf4t8{c#*B>L?Eb;7ac_pdUuH|X=uCTtAh*CVZ-8XA zs19?LMnRaoZ8(6n1`IMm=2DEOL;$~DC8SvIg0{Bqgt8B{+|KzYJH-=?tirX|e z51w7A{P7P!ZUuk2#)}8S;>ZHaOuG^1jD74PNXm#d(<-!EU$%B}*`{C9Y_=)kBFnOc zNgj9Wt2bAFS)Ce()r;WuTXwYC6>P~`evic`eeW)AG03)D#Bu9c+_#(TCMnJusP6dJoXn?~HAqD`v1);e_y)I*Sc6YnE8 z1sspIUde%3rp%TH-FtLee`#Jr;iDGHcUduHEokxzjA=`nFi)yW^8B%WK-G)3P6+Pj zjmO-#@B&}GyI|tl0u%Ai4i4u8{kYu@RduTte z#M+w0V#bTx^CPWJKb|T*9&}0=k1`JHY~0I16(ZV}38vdfQIzofgasWamAPA}Xl;G8 zp{)_1s9U{cpFtobxzk)3beAS>|5{s&d7zK}f_@n{Y70J^Bn4>=V(7WM zLwP3KKr57O{3s$sM=6R?tr?}AUmV~*JRv-yqPXl@@jZKc_gJ>3Z+uLsXB;Yd62Dys zV3QoQ)1y{)Qve=MHl+#*utFR)z}xu;PGb@=lt}eZ9t*Uw>Eyw|#Dfuopm#DOfi>35 z1p!QpJ#{-&R{1>AqtRQ+^k-fx=!HHoJ~xX0X{b=J!fXfUqWi=7fFJ}Lp@*l>g6qa% zQJ!vPrKPajaGf4 zznuG4?FaFD#*dpGW%&(=&`f;aC15*ZG8g@MS3ZalLr>YAeVlL*JK1APZHMHKZM)t< zHxbG)QessV-5{d3$1)?}V5iV>MP&Gd`t!^Pe)2~K4K_W{sagEV7?uQfX1={r)48)> zh|cewuL{RNe9HnxG>}W5>kwyw{No1(R%hsn()Qe28((*$*oqXg7>OUNZ8VF0WyO+c zzQc~MP=`vREsrhHPf%V9aMApdA2$P9;ht@y#U9an!kJHq;b|M+Lg%O(!9v!$<@{=X z;#^^>FVX#HN*Ks_f%F0^B$k~3>7QJFFod0SA&T{}@-$M?3kpmv-|Pm5{}Ltln8(N= zcQX^B19|D4&));^^vxeSV>uB(oB!}WkFWMRzqPd{{MUXi<1! zw4~!gq#F2o0D#R1tTwJ1v>c097F(qx2!Qr2b6=ZptSa90YxF;T(Ql#n}G*m3<5?Rkkg&HRkDp`MX}Y3y9eE<)kyEN9m+6wOx7*Z z(c{dxZrAL!SWZ;>1?NwELy6c>3Ba-+*x7ZrMp+n@GU@6*o5fc8dC6x=s?EmvSAJ;+ zzql>NBOrJi_gH2dfY=5LVvM~ACLcBiw$KG5>|lba0aM0LVK#(uZTTDjSpT=sYizAy z@*gYS3*d#LJPr^>BJi3**x)=zmCY5#Sc&DB3n1z?3ssro7GDa;Ag7p7vH3{qa(L zOH@?iLp`X^uY_2G7}u+;=3SZ45nEpqH89QPGz-#bEEa~pgQYSS8S7ngK882#Y(sjU zlo`xJHAZK^2&wK-P5JY{(SI~Hap*YCda2XYlE0%L|(j-+zDM_OTA^bGLJX<7zyuF9< z8WXb`iKYbD7$E!_#_T*@l>@_jUM$@i2LsiwM4{dxuiM~uB0B-V#qs(PD+7-YmE~R{ zJatVuc5!=NcV7Q|VQnprdOq~CiUHOw8f;w<`pK3elpSzKTpjEu*XfzDj2az`3)U-l z4`rG5330gDnz6UHZJ0N(99S4$k`){07*)f9$Jxcb-y(nqKR3o+313@b+O(0J2sT0C zj`Tf74<0>iLQ91plsaV^gqO@=u2&8P?S<5nq7WT7Dmd?V$DrgK;NZCg#C}o-5B9SS zA8IMTH;H0aB0v>h)*HI>6REm0$E=QIq{}_xEg7cj@`s_|kHiTKnRgApPZnr;2hj&Lv zgLiCxik3wo@#?#ChJr9<)1!^^9GR4PST{S~M7`TVENd@>I#>#^F#fi++}mQS`t^0H}I9WQ}qrf5?+pju#kl*%FqNWvs<4^!4~6cK&X(~d<>0g-wG+b~}HPRFg zfUZkZMksEyp2?4v^uo6dHTL$+k^9NlcI)3s58b^LVI?p>w4SUk#MD3g;+kt$H9q(Y zP}yCu`>;75>?k`UipCIGwwlu8k^6X0(8>ty#gjJglSERsXv|yjEJD-=D*6G{!cu2F-PL$<>>A6*vZcG@(gP4P9iBK!y(Rbc_t+-DXs9g+p@pkR#qkv zyB+w@i9^iX*xudA!G}c5)YsnUw>x^Cb}mjNVt3sfeOx(Y#Yx0;o!nepeK=%g6iCE= z`=_Cuw+DyMV_zWEbtea?qZ5af1c$gaiP#M%FBjk;NhvwtJGV&0wA~)~I6dYN(|%y* z%rk zkcOL&_f4nAno!S&P%kGh9}amEF-_RzXzy+Ird`92^{wBk%*dSO95)aB*-h_un@>0=&zO5Fa0p zfQXQY=<*=GLVAUmn1q;!h=iPkgp>@}h^|mjl9N$fo?pJ?^6|^3fSrt(i1;$azqeg< zfvAab(?QC3I9woHY8*UjoQpmX7zDy00CIbo;omnLTs(XNLLf^dq(FiODj@rKc(_1j z3GnfO)FHtCLHN`JG@KIZgtR7hL|l*PB*RnR5OZtPbkpA&NAgJ7KaRLU!obMH%)-mZ zFCZu+Eh8%@ub`-TT}xX>S5M#c_8qgk<`$L?j!w=lu5Rw$KE8hb0f9l0Pott^V&me| z(x1P`$b6ZVT~Jt5TvGb>-TT_Q`i91)<_|4By?y-ygCB>6Cnl$+XJ)_7&BGCE>)$rM zZ*KiS{rq)scyx?DIlZI{2ZZ+*vi?fhKhQ-D(1i=s0Y1?sT{yV@z=21NPrxZbNTY5- zWcP@cOER38P9ybAP4^XUsar^T`^V!X3_Q|sUeqONzftzD5f<@ZqU^7P{f(}95E&j0 zPznuP0Irwj!x>Xwr?)c3K2)8(z-wQhAUFX(Scez!0T zogCflG@t<-R+nNzMnOhY{I`umURv_^Q|n8U zL10n&q>lC>BWjPrmwcLB!x_wZ)WGqobgjE03`5H~jcOO?L7#(Tr(PbB4NB=0yZ{X` zpCyXiq8kG1ne4;PP*qD8*s>=V@U;tn2>Zna5>>oHFbl@|oOSN6M!_-Oj7iH|vy@9I zwl*DpwzdGIi5=#68~wDqmw!Ef&=%5u@DOeb!T$V-6@Qi4`yvI5MHjSOBtp(RCYQhi z7qC4nCbMHZRI$V9!ob!h;7cMwAc|I{mbJQ3YA`y{c@s6S*yy?7*Wpr|Q>BrRdbKk3DJ1?A#Chbvwc= z_X@qA>gJ~X=CYfLem41V&Uu~Z;+(1g>v+-_GTPtHI30`#U{j83Nd_O3)FNAyHR`pQ ze|}fuabnUoVg9h(zdDfrN-0i12&UY|>-zKi^fD|+VU5!=#oKpZ(?+L&3hWi4FP@$P zuWDmG>1_99#_aX=qe2(SIism;b;Ls_6Cd=;srIripFH9uKf80lta|w=pHgRYn0tPS z-0jXLiNe<@9$sRo&pdjNuYr4NW=*S6Wb3<(!z$$hI(^1AjtYf=-q2svK}Df*<4+pA z?T~9?Z?p(23uQ{~U7fv=sF^ZL?$+#c=7MCY|AoEc@DqL z2=8ovZZNYp9Urx>=Vr6jc+$w}xL8urZ;|uuy~FBg_U)l2a*Onm$ZQIl!pLlKMuAV$ zl5SRZbav$nX0PbY)Pz*bizAxW$NZlUKDPa}Tbg;iQbx_5wKutCT zUwTN$VEN68rmEq%>Cf=CHPW1G71Kuj=Y-XI%pq*9L3NPxxz5q67mH0>Ta7W`*eyN# z=*0N_lDBVf#<;Gf^jtSKWyWjp`)(Vh%DUN<`0dA#(#nlb+w%6_46Fi19-lVuP}<%% zeAqhsBBMszN>GDk^t166O%S`Amc<%bj_S_TQ)EJxUEz+GIIR?hO(A8&&!K#CKlrVQ z(5n|h6gGxdytn4YuAv1>=pYS`=BHms^+wJeVjoA3LWN$5EF4b~zN|M+@c)r-SGN24 zT0q7$2;^~4grjOnhg0Vi?S^-cg`!&a>O%a3DaLv`7V`uNa#_dwtr^V*GFXzHxuV@wU539o2(0b3s2T(rzQ6G50U8*r)csWQlV}C(G&&9XqD3 zp9C&GVRo}C-)N>vX%o~4W^Yclr%jxp`a09zlgRvCA?lb$!eB$IOWBeV75KqxLolRT z-X;$*$#bZ z@V8Yc-_DZLiTxcBRUlp;=pC-8izdwm)y%8yX zs&eo(L#XgB0%v#nvvLwU&YD~F6z2h(R*brEnv$RiAIEE({L! zKXCo76VE=<_~3;Hd)==2he*rJz)$YP>sf>4(XX=xN7{{k?i3`wt`( zO$gq$A%4k6`2J0rrrIjE&yHnWJ4>%lGs@V${w0#SQrZB&(LFe??KQ)WnoSYshFy9o zKTfRyDh#ZOYZR^rCCM3B8(1Z+srXc-K1cz4qWN3anyiAA6B(V-eYe-6BAt!lJomGi znu5c2wLszDTEF$@q`Kcz3oh5A!IgN1lX=RI%j&o~l%PqSXLn+bqshXoSwh$6`0i2E zL4@Wk{gf`LT#W(V-Icon^_BTYu%Z_-XIK=!4V_k1sOy@zT^78oS?kQPsQr~7Rf$xi zk8D;db4EtZpfg?W#&l@W)-qZ?=yxY zKyL#m%MAo6gpwbFa5FbhjYEpp=R=l}RnpQ{>f$xz8g_SGo+t00m0 zYvq7CDX6Q<4@+kBec^CnZtup)VOQ5zykc+r&47GK?{O(J9O1rwjwf=DC-^ntutLP{ zm7+$@o9yf>P8DQ9sN4LtcYWiW@AHyHh6f3m(wfOKkC6!R_2`i zKo^b!;qM-7%DHdha|Q7=>8Z(}NOP5H;Y2R^nQKx27wG&JL|kfbP1qo{OcZ2y$)sC=Y&6 zGNgnzJZY&u?(YiopLYIPE;Zq5Q#F56eNu$Yb?!}|+RB^3qYeIP!GWw`sanl3N)`7Y z2Kly)`hzuHdXd6<;huMQOICUn5WZVfqzc%`rS&(IaSzPiMv5kXzfTrqF}{&PT~$I~ zuy-ky?MAzz63rOQAwF9Kw`1KNBq$ymT?$_Z@k1_9UYDy? z!GKrZKx%r=prl^%>r)CZ!ZPFd?miW6obU?vxNpx`oAc#sOp`T}gKCs*#WKt3%bq@C z=0VOeUpX|`8S*AsaF+u|&v;>@uO7-Q+F!k{n%-;Y*zc^Z=1faoDCEO;tW_4Mt?j#{ ztg?;vdHf(-)+%R6ZtP1h$Vk|wV2k>TabaNB5ZmN_;H^8+Z|;gmDoNG$UJ=!rn zSM%SYs8xQM+LaU_{!yC0)}=tk0M|0pxbo_QYzih0-XE`(A7qDeekF*r58EUrdk#*l zx}4EOpH<*}PS%F23eKwL64`4F=cOA%5h*{MMV%3R zMcs36os&xyp@y>{&b?ctj7%WzuU$CMtU5{DlHkEKap-0LNj7}Qk?Anqa9`X(@cE!&&@ z?L;v-osJWqf+hLG5iYqnrg;uMbw8n=`H85&#j-p{8?#C0K5i(9Y%Y;kN!Rr)Z8_3w zy!J)KygQn#Ly&Ew8h81cOut84+C8RBH38E}hne)VZs+8xqUz{l2cB z5fv`Da_Q4k?6Re}WY22L8)8P^iSF1dFc98thz$4QEsJY?NJ6JI8IwCfD|Ihh!1*Ln z`sREwXW0jr0zaQ})B*`xk%Q^Yt_rSLShwqb*S)*jUib1!ZbALPRlz+1!7uZxQoJOMvgjLE#BY9PR!Q6irOy>kQ~;sK zy}LJ`(;4;Y*c64c290rA+<4%zn6yc6XINZ(fmt&?ddqq4@7#N1h^As}GYJQuH9q6~ zT6~amQZw?&HPPpyLKybU-S!>i6Z_z|!D<3O@_mvWcqk)pt(WY}wZn$kPO70)&!m6&#^r3s`NnUhXGL>9%OvdG>gMPg|sl$F7Ew+#iZVsEfMss860+zL0#m zmZs3BQ$y=3l%?8R^1&@TbwUb4T->b)vY=>%*AX*~2Tybj?lZXrd!L?vmcCl(DeO|p zQ^@mln%vY(eSo?P$BiL_if!k^+&66zfBUeTBe}#yH5PS?cdhoMl!`6)u5(n3xak#m z(t5gNhj<-jx#d?7u@!}F>Pt;7doJGKCnT1cj8lsq&ayz(-=1n-MLD1MNvjVq1+vC< zHCEY)E`E|v3EHUlnrBLXZkavn=$cPq(-gv@<-xhot1WUrRo`2wz{ciz!BTP`=#7^S z*TW%`X2U42Z&yn{+2}m-6sg%}3QrLnZ9-;1>e!_w{9<@#U+LH9KlrQta z6W5rC&v0)eL7qWb(`VYVu&K?7)x8Ea;-Y40bQiGxwjX@|1;J3|n^%>QZ{FaqH5X?& zxXJSuJ$4^+HPpuA&}L)acB|LXhPk{Gs=!7C_we;rfApRE$|IpBAghO;#^P8a3LT<- zH=?>W8XYH-{nWHpD8m<8`L(4z_tY|*C{bJ_Bp4iG&OJg=74$Z@ASGz+YX9InnNpqV ztU|B?P3KRXl!I#z0}Ov9Nx6Tfj`ndP9~3TGsiTVnqCgQeb;-|D`)iS@-`IXaKwvTd7qilQ#9wbexBC*ge`6{7Lhsp95@9A9%V5)ez}`xO8?n9FEy^ zhitj+Gt4f6;zlfiLrX=|cGfn%uS?nqC8ByupX;?1I23d}*W)^~6HIrfbIUN(D^D%Z zt-Ec&RV~w|Q|f~^6MKcQFvKXVi`i=U%JEe5UW1nUX#KUm2RPmWZ?m4}m=bG0F@MFN z=CkFWw4g;kAm)~;SHtnv7*jlXJ2@v(wyisBwZ1$c?c>;i(Z=l>@ApNS2(+)DU)dFy zPP~1Sw($>E%bH2A&=(}LianmRgvNKOs!Ns#l?fc7&Ws$x3P9(4#3?>Zh~GHiI@>eZ zCoPdQF0M>~Ke6N{Yx+WdvbuaVs6VUGaXY9^+JDB7@Jn!^;F8fV)oh~rdz1U{9a=}9 z=J&Ok3Etu#LAQ&g^Y8X+!P7Q>z280D8C0!Go2>(%wZ(PKoZzzckeSzIeP$e9ny!hP zOwFIvi?d60QI!9ZOKi5gs^%YRnm&Cj^FE`H?nL;MR|0d!eEXI|_T4uvKY%>RTfVW} zzW$oU>|xLhn?UV}8=ocr0j}bk$(W{b9oSVP+GUTFha2yev)#~Ty!>A22U<8Fr^m5qcv6f$a|j6SgBw@UCK*nPy(DdQGn znDpe;t2h4%PlYB!vA98>3om40*_YGg(vAg=18S;mk zBrl(!+MC<6kG{n3^|!m*dYZZ1(BAW1Vo#68>vwHRNVj(Mp<-n0jqm8M_DTkf0zR2& zU%u)CCbR4~hF&3#Xe}_;r|uo88k}f_P_yux32haoE=hjfB~hY$Kcj`e?MwCfR=!~n zEAN?@`u09>>R3^vEPgF252;#~$QaZ!Nk=Po@HEEqUfY*5H_`<}lo@S4xP8I@h~ z&j}r@!$hpZ)1cxr-vx}XhRWawpG4bMbyYcIbtg$)+=;fm{H*QdjW6vVjLs< zlXazK>f6=1*Y_=byA|F)+UphHqF-|SV)d+yB+_PfqW6rWYa-|AJ9-37ie)qI#p`;G z_);qS7j~4msmNx1_PtI9UlMQrh^BZPhahRLc*&aLQ?Flq;&T4N6EE%P$zW}`&&l^ z2Xqs-YM%$oo(x zK~wbwR8T%_@!}`M276Gpm)R8BPND?%@saS^uV?q`Cj2&vos->r0DhjdIp7k|+ghEk z0_j631^}aikl0aBhq-Ta%l^Y}YcY_Hw|kH^F8xfDUr$0w^r*uAL05vDC+kTKA_69~6zrAWn&ih5^%@YSbZtF;Kc4^qsJPJYt z<;Y4*%1U0F?>>xd**{!Wm^y5FkzMuOR;Bs+`vq@(56CCTS4th@VGB8I)5YZ1_Sn%$;bN?9Pkeg=cTvlLIH!?R{?2Zs10Ju;hC|<>FTEP%D~fbDnCv zcHYdYLB`pUd>>Q7%p3y^j+Sft)!I#|-JX0+<+qVr?ex19)wh+9O_`5}g4!%=o+%5C z3NOj7$UaS6sBfV1s=Mb))@G3|1Po$&O!(aV`!C^it13U5jj>^#2ImK013W&ikMi07 z+`hnWcV3iydNV*1qU>}w9ojcFGFf%jd+5JRzLdw`tFQnbn+vrke$DdeM9%CUzIRm+ zLQR0&u$zd)t9pr?5L}s>jdHsCF-gfRF0qj9V&US+bJjAa;nC1h$_@xdp)wG2^7+N` zIr67%ke}1_%aQ+oST6S4aR22TfULNj_}^v*{+N&d+q}(xvRX_=T<&jE?=ryD`@b<) z{m0aU%pda~zpowpzjb!HALs19XQ%)FF*|*Z`Q2^mFYaj_R=^7Kh|sBJMI^X?KN5zI zr5i1Dv!zy*TXE-tP`S@IA5HeMnB{oYt=NRTl05l^Fn5TSy&ttca#fJ146T3!uZi_g z#%5S%#z9<3JL7Dq#fN1=l=^IFCw4?RRjrsd>OV}bHBm=BY)y0hHq6lb4)lyNu%JT? zIg4Q^gy+W@#Z>^y^tn-1#^}2UPj?kOU35<1YaPa?`+JW0JILzHF*%8a5mj!3IL`?N zXWM*ymL+r&;J#ssT#1Cafny<8>cygMnXsJb6?jEsZb;dDfYtSe53vh23t4Mfycs`u zPSi*o9;da^aOr7$xJmi;E#OCt7SO@a+xBI4)>Z8sSA~w9LX)cw#^&+*GZb&A@{QN$ z3T^xxSVFXg=F;MEY!H}F) zmuO{=(f}xeqRDp+%J?Ic2)Q5avnzY0q20w~au3SUOkJACVIEe~ocSrk(S#*p!F(4$ zYdvq#jyYpOCm{29;hd)6!=?t`2D)34)&MavpSPS4f4J zhwX3cgHDs?qCXON*n;0tYJ+B&mhKP_Fx}xi^?XS((<$IM~`=+ zq8y2O0?FFCCV4Kmd9<~!^q^KS40v#GB=$-$Cpz4YF;UqH2pH5d8StbxQhj`M^!rg* zJbbi%=F^anE^lMn;%hUfOq{TrpI?JbO>BhEu3;C07@OBUvq3(uRAb;tKAed#&E+en$KwaG&| z&oo146l1zzbPHQSFksPq!Uc#%d4#tkZ@(wVGjS%v)q2uF&(|N?Ve&1_Ayz5u zVNVF?k@>q-z?bc&g4uv|@=(-qcNIB0e*g;xAQ2fx)H)fmec#_Z&+$Rs+lm$*iDe-@ z&gM_jw4<(Yp;3m3UVyaFfIBvU#TOuEz!<#hsW0Go3TEDIgQ4ykOdYDw_V}He8nloAnrj`hb1k$OnQn-5wBbc* zx1%13dU1~Llp_G1L25Nmli9@5_E+WiYcFFPmDp4RDmAxPfHk= zR)!qq)i|Z=+piQj!hgW(z`OeS4Q$E9@5}=z5sXp65PY*)7NZJ;wIVBVupT}_qt3FA z?@5%}+oFWnHxCS$NghAM`SJYjD44v{70kE|G*UBYd_Gy_Axx>8ofYj1-}N_|3>_gk z&pZ0@%OpN9_)CP@;Gh7Dx=PX_W-RFw?}NpkHl|GEt1X>PTb# zS!Dy{_d!)qr>E?IOM0JRDNoSI2yW|``?bA235LB#Vi{kZPJ-6Hi7m(-^-f{9fp%;# z)4>{$a8zA)o{hmP!AMWEX_bof1US=A`!XN0X)xD_R(J?^a7Bov$ubQ*l+*(O{vsV5 z=LxXYqGJ}Z9h|k!gie-V1BwrDF~WdWlW}FGH8#j~4;OS~@!%sm2F97AN4V@(S?jJ; z8o0V2nbpijgT}gy(E|H1p_0Mwk?_y$tI)X4E5RP`+$6VKR5RC-gqDXIwgs{n0zI9Y zn)CQv6H~J|T`Zo-^MZyzU`-QSFn|`0wCs#l>rIAU~ zBa0y!auV>_7LNPepG?sK_@(duMnc=SJWmNo_Kh&D?uo&*c6xTXGf1NKnj>yzbrBd{or?n zWb~0-VId#1g6qx%0d$AE%5rDUbE3to&}c9-R9TL!CAZ?J^-+Okzg_8)dHs*0zVo+3 z%4tkGnMaOUQqu0btozrO&@g~Tn2Y1j1_zz&Ira5NX z#1QSOY^DYsPpL9xf4=s4K*elCDbywTDgp=pCXt?2sGDnN6J?w#1Un7jVPR+yw)3r; z=h?~ztNF}JXlSo0L8jKY*>|%^_?071BRv`OWrNO!Xi1^@dOK6sAqAPEn7#{8awr$z zK?n}epZV2oONEs}XZ#qw-`R|GPH`d54sb{`^yXSz>LsWh-m&2R_40gG?g3wzieLOm zdOr*a;8{g4lbk0ihoI_iO<+7-ih@O^AhpVO;b%#b@-pW%$D>V&3nTbxZ0GC z7wT|0Ie+|2KZaot?zV*VB|&-=2YYRk<|$(_cO69EtmXioPNW6KYv?uCzJyY)&!1|! zhSL;nNS))k9G`IsQ{f!;)Bl`WL7I)l%)9Iqqo9bA3V2nlA|pm%JEjhm`Sg%naT!eQ zW-6p9RQlp563US#h)8AQmuP9Ce5TffY{HV{ua3p8FtxG4MKrr%bZwMGeMK+Y=&R8A z8p$KNC=VV!nCQ}sONO8&z1uCNx3B&0D5(P|p_8}o4%pW1W9Y625Un2X(ypZ>vU4@J zj(4yJJI=JRz3F!=;mJ(1Dr&6$>NbP48ere>&+v?UHX#Aas+LqyTBXF$iD{rGQN^lk z9(nlaEM(!p?ELNQjr8Jx*&9vuo_@pp*R!oGJS#=H{NjoeKE>rasdJ@;IfhZf{)5{4 zr$_=$ecK**!zWi*G9KU>fyUI;z+$j&b%;|HfCi2@?(R&=C%He~0FBMZ7i*ve#~ga} zI=LZ2gl{#Oi2{9|KbrDAMhNLuQ@m`k zt@ybKu`7CX7`))0L^Hf%oUy7Px|*4Vn1BDUTo?aTOHrxK9-&zbG`SB=>jxu|j(;DQUiiqz=+~$Z01(Ng^*)H_N~60CDU9_u=!}@MOYEsVWMW6t<420?e^phO&ZWgO^ zEPmQAwqYA2Ulo;K4esxx2pzDkSpkGR|2iN_NwA8>YhXId3y`~o+>uS%EIXHP^D>{H z*hq+LaC6rB`To+06|_2FwhPSI>1>M@$nQ&uTP8%`12Bh_#ZW0dr-WG#MU=H1iWUQ& zm`vE5(|s1r^`9T1-{jK`9-=R_`zFWy4T9hUe;vfeX8<@JPr6ofYDSCwp>Jv_(LshyEd$mwgH=6OCShIwLrBQ@)rqZ*ZRqFU8;pkiOb z9KfeSmMd7QP)-1UpXE;|`TH`KQ&vZAuZivWo&{oD(Jxkwqa=e}0S|NoLx$beNnlKV z^E4*LS4DPYNA+IMk?w?np1t`i?Aaa0+kWae zcmj^-z(v>T{AMDlqq9_Bd!|A5IVLjif%nK2ZGP?Apv~(HwD4+sLH~!fcWpbH~Y_XJw)T4cwEh4n=bk^som;8 z*6XJWsPgGpF1zzY*ycMA7+M`2a{+pG*>(Q0gjGvzPr!@4+jN~-A)Bi(S1~l#oqYfc z&FUxuK+RaF00ILGp>y7C;q|syA7soJz(*M-tqnCq*yk-AZ~qj*j)!n%I$dMFi~l}y z5dAP1xC?Q?l=HOnE_z@^icLeFp)Y_0H5MMdl_P%`Ae*w{SZ)kGysrh z+j(K^m02LTcpmvAtWo(6Vuk33qD{KPQEUZv*83V+&ESUq2#ZrJv)>)Ik5vNag#bz& zI1Wn+fL$mAyCA_&@1r*AkU70ADN$`&aLQc|Pt~74CvP^^lgs4x?T9=@8oFj#@Mxv7 zh52&0003bB)KdQwUZ6aC6n!4qAs;%qQU}{DTT{9K;aUZFBPaoI)?ILK9s`nVJL4{+ zSw@Sceogz*>NCrb0{;(Ljpe{39@j~tUe%-u!{iQ&N)amqgo`fa{s1EhAtAuTJOBMg znb1k=W1I+p9_(Z2O$S%#fY`3wfG$Ok0S1*~P8nlXTgKb;-fWF}`n&kQH4tj^KYpgb z>c!oChhzO$cct-B8=4g*chmwv!89R=k^xk$3J-v<5!ySMN)yP{O4-5serGbh4XvBjOfrovk9NEWW|yf@2v*? zou0S>8i~}xQZH9bviZ8Tcv+z!8M7Wfm3qI6B0Xn0V)ng|jGb6iN$|)SS7?`w1e*Jd z6FbgMiz?k2THW>5L?@us(2;s*&o}7kfr%a!&Yk*kR?E-&+UW};UTPvoes1?A1=Vim zQpVU;uK;E^IGF6bG?=0Vnxx7GL`Y9XF0b{nlOp|7Fn%4PQ_@TB9v&ZyK3LV~Z7x_y zj(FwieR%$j4cR6VA_5eG2^wgv8vBDQ7zwP@1?U@qNP7s5h8&1u04UjB@EQbrXU5NI zakKM&3SGcY0B(yf=5??d+M)_0F^%CYHh1IoCAYmX^=8^e*f&|vb9s2fo}27d;0SAO z@3-v~0`xcJKEfXen1U8siR%yoIOb)nhC~|@6eAEjpa(ftyv;&TQ{T}v)j%3|XKf04 zKcwRxDtNe@V#iPZFa;fy(hELi3{?fBYzhhh^%mL$021F~0MYx#e{CNNC^!JX!_UeD z@eep^2uE>a9i}$u0!`140Jd zv__u+<^*H_hAAt=vKJx;u~922ooEM)%LQn-@zBc3;jg>L){FyKWo5ITr6 z6fNLCXz)&z=|_hEIt10!H*eGFfLM~UoaBzwFt1PWP*`hg$U`W-D$iJd7opH39NCRe zG5ODV`sa)nd=d>z0hATCU`sU6NAd5>s#0rlp#4#y7a(I)qN4T3j(Fpp*4A@V)4YMT zu|_xCv`i}1b>4J;wI8>GX8}+Y?3LU#VyqnYlMN@bb0-O26?qIMS9WuHi{9?5L#OLc z`JUU$OzstA_%z46WFTfo?@t7N=1*OJ8v8JLGymz8>q>gSyRl((U3C`T*dTk?b2H&ZhRuy0Fcetj?Q!@c{ zp-jC=@1t=aR7Sl3l4@qd0>>gIb2$Ad219FgbgTV5rqhlx3Q%}`4YgOyrrTHx20h+d zTSaiBZOs+G)Otpl!IL^Ii8Id_{^cQ-2GEJ3FjPqLjk-r~0`S)O5*{Ixj;4Lx9;o63 zw9FkE3|vpDbP+7ZyVlR0bR#80m?aUe^#JJaf13GUlnV~VC;&E$@ils+J5=C2&IcM_ ztvlNSjcF+Bq}!y~N?VXpTv*bdHD=q*c_FY<-OH^#_jO0j9o0z(h-E3PKmaKms0er` zd%)GuDJ&V6WzLk*O$dGrUH*|ZI=pCe9nEimP3!dZi7^GRdG6(Bakzrsbwof%aXfGobjjxCF!9nJt2)@`WlR_O+|Lk{+} zQc^Alc>UVFIdopgRuX6D@^INwA>e3?wS?!kNE5e^dX*!J5@4e#;6@k_<>vc!0NksU zG8#*V7DVLOUiIkUGp3$fSwKf04G(P0XMI~;N)!xfut1JvpWpp)D2I~V=h@pe5 zX7$RcEgnn(R1H8DFePr$pT@RX|og{z%|5Hj~r((29> z!`V;{j92=Agn9dv2i>@(Ws=4YwNUtn#p^J?82m7znm=u(I{(~IETYDW1gd1uvpYS+ z2t#LrAhA$oHnCV3;`ubJM#jS$+M696`NYBh$W`jjEN6#snX9wjk1s&vnqJHglI;WsTV|KdFY%tI-9an)0pvP9MQPO11 z8rC!;OKM6hCN=RhX#_G5GxFion%wuRKlczC5qMk^ajkSyFW&r^6y!Ol7xI0U&P40J zJMati_Xj;8ARRasQcl-bK29C}-NhFo6l9h1gxUvs`ZMMNq()z5!43i}S4Qm%P?Z4e z0LSw1oHF79*+$Pon5dtob+xv+P6~QJ(0;blINq+pu4NCY{=Y#n@oDnPr%iw{RF@Z1PYgFJ7Q()VThi0*n7+ zpz+_Ym5Gk%FF@&u=M|kh@8@7YnBm!{fYa4^6l{GB;sHGqYP3C#4sh;BtF-VMo$0py zT#8{cX3PR=)MC87gAq_gPJL#|PKB$!dt)hHCX51YxqM3ng=_)}VzQ*cRbq@Nxu zcFw00*O%64ZE_0R(#0&EiA{6>T|R=m_Z!fIogpr37a$WAK-ih=nsr#8iPcn)*0#i?PU8yVg^{#}UH>@f^j60B zgm4iy%ZJr2{k!upNF1O*!9FGw!e*aCPC*qxACW|u*cQ3-KusVBDamZrW-#MfI|Nzv z5fej;aXan&1o-Q2N&HJiifw?cz5@SDp$zLhGHO$~0F{gcVfD*SrvYLg!iJSqaW6n~ zipXPZj>tAVU>i->Zo3|$LkbL}gyz57IWW-*bq{%c88iG}IB-@W)m4~RF1wx=ASbht z3((Cmve}6{zo0w97a)G-Gb`BKo!Se~lvJ{}Z9zRXyrVHW?3 zbLwY_;t zj-VL>Nzz#aDe6LqL8&x$YQC%4V)i7q5*r7KE4JFURv-|__D1wOr$OT?sV0+WO;2=c zxzq5i@JEE9o5QC~9@CT?wLFlenC`5yfvED3N!$jMDmel})}$O60oZtFmPKVJRpATI z%=YV^PU1~Hb(}zKJfh`Dl$EX>M72@}(Y-gHbI+;cK&LbyNcdwV#t$5h<0Jbh-f_|A z*6Iy9RYkOa5YI9e-4d>SdC$o~4$NcnAI+V6VcKfUqS-spwv9ll!x*4t|h$uI2z zX75Dw5TqebU0E=wq;9h(j$l-%@9bLu2i>uDX?m?m!^>Z~qjivYUAXaTcT7Y>UJof~ zqiH5H~bxj)q(c_EiN`?g70ax6PI~WqjdAd+pmtQ78WX>e-k)-kUdIt z`eg03G!0@y7W~GNCVfNQnm{@;jiM?94a%o3!^V|U+ozsbpXl5RNIw8KgD5Gp#oYC@ znUD1QSQgaQCiS&sAq2afJ9;Pfb+GLdT?{$IpnXPHxrT9k$v#gYjQ=fmbqTLEc+^xBH#18;$DD~W8>q2 z(2tLj>^f6PYXj)khy?b!89u>D(|uk6PPM;AP6;(s>!xagu;G!kgIbSAAQ1@ zu=jbA-F3?`#fB6Qbe)dF&F*qW{xwcl?Ix#O8dH2*!#x)r<}U@nhUgnS7@d8Q>!~7r zHv>aGul5yl)*XxNwdKm;*sirW683hat>F7bS)aBd2Klcp!_LMm^2L3>1EWh&*DS+C z_XaJ)EDe@nqib^~#NNSYMMv=qL+tchl9spx0&*J6{#=R^n-$O}CXX+}_5qZCR{mFJ zPLTX5+Ai+KOqkF&mMp_|6375>FHDr-mmKpkz5|%vlM7Jjf`ByDbP1iD-KfRAm_oY! zSL`(S3|KCp6gPV{J~y8hVJ=P6RFy^QnAGEb2F!I*odq3|1Ti|>QGcMa@J=_Uprk(H z=EpMHXNu7qL6@%#UFq^~im^PS$R(F{hlw{#bnOib|T zy;4VUWU=SC2mpKTwAcpPkp)oKk)JV^+@xbmEcA`6Oe?3Z&|*Vq+O7~deS?O(4-M+x z1+MmZNY$HD^ds|#a_DG|p%%0c-uQ@%h00+>3_cigShBFI6I-gcZQH3 z$Z|i{P(WazuM-eT>=%MgcuTnuYo3GJ#H?;^dc9i5he@Z znOxVq414H-S`X&3cI}&?DVVpH659#8Zs4kyf_dqCXoyptqlp337RtdNeSv?m52gyV zLM|#bbam5f)1&AKaoaG@Qit&!CiD}sq&)C5sW!{7m$rTmW4nhUCwm;Z$sqb*;?x|0 zN{rjP`!4$|!;%NnAUOP%RF`v5~t+eYI7HB7C9w1Ja(aQ)Yp76dUySj)GzG@6^6 zA8D$W%ivTBJ!1Me1P0rqV_!$Q~KDABub=JeQDBuevhtxUHt#SLp4-%xo#E-4$cdib0m*rxnlwHj^Cbku2 z-F#%N+kI~GR=wke`@H%w!)GbqdCu)4?cfpYVkm*Z}J|VeMpQFK9qD)#4r9_B~=T7rp zf^&N8o3cb$cy9W9EkR*c_3-AGI5cjotCKSEUOIM)L8u|$zIRo;;eL<~HRd z5F~IzKeY7cN-9UOR)JanvsSv;-p z*~q*Onc~#KdGCKFL$M}h(^4nZ6~^JbRI4USzI7T|bNmpsK_p?VI$now>%iMK;F?7)hi4Z8`nrwM4c!SnHWajJzR_z-}BRur% z(r=#WnE>7)xxE)Rsr?dlvvK||6)`a5mqjitm#JPdxg*|^!E1_h*}G1RXSho_-l|g| zJ4s>a-J&1L;65Kkk)%rA9=}0-gDKUB&=82_8b|Qt;&aSBZd4hQeGl;yNcac5A?I3-HYoTAz&TUAK_NF5!oAG1%fg zSB+mJZ74Lwk$D!EVek00wwTzz{~l8Q_rM4PAP+9VyWN~Sb#;kCnQ2sUa(udnZW&MF z>`eKA-lbo?JY*QN^rhcN(eU zp-k|>=MN8zFl{=bQKIHh3OU9zI=}_#yTMhjvW2JA_fpcY(>ZZG_&^f{(RSTkYU%gG ztm~xJ=FIXVPaJn^7T{p@Vz4lJ$i36l?8FzmQo)~ zhlCHrFKz}*Y(6yqCSJhnQF|^xj=dr)!$UP0Y{ zCh8XJUdE7T9{EVZ-lUuTYDYCQ>>hO1LDufaK%|+k5^)T^pLfwB)31!Ziww}D zR6&f2c!k*3CjpcgTOlIaf8GhHO0NZJUxQtcL+pvlfwE;7BYLlW+@_Yx3oJ?~t5U80`18&8K*YayNZV^mS#5xn%^8sII5v)D(j z#4pc1ko}C$U7vZVR2IZN-lQ%_bo#VW_EEZxX_xDqSbl83!`<_ykvn9v2QPrwXXVTK z-<`F>bo+?_qBGuU;7#HFzZpnjwsGUO(lND>blNO5~(o$mL4>Q1Y&dMMET9sw&7 z9Kda(veCjI+d`b5x;kMdKz$84=12iCIQOO9^=^+FUCoE`;zX|6zubRUnsw594WD`T zYtv8FVjWti+SCO+rlmW9oW=)3uWrUBD9_g5>m@~-g;s#X}Fzg3)-SNm;SZVgqR%s@YE!A~zr0EF;* zhc@k7h(WDJ+(a#$1~V>(G<$J9V}PMVYY!^L59qhjtpF70-2DsDGwfe@6thM@V_#UR zknf(4gB0Yr5|W%fPt&&r?&#d9skPrbynnLIzUGgV3MS?!&PSwqw(DyUfKqwSb171} z-DU)_JY?WNoG757drbO6sJv`&6*_aF7YN_Wa7(Vl^rFvs z+k>Yv-UvLE)@GPak39DpBD{}gNN(Q}s%w7m`j_DA=`;FN$ytO5$VKv@F>?T~3XUK8lbZZiqBu(AP_wEW!-|epkdNkKa_=Vu*~6xBK2={Moh#`_Cv9 zR5yir8CFw?Zo`v|9B~Vq2=!j#XR~@@(!FsYlir(4@Wd00rgVejSyX}Bn2h8wnG#3u z2RLYZeh$%_x`f$QRocJ`nyS5AenDW%RIDMu%avx_1)6dDw`R1VY@U}NL%!z5g#)}j zOp9Sd4BNG8)6Mx>uOcpzxJQw%pQt0LTPUPUN>x-NGYma(sRvzLaT0q9xq^#)ebS2p zR-oidvR`h1CLFoGboiepTxG@ntO*4Wy_r{5ThJN-uB40~R_I5MeTS%~Qf!`A?ijzQN;#4qy8 zYk*JSe^M(cD4vMk1u~$%z z0vjT}VRWErCx(*@9`W_OWLY9KAnL(VhLr<}{Bjds-bgpoX6bXy3-(irUa$Bi$3)C^ zYeYJRnm(IuJESbUUTH7r&WXT;I-*s9ImwHvyow1pk`@Pdw2w+Yu4nl1fPMYTyXf-# z`x`1UA05+SxOieGL$@86OIR|b1ox@(y9;e!-D%C%8x9dgW0Aj7#_^#_hK~Ai# z@6D|@*QiakC6mc3=4ArZr1zdhz$-_{o8!c(QhpM#2Qnx||#lEZvb;R|2u&E+GT4YY6&fke?;v>yPtrmI>LjWZi>4$0BES2V1T? zc@Eyn(%G25UxLBWJ+(?aW~>YL57zww>qMa5v@44M>S$1RpDmC*O!V)j-N4kalXs(p z+^O79`B@jTDai32AO~Xu?+9jJlBOb;bk&hTMzd!4)o{36y=oHL9n;5q%T@X=JYRou zDrrn;Pdk<6Ktt&n?c*q2l_A%t&_#CU%FbMN;1^CLm*V`fBIHwq4;G+LSAG^H zho_fcj21L0&+ITi`@Y;p6nbseT`G3!b|~8aKk2)|zZx#^Bx_c<5m* z7Dj%Dg@RvZTb3LIWN4J%BxJWsm5HFC&P7)254npLu6lJT(z(Cba^PrF5yHV*V6(-i z-1=8)?a>o2wV5jzn?>vQj%>ihVUFRbgvJ1d^TQH8C`}Gx zM(MO^+U1e1CcVq*~+1wU(2h9hXl zB1#IFg3+>LU^vfJVnbiUT`j4t6gQO{X#MtxPo7uhR>S>+K=k?MRYqKT~ZyN52 zM7((k`-gP@Lkfr*4a`tn=??J!YmX>3ERP2gc$Zi)Oq&_?IXL*RY8WaxgEE{VWS8QB ze<^;Gx^pVJY1Ois&Z%C>sC4fR#)1l<4rs4VfddZQl6PnN=t

Zgi6hNFyW;CPU zdohie!LzBBz%MZ;okuJjxCAW)OtdaJZ$7c;WHX4?FXPB_(4=Zlx&l}1ZanTAZ-vsP zn4sLj07>=$lQzrUWG>2yiCK@E$BFE>hu$_)H@Ygsq>gnx2w)k~IZY>RL)S1o3ox0M zWboFYTr1KB%im&E`6=tkoN5jge9i$>jjQqz^c0@(zG5XLvN+-n+zwkP5~noay`eTL zOlJ$j_DlOeygI0wO5b>@H%L*dwFpXmNK2ZbYI`~)jk)txRn#*|?HKk_Z@k=A`{ASJ zCYkC7p82d|llyt!ewx(1@8y41|F*i?D3Sxa+atatPuB|!nvrCcJyjgs&vBR3<^93w zdC+Z@hq<|>LU-i$95@H2Mr8Im4Ro(gRkUl)gO_f6w`0dZCX*E@>rgJlUXkC?h_Ew*M*|A>KhWGI?7cz02`U3Dt)26dFn$||c<;5~ z$n}s8M9^_w)QX?P1E#yGEPjRQemXJFC*WkcWnjIIU06@N$SJ?E+RJBWjG-L}!Zf0b zpMF;nD49fErRlQTRFx1C$T1|cuIR-!#OeaMS^Gk)mIJ-mWEmE(J97~lua_QyZc`rt zCBYwl9{%I?kZrD8APfjCMw%!cP^ug*md-S5y$oX;pe5i&eNZ6tTPksK88#sIv%;9R z7=Ha-D|%WJ-JJ}t3Hiw#HvZ&-@-$mR?WF}I-AlUIe<@pc5#Rea$_t-pg%;uoDf+eI&hxKtGh10)f$Vjq69htJ`UD2=CN{=?0=YO;pdfVR041%9O)hP>@! zeX4dJ$jaKcDeW1@2Fy*&d;JjHtVNN-GR$gXhPE^8l~R5@eK>1yuwBpD>%fz3z9yks z#?NQw#xi0YKGL{>EbkTpPGkGL85p1nK#%ZhQ{|X$fn1XtA%xB*1+%L$zEWg^MSO$yo!f5p!z`^M+Iumk3tMUEZJR(AS>kqf^}k+6o64B{=&A6Y??eo3%MY#HVg2+{ZAr0tTv z{-n=8zxY3^R;QiG5+86@{UIQz$_=7FzG?rmqk(ALQ2QqL@x_4S9x7$W+_J*hHi-GO z@Gad~T@sWRs%9tM2YIHK@k@bZGjr0}&m!hKhqaI*yut8Uq6G-y83 z%*+fHC`%SZLg% z#UC7}p@ZT-EP5FYqRq>$|7hct5-E z=Uqg0f0Q<`h9}G36@&z)XUwOc`23mmL|gyo5BpEKbt{Wq-|o2m_R-IYhY{CIZUY*H z2ffP<+KPsg`TNvU2+b$ji%gOo_@2}a2ud0h`gx?8l^pfcHBH>m`}soZ^j_t&8$RDs z#n3m34a}^kS`yhSq_^1Pd7QEPP)8n&9ncPN73+-wiw2(=<7sO=%g?Ib)ik9Di*x;y z{@CV0Zq3ErLh_g#hZ5)lva`J(Ue<6Adn@>DO zQ~3i*Vyk>`L8ltgwk1UTYMylPWnutjZVn{Vcm6Ub#h<@3jD?Uz+^GOJ?HVY%K?S|U z`A+q?*IiOV-QcXoELdNg3?3t54jfuDehXs z0EW+?Y^MmAQV2MeQs`Kd;gG3p_LU66d18KkDQ+VKXt37yvW!k&#ffFuv+TeC?%CSZ z=4IG1Z4r{b)uIvP_t6tcFo1V@^g`8hDQyxk zGOuAVv4;?Nw()#+c{iKpJw&Y z5cL|F*cadBL+T~VLWHt`tK^ok{^3xxkhyucjzcf3%c!StB1HU|%-It0Jkp}PM8uh% z1ESC3O!aH^I~y=`KBz>CzKMz?SI4a-%mj(yh};zwL$Q%AbscgvvzvPOOMbOWM~$0i zkGd(l)&xubQ`a@GC{JZ&V#+tcKyRb!Hza$FJlp0to z<9LxX>|kej09g{O2^#Vgr3KWV=MlHCLMF%{_y!a*QExz>jm6zUvy|azc444VVevY2 zzw)CZdod0P#guH1^Oxe@4ixXelZ1)3lVy7{AiF930izZY9j-6~##q=Aains-@%tA# zpZjQExg1iRDC+COnzLr9XGL;>e1y!&iME~Mrd&XsCwvK^v!k0KUPtT}kLfo34S1>w z$SGw_7Afte?s}>##~*H#^`LH8N3|$*9dDSE)o``sJn1c-5hXzYekq>YqtLu@QoSmL zJaa10w0+0iVE9z~)lRdH?J=eSFQn3@lDfAVsay85$jZPLXXqQB_o?v$ikJXGqzfo{ z8qoB60)Jx;>T~c&^m3+X!tJ|B(z2&2~@|NFgT^8f% z8-csAGn)pmXz~#m#Lz&{FfWK&{1@m@&{o9{Snx;RviRTUNq*c$pGSEu!@{NpkQ8<# zGRiX?pLrCA6)QC$R+`hEnphsJ)tR>aXp zaTpy6x++0?Oyi$6``IP+iZw?TWo((r${786zW593tz~3y2HvS$%I-MCV8S?j=`J~-SYk2>Kbyf&@o^E# z!%V(}#uHagcm!Z$WT46BdG%9!k{wUOA1?`Nalb<;(9+a-P&UML5QtIXL}|bn1yHq~ zOR7yrB$54^mPqxdZykS7A$9n^nIxSv6rutR>3%pa~kYaOlXO3^_bAR`B8yrt+J#4p}OD*f@C9CAVYr`n~` zS+AtR!hq5?(~(G}bH1Cxbi~#lZP^sLod6T8 zhv|F|2G`*mz+5wH&>t1}g4%BtIrp*iciZzK&f{VZwn;7QoJ{WGuZc)-+qk2Nt*xYl zNuXW-TM}Dt%^ZTtX-+q^r6>Zyw+vxqMesd(U~%r}#=tc_SOGZG`+ld^kbF$eC;F5v z!x&K8_Tu`@Q)Be@?>foZMpEQ$R(V_cN^`Ahu+HQwhsWWhLV_%noiI}FAQ``T0==1d zzG6p|Ya$tWy7ls2&NE$y-N0IxVf}Ku{iU{FdK$6LyOu38>7>pv87D=j0@8v=i?^GT z&|@vnFYlzg0!!j^da%V3J~Q%xk%S6Dv;0w4DJFx)k*v2e+p(v#JU8hV)`jx>DzUvC zm;89i_5_$~zBT^Qz|NZMT0OvK85n$@d^Z`EsKPJqT@hEjUid(m`-1zPcg(o~*92nx_?r0GuEieer8}@yok~e0&M;&@ZVA9f-|MPp>cN zj!6=JJ<7$qY>#@ zR_YTD?X?O0_EKk~oZ4uCXUt}_m~u%s-RG4r?M%%3eVc({73zQz^ZsLCcL&67zW7-N zS`uRNl>|MJ4#yNq68E&zzyjn$i`h#ofRPRLVkZFBK}Q40jIz9|1AOBPr}jN7M##C~Y=j~}9x^8{sK59W z=>hH06qPk?R7i+;9JkqdeQ-kh80UB!51EjBmt`@s@ocy1VmGhgG$anjujXRT_KjyF(p!5weqb?=D2JoHRp~Gm)iSotKEX zTmGTJ>#3dWXr$g|glM2=#`LFs+v+^a;nV4;sNPt3DKbxg>K*}qifo?fVGBAnGs0F7 zX%HsOWgq#VD}?J3#`=0PHsZyGcRk7P_6la~fP*>g&Id7gUfWMAv6KaRqm6YGHIxYP zMSQ>hMk*6owh!8DzkgertA$vJnN!46_yZG{Q(DXg3LCebWZQ@dQ7@;?6RW|@cPiln z`dx@jTpt=LJ7ftajzN;})a?kuBW+s9AXMiF1}M-%>bk2svqO5OGx7&|SL7DV-E?Na zbh02QOmr@GHF^y#VThJbk)&^SLQuFS3$YNHPB94|nj^)MX~Pcl>R(8XWY-jwl~2E5 z!z~o|)d9+xI~?R_J+{_`yVfkPMSC93c~1?j$qe2}Y@h5TO!WJQ%p-X`V&18PQM>^t z1&t>8Sbfdh!WOwK{ww?RMYoBTaUQ7@m^;XWUJG4@N&^W<>UO$2bvv#@0nzo@d8r|n z7Kc!A$2~4oUugSv+!8l8?HMmgR>O76DRVu3?LF6CUI^V#Cdp8;&Q`c3SFq=q2`Q^Y z)v#gRsCAg~miSx2?E(*s|NF zlyC3MUb%N&{BCadZRMxpb8LOp_j~x=^i<#GG0|6bCx@JVf%hXhyu>7$+Rka~7kpG+ zSBB5GH&ramvwF;sx}A0#yB@WMn5Mp+AW`Cc2fLBTo#VX8EW@Xd6`@yrPr%95G{N^Q zqW}lnhTis+@!yoku>YPYn$5jGxdI5-SP2$Ycd0i0tYW20>yw^cALom0GB-c`p@c*B zEsWtsX@kZ1xf-09sa9iz^c>IY-$%{~S_0zDh zywX?6VMn)Oa(8CDa!siWPu`jD7Dwt@avENEduObsUQfkTKL4iYqL35?h7xH-Z>GO5 z(DaB_!zvK(d=c71)ZOeyZ)w@CD0{>!@$+lx#CJ)#H}$p{%fBiJcNH&mmrGv1;bq2c ztu4kjfEV~p*!$n*_FL8y6ifL+{9QVy7vQXrO~>c4{FB=KZ-ow1wp=scw?+vB)@JB*pvTVoX@!><#C<0yQty`~xW$H~a54 zbhC7@$U#p-kQK6}^^;{^~>m;9Q`)6Frr+^Wvi( zZQA%39+3>^~dD!NX(6=*wk zl_DVk)gK2rpca+#h-tX(Qu~Mae4)_(dXs_p$wKE|FWZBJF99~>7g`t$|K zisefn+Bp_veZ0vv)uFpy^7?*EmuOIDf1Tu-qD>KEnJHKnJG#=xB6dMsxikkESxy(@ zQc)w_e%g>|DtDL~AT?ZAc;%g~)CdPukULv-YjPgW2$fi)cb_32lV-D53eFu21T5gsLfV!bByQ&%zbSFp5R%x@*zv)Q$^!D5rjOb??5w@gKfyBI7~rSpmOgdPbtx6kh!!Z zh@V=FSEx-+XJ>`Va#6N``?ZG3fQM10^~q@&WmC$A8F_4@2bb`P9S)66gt8)_n~tgMmJ}&W-#m>Y6YYa0H>>x!=bV zzaQ%T^&IyfqLZ-*&kT)hbkwngCn{cfAfb{s`oe9`0pj;{|%A&_g(V) zZEE?-1Tf;=l{k_R7HDGbNzPCIAuU4@Vx!CJgRB`-74(aSJPc^ZXBys@{#kbCyL0R> zz*zVnBga0(&k{3KT@Yw{rPGzsj&$!D+#phu3h1^b1C!bt$5-5v7!Vicmtxj|TuVj7 zf(S>^S^=f~}Fa0YqmO4;>{4^bg zRDnu%xbk~|$TyKT)RuQ~0X~!y-E_3@G7RS(GNt0YNcN%AnPLC&$N$jLXma%CJfP0Gi4gcV1HYCX3-NS2WLj{NDJEqw=8 zY9Zs;i6(6?t?9VAL7Kw|7!bLn7N5&L84lusV*pYN@LVPz;~jHB%Mc)Z1tuQnD0$b0 zmJF^RDv((Sl{R6Oj6r-_9nV*-jqV!#q#0BmuDF33*-es^Ool@X}L*mZ$gYzy?4Z`aem3P%>jy$j(+ zog&M6^+BC;y{?h>`WkpYT@sS=Lu?q!n}A*@_`m9|;(F@O^%5IbsV|ka<{mQbJhl}R zgjGX#!TFrkcTlf{^z8^D3=fncvvXs!9U|#s0khyd z_|D#@M9XN;K{fWjbnnH1z4!`Nl>w*}&P;CB<_r?6SWz^ zM={KScx=h?IjZ?t-2n|gpK~v_REUTkx+a4>Zot%l_`|cC^phUSJukmy&0NDz9^aim z!2>T=Ef{LZpM?gSo8Xkm$aU?&MDC8$_VDho$@7-?&n8z^&ErforzOAqk%}?ep zRbSJHnXX@`5An~rD_3Vf&Ak1haWJ>h-ji|`<+dA=a@}%(^XO??1@Ca~&7V^24|HlrHc~k3FmX915gU@+mT5aW@kk=D!5H#ob?EHsK!vmQPJ1zuYK+;+oUfzO*!h+p}8lr z&*pB}WX5T)a4pz%h>^}ahF=H9A()ihP<}Y3&e1p}rz^H={d=B|&t#^>ur1p%!oCWG z-m-^4LMTa!3{|v^>OSCf%tEa6v*5jpxWeGto9*|^w1V8q)~aUc7Tnsrb*||xvJ*(2 z@MH&y9=Xt%FyreQYow~1U{>MfmFR#KYAI5CRpKPJU%aYQp2b7LPInhl#^A*f*|?ny zZFWxu=qt(uPcSa0tL_B380t@TW+fvlqMyYv6W_K>Dexd0d<`CB!Au(qD`%VG|P0>XAIp&CWPp9?C8VbbOVD zdfOMO2s6qX(%rRg;WW(fEYm&6uAZwDmy>@7%l*l09MccqHhKVa*D*sZK-PvE8!vxf zcF+B@N}yjD$PS(kuj(?WTA8i6tO_3IgVKdV^vsQ) z9Iq%#-B%cLvE>|?{k!)911>S37jY5MrFfW@ie>NiXfMkvNRNzgO}TW#OzUNZfcsi= z)87O_P$n@n{enC*}SXYEk*Q50Lx`#*e@M+%2eVH;5GPm4KTIfPi1~CUS zz0CMkoD8Q19IBmm*iZF8digoCy88Yozp$)m7))HF_bhNaz7LcB8@JVgNZcErHUp3} zhx}T~a_6*O?k(S;L&PMoNRXM+o~Paim8#d-wzy)RfFZ5%nNZLq@R`7rf4FVvU8qAJ zRrLmxv3w!x?2SKj6Iu!wW1e;ByfW{3KV(}}7;XRgOuxwcfR|irl(*Ak0Z2u{35NL2 zkWwf+stWFl6%6j~13JM@ib2ytthR9h@rxfuzJd9YP8w1{=C$Ktd{pR!l#uS3ZY5GC;)45Wu3yBNgsj?PI-$dTrsXv2!U{wNm_ zQehm&4(_MUC4Q6?#61~_?A-H0+_%}~CMZmY)(j(g=O}&+&d$k%P|%GccF`bnKPbo6u*6+~ssbIzVA(2S^71gLWNQ7c2_c z7(d4YI)r5EZhcO`pF>uUaaq__5{+x-@*kXc(K7cnbmeT`T1Mf+H9Tgs%H6PB5bi5F)@J z$h!KAb(L6d!d~ALja0jmdH#vk<|0i1BpGN|t>cs!<5iUAU&mU=PjW_V^ncgD z43%y{()qvysJyWwB%v|{seuGhcjUvJW`P~thn&RaE|P(FJEuy+W9!kqjR)ZYIDS(xddHTED(60|WNX7r2ANjv@AHLlAlZ6FW z7xPWkGov;eEm@hyVJ@f->J07L-+xXO`A+va+?&v%2me>~hW3hFSWs zjkWUy8)0*BVGCyIZ)*we2fuTYS^CJYYY854v~sce<)h5%>de2cg6Q#Ns$|U?7!2ku zyo|Yg^xzuUmGc`Zur)s`&&mZ?%Om$&VPyZ^!u*X@5?717f3^NVxxSTC?)T;VPhB(7 z2`2l`nu-52)=Z>Bqu-QTUlm*by#JzH``=R!KL_9yWLN<#Wo7x_5KI2wKr9*A{eKyL z6@Cv({|bJs&uv|wbZ*P0BQO}llb_@6%9U1%A*1+PDHQ+RQv7|~U8%V5aaZa01^f@i zUD%y}aCal~Ke+pU5|>tBohxb1fkc45X|2TsGuK?0d9hcRfyz+c0 z$SeQ$fc@=I>$?X`Mh3)Mkz2PD&NrBBWDJgri<{8dbbo({@@q54tLu)I z^W_~Dn;*WFBEcyfHl;5800nE3eClg7b1x;&!} zqpokxnFz8r@NR0_n2|C4?2MJ)7U}IDs+eCTg_S>m34}T5R>ZSWHF`xZyY{f0Y1H~W zBQ`}kY3|v5wea!+f9Bik!7={nrw9{0RsAeH&C}>AbpGZThmf4~{LmeJnbfx3VrA!M z_N*OH-dgYFOk}F+lKL_wGLU}Vq_qg%AJ1k+HU{}`p6K9YhmdDB6~0>T$8#Eaq5CLL+ATz7jMkBQN{S9_F+=PS&#s*vOExrbWn< zxpiN?3h5Sc3!2kOK8G=Ems4>3{yK*!Z^Z{kPDii|%TiNIX&+%*1@l8<%tJ`W$)a5r z^+Qi2UtYR!R;ng1-+N}te{y;@EQSB}aDn2$r4PUXJHkfP%2HMcJ*wA9H7zFWo&W=5_C4fYP0P+qjJtBX`1Kp*RN~ zv0-J{VsyZay0Ct74FRmsWo|~kED4z79Bik2L{rVnh8W*Y(wp*2)}=%ti!XbRb~n8_ zusW7a^4Lh_jfxpRsd=4Ti(^iFO`38%>@HIdEU}$7_hVn-Rc0B{7Z>DXv|!xX38*7P zcHeoGV%g*Exv?sGE!=J6O>Lwz=iai#2po`Hf39ZsiBD)rf9A`lf6ys^Cr114I>-KV zPz|QZpkBO=JRrI3Z1+?7UXfu0<%NYR)D9tvHPMEr~g>QwbBd|zXb91r=+|2+5DRJ zK3Xy32~jjIX-z%&af~rrblajk&N8zyQE{?%hCg@HP*j_xVfhqL0%Uh^ei#nBaN*oJ z9S@(L`bP)F$~lZ~DQ~}X?`Uz-xz{k5%lNUMvGWRFgRuSkf1_0t{+%G~ueZ|gZ1qaV z_|8@<{t%%3r`qbR|Jdq(Z1w*$wtDC)ikEnQX>LrX55b8|;m+?Cs&{!?U#d|g5q;`% zZ%nmCN9ECN_1X@EkP3GaU(hF^t;9`j1uFI2)SBeujU7dj1vU}heVZKW7%LlVD!d*O z28?ss=-baArSG~lZ1#9cl?~JiIiB5~bhFraaodZxV0`4A3egDtCr|RDKRmnpB>1{{ zQ2|l9G9<)|6fRW(=IU}~XFU6^ASmgvOI^&HG^Z=xM(_1@OV(8C?sOXqKM3b*v=}Mh zIKK$A6l%H-NY)AnPKxT@kyT(SzisYHp?dq)pyM8vVs+S|8vYw5Ouyt|?az`M&J+_W zu=f;FQ}mL|j$ZUGnT}1jx?Z>^Gd$OP1bwjK{pS|}I~f%6T%_-Q79n8$-Cx*8ld_ZT z3%m<@%*;N6r5#0@t^KvmrEOC`_28P4Dj4=@4Mtn9`Kc{k1;by6CRwF#A(i6arkdn` z%b?20DF0OoU-1V*>Cen3pzt5C!WcAu%9pKPXtfx>rGXXyb~yiIA^uu8ziMlK2@6;2 z?R!)6Lu~(_YHHm7VetQ_n416pGp9etp|6=lMfu+{iHiRgv$Jpif6b>?{DI5)Gf)zP z{Yc1ddXL?F=udq5I$LgJukFu#`p|Q|sG911;@hgx-;;9t7G_m#&W(=w{pQxcu=Fc7 zDlw5Lo&UzoX-Vs!IN_;$T$*jUzp1YJo!eRV7k}jE{FZv!Q@38B@N%{6$-9#+emnI2 zyD$P{VT{b}BX>n!!LA?Oz!iE!`(F`rzfgAbj4-sS&at1+bE`GCO3%sv=J6~3J8_xJ zUvI?kUH;XM^F0p#5T^a7;_$_PT>k$-IGirch#bFRa$hbro#S{{eeU4?jty3G&lH(^ zt8(|bD-hnC6^PsCFc}|Ia2l&hOQPDa2j}S4JC|Tt3Aw|$PtB^gXZm@b{cgpq#hrf{MqW8SKcJZhcY5m%_<2=(7VJ z8MbGLEu>|bAkI#YL8nCw$*$KYNm+D~GDY3KAtfAOuZ}Dfv5mM;$)bp_F}%edWS245 z&*Upd6YGV_dQRdsi(cbeS9z|NH3y0gBu8C&6=$~bOmbwheXVxbHAUA9wqKOQWAcc= z&!TPW+w4EHy=_r#U>!4IoNjBVzUz51Ttup9@7(*WD`!Gtk{JYgwye3XK?D;o_~xF$ zC zw%4^;i;Wv>gbR31Hom%_vd(GUx%=(gem+?E>!9KP>O1svgZY(Rk&#i__swya`+D>@ z>7xOVGBQgWSY5NZ>>~VY+CtO$vJ2R~F1%my*A(wbo9oW5*Q{;8A*B`PAAqOE<;%`1 zA5r?%N!PQvU~hHE*+bZTg+P&4mfyQ?^`Eek-2PuTEmm}oUz0Vf*IBU!EBB)5?C5;$ z)DrJKFA%_@e2ecP`GR#Ro*n$lVxF50JDfWC6|>)NNR zgnxCde>tis{42@x%dU*9F!)<3#maXLtXy1du3cXF=F097Q25oW9FdU`27jxCJ)$K1 z)ketd69#|3990(nrG8evcSisGB^&EszN+K2Urt$g<+b`buq!Vsyz=_Cs|a>~y(e%M z%8N;OJ119UXm~(xF zF*SVEc=keyTVTuROJ|c*^X*0o`>y*Jhz1%ZV|QkeiAXg4IR%4rha+fIL{C&c4!rN5 z|F9`}xu9$r-sE>>@$K9((kwY-x^AMbeR`r!Um8(?z*P!)>)m`rSD`O?emqr%$59uC z2JStHI#t&YPp4_QEb~H3?I+xpd6wzAU*OBiEk+yI&BiqtbEDa^5Nc-a7n?9N=Q`)0PZm*l@Cqqk1K`!OH zbTBTw-V=8s^C);El8)-FKP8d#YWtmu^zhFf?Oq>`eL18oIho)*byH0#!Hd+JKYyF8 zAOvB`b^c}(*QExPE*MKt=3Yle&-_GW{@?=u;E>3xr;-|l)F(uxcXQq}CNtoh(Vrr7=bfKno_gg_<&B@XZ z-%J+CNLQ6>R*v^NICC%D+uE?c|E<{$@oEL1(b#+2PY7r<#n}fNX0?kj#_Vn9=!hdV zKdA5YcHVn(k};wD3Z7t(cv%d~G-3(Av=JX_ac&>)hT%((AFefLFTT>%xzF%PrrIe1 zhto4YS5FKvdv|4{6?&R(ej1uAGCouiKhr_rKP2(cFk|k63)6{WC$gabmt>76cMuo_ zs^^ts5^WO{6=eg_lM0`@bjll#OS{AthEi0TtG6DDHTCci5Y@h~&IZSy`aCp+dp_lF zb;qTaa_XqtG*hlE?UOx68}E4Yd*7{oV(+|KayPif3UDYbB6ka>QkoBK==@~cxM;vu zG_!GvIsfU<@l@Z}ACE8xu^5k^tq3EXtw5a?m$dlE#jQDIkEr+eRd{55RJ@GGu+MY8 zaP0w!R^|j7C6|5IZg1IgLSb>#dr7!xo7Rt=%H) z2ClEym@-AwJ694k;@tM{%&fS4zmDMU`0S%k5iVRzT-1iaUZqm8_#x?PHh0i*k}jDX z%~f(UW~SeW1dUkI=nL~;56vUD`AYfsf34pu zOs?zrtSx4X?#l3BAj_TyzamMt%FEDcw)6Fohnc69Ep0{%EeTy@hY2BeL*1F}9FU57s zJ@#@mwC>-f;Wkl`XWq}x+lOJ;(aMPxD|~luFUNauX1&{h7TLVt{Q2{yPR7hS!#yl?rz|UHDx5*Y?0A)%xF$HZ~}$ zh@UVByR^|3X(o<8GFu_-Pdal{xz0ix~B&ARD9bWY7?zQHKC-f!i5~uQ@ubiRL z`J|Kk73e9HDl3lZ_=1N2kG=N{Yii&2g`=Pd2uPP2>D`Dl5hS7l0wRLag{X88P!R|c zh*G492nZ-B5di^d(xrx8r1vHzL3&F-!i0qI&b9YB_w2paI_Iu^pL_0e@B8>6@FkgZ z%<-S2{YFFkK3vFbMZhocxTDWf6j1l*Hz*K{ByeSldS%8(5k+_N)QlQtCJstpb9bDe zX8!2S$SW7wn@5a77ShyFhaJyftaS!n2KJkNQK2v=d~Z1SMp-iC$oMHX-5SkcNm*42 zbD7XI`-!5{%!G4qJP6^+w80nKOG(!~&w;qrT&(N9bn9|E+BE9xnInw1W+lWNp(p8Rn{IAu z$D+<0;mFH0m%lV>SyW=y{ZkT0b)WKWtRJ|%GkTY+7@O)o%h3?tdePrx_PT{-LrKg# z;Z&7xfoGlH9>WgY>0a5lFn_nDA-52JE>qa9j8PqUNeC_;Txgc!5V;cGDK(}WUn1AE zJJFiMQEPP8>V5%z#r3`wvC-H>SvS4YdTsZmaH7rLiR$zMRlRA&M=Qb;}oUHt(Jwks0W{Tw|E^?-!0{> zuSoUHRQmNED>33Cm`?Fu9vw1!QGiDMFlgh`eW-44sN!8kYi<4^>FMX#hZpw*b$6$< z05%rBKM>@-?PqDSf#W_crsL%j$FOpVu#o zJ_l~Ub{lKRx6xb6ZgfL9IQp#mxYezIQrmSM<& zdSof5SkpJ$N;exD?tB(v zIWwIeI{R+8wOQr%*sR`n<@xs`^yiYsT4YvIxv#77i9di&D15a_djfsoDIKch(zE9* zl{EI$qkSklv{h5)?&AO@*Zvgit|uq8ulh(Hdu3f80b1y?CjD)O)kHn$XZfs<-Jo8n&(N7#o`D48A-lWNmJpJ4W6- znwx+$<5wO=(g~aD=bolrgz=}f@Ey>*RGeWBp##3~DjyF%EX&y6f)x3{u+ek-)nP4e z)4A=ygd3zDHt+aa-72c&OqaX1t5qo(Juvs^p8H)lwCKaOF)Mp%iFfPK2%k@J&SLTG zHsbZv>JkPaMNv)i)vTm0J-twq2Q>-`=lk^{#OMb2$azz*y6a{dFt5Xy$kqL_&b6JJ zQSNve(V+#!{JJ(iH zuI-zMiK>sPj*@Q($7eI!?~2zy#XmOD>to#D$}l;WdiRo$^2txy>GsgoIA`U!dIu=6 zm0nL)=bPmzs&SwhMRNPZmz#TvB464Ryq;+>Bq}xi%2*58Gqw;4M?$i~za! zwD)e>%Sl~tKm3_7bsK#=M~A0+dF|aXOZtrN(;Y}}3ze_Aj8$JcEX@VJcS&D)&rFcJ zP~G-bpeJ)R`Gtd5?Wvwb$1mKMR(_(Y86RgU#9vU;@u`LAB4nh@M=r&j5Hcz5P)xRv zWb4mh)S9Iwj&zuKIcaW5F>1Z;;)-gX^sx< z1@>izeq+NvW7MY7Tl`+WArIo$u!5X?6Sn-JxKXB!b4ga}GLyV6D$u%g`u=Mn7@rs9 zwg`9+G+--Mvb;M*=I}$U521C_zd5C$?+^1(;z;~djfU@f+&^ilSr^taQzI@~5#;iI z*#6z^MKL);NA6Ni`pNdT z5{KdVV4m2UYO}OHJ4f(`{4#PheQQ0=YO1!*i>X??>{3;RiM9O9_X+ZT^rjAdzh`EH zZa{w}m*>%&G*T`m;ocS#@SD#$seyWwHuyJx)LWY=%|T%B+*s%xgD}O_cNv+0+YIj+`AF)Pw<%X2BG*uq1DZeEf{YNbB?vi2xdTtzIe4#P)OJ6D(* zydG@p$Vg;1{dwMiNm+9An6-jrMiMV9-|(&{&-{2FX<4D?TJJ zddVgJe%5sNV4ME7$Ev<^sJ*M}zz~IIAX(v-dj?4-VyL_)0=PV1KXvCIE9H!y2 z!Ri`aq?dW4+aQ%2(u_bkOQtMUE}6T2I-1O+&b%tOKYGFQheOMA_06!Z+0Y4;=U$3K zN9PnvvC1?SZ7_^d&Z{eSmXkWQm8aJ@v}x4oB4iZmMVz(igWtlL z2SVcagg%`*y>lFAe;MU%pPyyC6awE`UZJP4lzNejU{JVz0&!Dw-2dA2h_RWkFmB*U zj)>ZXRKwh5r~}76`|24`AJdb^HAt1RhBp2e3e`XSc+lq(W42cLkt_6G>nt*7$ndDO zjnH@It$E_O&)aW5X0I7r!rnT_xSz(-!urIG&O?G0qan#B^5;*#lM{3h615*>SAcZw zQ{G?UJWSxfq>tS?@x<<;Oqo5~C4~6b2dl3hTr(VA+zBbo-md)e>HUMz4DQRKMGHwK zYM*tJbqu*rNWw!mc|8KZrAhei&ySv8ksR{%iF2p*P>rB0o}Ng@wd%I|IOf?c&X*6y zpHRC88o0&pd*9U)9yUGwpmZ!mYNN25QAdby_xODX;arXljdjKauQ9py@CTMw#KHN` zd>($yH_Lq_{A=;PZ$F5hi;wRp^EXSCdUKz*w?n1DY%xqc`RLE>c!}o0e0E|F*^1+Sx{m$DY<3Bz~!+~|K4K(TMjGN z)89hgS7pTCJ=+X7`lxj& zx9m$RbL)*!pL@~KzGp(``c1rx(vowFI6tBu&D_5=>*^&ZaWfjrLHTe=RGlOdDDZA% ztS9H%e%alZH(3^M_RKhJ``w)n?r7tB%(4~v1;u;wr}5#X)T-?GXL~O`Go+3 zk7Sl`uj$j%H}1E6*Si#T`rtKcMKfy!<#KNKI#2Jl?pX2ZC0e4yjRuC#xo71Jd&DJj zeGxCh-C-;)SBP+uoZ(go6+9FHg5w-1VenvYb8AtGPpzaJ|I* zcre9h@WxzwlzE~$W^nZV>tPeqZA&Yh)|8BkM=smLM!atRk*{}O{E!>06{7tda{D*e zR;IJ^W7oBg!ds=ie+$Mx*{iFFe)9c)5?r!8dybDFS205-oO2R;(G5FcI9|-y#L{?d z>Gh7ax6wJ!1HKz-na>1bRdN&SF7ki#=+7w|JKg?bybuvrvJf$w7HGZ{m?FvSVn}vw zo4H?KKFDf0CL_?!QgPW}+%uFnlqYaFlLVqMDWpc`(%XE4Y_(QplSB7D+NY{td04$N z`QiP$cjjPl&`b}=H-mY+`zXq`uyE8Jsxij)c!Zz}&w6jvm}Nny)J|Hg z`a4SZw9Ha0JK+H-!(=n6x#eC?_uJBUai%$}Lu}pRU-W9%uHL^NG>qnAOYg(`7YH2@Bwu=JYd8F#+f2Q)%L*@(DmmNON z5*8o03{PkWzVYARK?EF_WZjI~TE%1@{_&BWE~0N{wjjB@a_(CaFoNrW6->6mtM$?< z*U4A`{TLdy*re$Zw5^tyIq!0K@Q1DbWB0Ny(d@ZS-u*Yf)Wr_vBE}1J5vM{%i}g2WcLX%&KI1#$_rhX*Ks^;LFwAy3yKhi)T8i z+Spe8_eLU3_4)!-_1Ts)?oL+s*im*?_u@zjpWAo8^+Kt(V7d6-?!XA_;<6iK!%F90-x>q8-`?-0vb}#;dD_)%0J2H{?r9AOL zxcluid7=;tv-i1upS`?x>_%rm6~=}Njd4%x{tYJoT~Ep1u<_pjbER|t&0bZs{{eO?gAUnZ1{Zhy-5L#Js2#U_MWHVCG)J@`ofl0Tr=}(a+qQbL{6Ey<<5PP zsRb0sXr#w1x)CejlH?dn6&gck;_})GiO^>oB_W3F&O0o;9mmm*y1Y`fedntm>BwAJ z)@9i&gIpMo*gb&YBq$tEeISZ>17NoXSCH%D%A-6KBlA48`zU6a7L5|&a(ORYACgq_ z@-xeQMHDVqO2i9X`PO{tNA#inr{DwUYrud^vK&g2xYNuMJk7RR(gW$jPhQ_@I$^O$ zTx#jjt*V^36P6ToZ6y1+hEeA|@dTCq^?v@R{`*?Uo|jm6aOH^xU`q&UPOS6^%NVFt za!pcxmfCv!LA+YE}f8LZ%VXuh56x|Z1ExSns-<-B@14Gqk;o_ zD9S1QP&QbwhBPMFjJIg9op^Q8h~?N@%h}Z&Sdt^zY|NmZHL{@Cm*>=Oa)8TTW0Q)p z`6Bl~(}dXbDIM*)b3(dwm?w}5EfgbJ2HdA%6;}r(T*r>tw!pdZ#ONrB4{?6fxwi+m z#ysU*Pzo3Jt#d_Q(@SxDErO6fn>wj~-=MpO8UjvN4JGu1Zy!Kd0W(A3GI44P9~vxb zI*g*>4$b4cJ+Q_rnxM9TF5M5CXvi!PxK! zwRt3j%C2kdtxYM=mmQag7dpT7xbj~wt|lbE zHtya3bQ0AURUt~_-9u%_`+zJ4o1;b=4e2PdK>KU~8%l{td!8-~quqZ$Csb=!F-Mfer) zoR3M?*~i&7`+Gf8u)LFto2%t3pi2sgoS4mGr|DA zr{TR>OSHNm-&bNlqBCbgmHL^Q#))RRjG?-h9^$HYtUYrIvW6vW@)x0(`w)UaB9-w1 zxcbK&$aejNItxtTbI^fFYg6H~YHQq$q!F&9^AlS9Jw7%0iCw{Ih4d%gP*aV!1#Nx32W$g_sB zF4rQCUcU(0I~=h~ZUL7D7#T8w9OL;2G&ZL&0B>=5woT)`g!#ysoEk1wltHeG#6v4T zKcqvf)Y-62-#`yZVFiV(qorsE_(a;p{S1v$$hdk>z^WC_j6&nAto*gXp|jL8U!D)# zP*yp3kvpmUGTcoTM}QHqPF5Gl!CvSf44BgeC*P<2qXR4Qx+!XS#+a{W^Fd$ z?*sc#%7pmVa3y;Jx;e@U7agSZR#CtYfBpRj9e7Ad)tihH-?`$txs4l-SLjMSpSt=w z2L;fM+$6SA8GLbwAWR7bLHBr?hGGCj&URqwCIEbQPlKg>-Vd{+$0I&mRl)t=oB8bp zzb80bhzOepR;dMlV9Agyh_nUoy-1O+1ug}g8bzwi9?h6B;PrIG?|Va!f3`v%opac9 zC?6cwO)!#W3X+}>YfX5OdwtkAp!?+}&;90x4!(=+^Yk=_Lms}b``MxjE@RU|@sWj* zE3;S%CpYdSFqBSlssyP-c89hp!rRS32f6DLXG7_wCue zTiTixZ(=Waf=X;H1WsZ1Al)UDRS_2~s)*|u*~pI*4WZ_Q=uq{Y^fNfH0*2RpeWC_E5VR`B6= z7(U^g=rf+CsI#}NO0>CR#I|0E$csW)QY8z5l+b`QU3je!bsAc<(YV4w2Tm*2wIzZ} z?dFCbd+-9@{o@E$=i%`qbAvFB!uAIu^0!-Q)bCx*v~CkMCTaK%0~mqC&w$t|Y~LDl>cgy7WJ2%K6Z@Ko^-Asd;d95IcF)8~os@-WeEL|; zLi%kxao{3?UqeBcuwp?_X~KlqsK)8K`5E?6Tt7{WcjTFiM)DVrcep)#cs#|b{Uow8 z@YWW`Ysh?c^vn*0+X{zi@d%;P0nePlBbwEYA+)yghUCX^zt}cpnP~jDWLB;sJS=(I z+THRZQ=_Q1Q(Ekin81?MAjlz7Gba%mjGak`vWkIJWP+nEHDL{gVYOlepAcD;>i&Dr zbStN2#ZT3)rI;HPv97=mS6y1C8^Y=zG?nie-++HY*W1)y0E$W0;Ln{Xwm{H~wH2AA znaW8ZPdod75+25|Lj?ql?L z?L@0(^>Dyx!m6nav?{sriRD~EUH6N*?89~-3RM+Zt6TWR4^2h1(%NFSh`voHC>#U0ou~IT_+if#!D-Sc%VDbAQdB?7eVU_RBMQI`uoeQV0+z zJ_Bpm5JUz{HwVB$WzgRN4MbhQ3 zIRh^WrEuspU`xwe3ZN+Ufoi!~aQZmVh>K51_QlJoHSO7%8e1rVL)nj?iHf@_&|sA) z`!+n*JmTuEn*ZM43lje~jx_zxN2L}h@24L?T%kv)?c+M3`INg7VbK(^Cj}(&IM-Cb z^Tx=AM?SUdLSK|z?wustFgeFp@82-;v1vh`7;tVSQZC5g3icThC3Mu28$1V)&HQNK ziCH6Jj|=O>LXn?RIDpJqL;U%)P;&xwGE*(MmS@0bDQ!bzv3fNXV9zecT!f{IoCiJ4^{s%ar71?tDiGO_Pr`s=*|4(ok zg(co3*%P5Jf7=4fq#>${TXEB=(|`hQ1x_kETOIBl9%xT=rarBWzDiPaTA*#sjjV~l zx>wAYzxF=)LP3|4bchIRDi~M8g*F$^I88|tnXrLB4GbI4W1p)F%~nOzEN@L%cO7ZC zZ84>(c&szF?#e3zX&vFVysF2p82BK31|xWW}~1Q^HwfyI&Y}Ah;6*x%Oy9ioSVjb$Ov)$ufLw(;Ke!=_Jt-5a7Rku8wwYY zjDwFMz+kC(q;Z2`u~ukcd&@1yS%tT2d#I~~kv0)+m!K(Y6`vqnq_^vwqlPm#nn*w|+A+oh}z(&J(V#M}al=Ua;=B$aO zFBhs4m05M9Jn1xS>8mTA8*xdU?ZjLPXonW{gj2YQJEZbK^_v;G>5B+1%3Tk?)Tw44 z+E~PB6mxgi++h`mu-wAVR6B;T+s^{&C;m*H`~FN#d|(NpoS5)<~mLLUH4WKylM$_<8b^~IAZ2C8D2>Cg!{?NK}iR)y+@S5XwXOz5; z^Wowu%WC<+?}eimX)*Jzb?84Ti9b78nt9Av4v7{hoPj;X5)2L4EeNkl2WyWm`%) zMU*~aXN^8<*~m#{FI||iB*BAis*z>d(y9aNp-!By%?iy8zK_f>EJP?;MT^u zG6lxjfq^Iv;v6;7D<5?M=*pc$x&tmr*G8rxD8xhYL~qtv?h^`2qRo=JqBoYFkFP2O zy1M?Ux<79Nj?@2$b@2$n911uNOyHQ`6E<|fYCJ>c6&q<{67Uf`YQv$Ay;G{T2GUbp zDtaTvjZhWV#vf_t_HoUA;KqAavN}*aQ_vbcj=oJi{i4!7vEP^6I z76u$=-eVg*IOP_iN|&m2GF&W4pF^)z1%H!x?ih<7)NAyOr|b%vC$}FG2%SLxQB?oT zu+>vL!3|}hFR4(J=zdX27ou^+8BMgs!@^6a8Cyvc&hXOv1&Wa}uFkp^$0AW*+N$g& zJIZAtr!ew>K3N#$x*wynT0t~y1f>s8+z3}^BESp*-PwX8;#Kzc*%oJYY#)*$W!~Cx z#i{!!_v;9ke9O#DPmFS%k)Y-55k z+!Pi(9btyBdcL&@7HK$ZMNT%Y(0^VUA>@yI)g*cmSKX{CdzjMc+Kc^bLVmblZITQ} zVrNy>=*h5^6yAP#NeMO-&1yG-x(pvr4JB)|E$)SUNxc6uPh!I{+`EOR_Wms7)$~{u z$(QKy6g~3^Q!?FTV5MyZ0%@1}QGBkreNf1+dQ3G;+|V!G9O^9G^-#aO6OmeO@AKEi zJk^aX9RR9DdiWh^7`zZvngJZnHbQ-YO5JFC4l1gIz;S99lpSpgAB(%OpQNryR<{c1#~e{y>4+x`Z70;EUvlW5t9EUZ z-PV`8?nIaDA>zh%sXr(8VcF0f%{dJyx*k?5jyks=S<8;p=&9F$4!Hlsj$0W5sXn+a ziJRrF2!=)Iga`8O6!q34rP2x$sblxon(pSTK>wPJ-NFFUKC8v}o@n&R+7qrpxO9v_ zEf>;S$*Ec&tazSqJA<(PF7~x(kXNnZUTKxNdR6e|r&n%d?d{`_Wac+QF@&od;d>ja z17vHYb`P%gSpcIhk*`^UkLcJqNoP<~o_slMDaPDdEcfH|x_in%`}-Fz#|vb`=fy`n zNh3=_3?y3~=v!A`Ou?u2U`!8{ja1Pro}&u5zq{qbF}TQ%&{PAc9p z>N0LJ?q%#}Pr+Aick+A;x0OX2hD{Un4Z|^9So`R3OMUZ>G$7M(Ki$hPlFCyQ-ISLB z4|{w7DJyQ~UFN#pKiYnwy6DXh{M8KB1e1D^WyD`&B=G<;iXmxNmF<64gb5%qGd-

`b{0Fn~ueHnlQy13=79sx*&hzSy4hxs>qJ+%lA#*DL*rbysHrsRS+6 z^de@hd*-{X;YGlatVwMOklz15QJP^18b)&|!e3~d8KgYK6`YU=Usdez=UurOD4H^I zD{yYumP0|?!e-17#(rcx{a#JgUp2L!fC;#BgYuhWLOVl*ukOx54S@4Zs~@M+A!mLn_mt+zpZ0q9BmF~Iy! z9MU)HP%=Hm6No1(1q`OpC=1FHBtYvKMy2tmsk31Q-_Vzd&6Np>ITuR%4OAw$T;n_( z#mRQ8d~d@fH-e#3>$MUT6`+G`MD2vr`~+d}z&&uwCn%-Q5ggU@IW7s~iD8PaS?iDY zmG`EsRz^k3s$MBROuv8WoGvD+Fs|7T_SX#WO>oVbV*wXM8N5R%b;w3-xa6TdE;`)I zhBL0Q9PIN9yqqnT@KP>6;EJcHpZGVtmi45WNYbtZu6#9|h#;x#r(kWd0^b2!?HXcF zUDxGiOO1k=A(aOB})Ni2zX{F=g(I`1I2mei*ObP9$ zf<82+H1p-Q8>4=&9COUf+EFz%0UIX7D!Wy4_El0jw`p_U)Ebx5j~F2z^I)Qo_o<|P zhJx1`T+~U-VGXb=fQ1DqgG+4Qpj+hX>|uWUF`y?!ZeSJfKyJPls(Xuer*6LTPhzEC z*u^inVVA&5tDH_5@8xu2K}mwPzlJs_^NeB7o9{S(dVF&e3k zhjk0r*BWU>qm_{JHAVkx2;Xi8Y4QLP7r!3^20fpr(aSveCwt1ZkM_&aKjzSOXtH$q z^xku1%2SP~|8rUQe{G}KU!;p>0Tw>JnSc%iH+<<;d;Yd&nBJ_fbStrGV^<$uk0y)R zsQ$J}HaKT-{BL6l|JCIMGCx3XOeJca%1^nvpHP}}a&4}%2*~y4n=P?O;fz10e2QIbT7OSyMyd#{z56-_cs_ z5&{3)^U&>eC82wE1v`HK%uauxwsiKE(SGDJaFy&;`0)J!D!Pq?_~%E~`5mnVydR@i zZ?jPLG^xc7m@TSK5eNeR^Ap4WKq_*G1AT7>z0l9HoebtYFq;<=|HApCk-0%YTI1EP z)A@Bezhvi^>})Ol(rmx%&M&+3zu7Bry;+AXlL)Uiob~53_*&Q-%cQ->=*)Z0p84~p zbS(X=7c<0HuJt(|0j&dwm~A7J#8m?B=59A1X(t$Eh-c@$?F+`McbnjNOugL#94BuX zX$9N~Sp02J4r-35Mm6psAgJwTFVR0&aMHiI$-w&qh?FA$)-T!Rw8Hni2=V@We{FxE z@ATSTaLcSGNp&9s7KHLO>t`9JBcFi#Bl{i$>g35wc;{F~KXZ{bCdGjcj;r)EkAp;y z$1KLbD&1E~|9%1Tm&n%hJSA&mN0N7gpg9;CEUAZRr zTWmQ(cjzHEXaZPJ4}lGQH0KiIEaK@NEV%kYjbK8NY11+grrz^O8nqPG^i zgfT2i>UV~TMa_Txo+Eqa^rKFWq;{Q=}lhg21?Sbc(8&9|0Qsq`AwXSF;XW1(O^j}6+hpm#KCzgHUbiD5RC}dRW^C}+CR%@`7 znlqKJHLi)A<%%S_S^yga*I7~`!P9(jn}uOV#1FXolQ=&$X{BUBscUBSg9 zdH#`X%zk>n`pWZrAy?_LSI`6_Y>*|a0YMLpsUyVmQjzPvd5>xP9=q-%jD{RS(c>a7 zTZZXRcQn{Olz#IpESs5wXj<(-4nWBOzB6zJAoSLVl2&3GO^KR&f)7X)?UOA&u9zxjjDvas5U%u0DOq672K(1repp-G9<{WtoM`1&G1@KE?*FKN^3DecOK)`00pw)0Jdup6 zO$4ju=v6n1tm*X#A=D&PFBO)RLse85=P2oDcF15We_SV>Z zGPGHDlk=GfRSJx}%Bc0|BXSzF0X=7&O>2)6S)SSrmReu7sOndmW-kv{604}JjCFSW zTI2j_OYH5NZ$NyV^GSEx*Z_SH0gI=$z>jGhqFC;ys9Vfc>nLb&kH^x zz55&X_Egp7@$`1O4iQQ|rZKFe@~4Wj)t^~cc#tPyM4c_2x9`zywOByx0Fqv`&0&Pd z!}Mrs{kBT_|DlgHcLQu!M)2eTmO7s9vuYN*%dek+lfHq5pQ=)z(;+F z>BE7KN!N{F$IgMV>Jboxh(|6QK(5!a6{NZTX~bRv0cQvQ%OA5AD8U@D%S7$Ol1#wZ zcJOAC3CSM?MvF(R2zdvPsA^9#%=w8O)Va12$bLAdRddsOnjRSyEqjswu38X?uM_8^;mX08&+?ARl+%kQtc|7EYdwKd&SIjmi(rHoS2j&~6b;zJq3B+^1Biqh z7MKf2-OmUHBSla-)Ftj>LeTf-;ahk#a2(sV_3gLOc(~UTe=r<|Qr?$=QTJMc9CUIvUg5LC=0O1Lv ze|*|d(rH^T?v*%zJnf)FtADIv`5l43iEzqM#1G#&&PDX^ z==(j-obSRHR?!48>fQawHy}b04l)eHS44Uw3oiejz&|jJtWOVu86ct0U|TG!w_B+w zFcESnaaYjye|EOeadX36GL%A(e)H>C|KYv+b*#Un^&hm!FKPXygnwrxektK!w)MaE zn||5W-(05rNE|mMKKeL%)Ndq{13 z_hdhJKH!gg$^vmHY;riKqo-@~vS;n|RHinIc&CUBQ}6ry+RmyysJW3A=dKZX@wb&6 zf0_;3?ZEp`GB7jP{n!Hj1IW@ygUL@f$p6apV6a$ztqSytWym66>dT}S^uraJwtu>z z9)f=OgQ4}GFwTHZ6>k+YE*~S*EsS07RofT^9Go@iIW6m}s}$G!7r0Gxo#j-M5PpR{ zkxkMZ64p6cpQv-5t50Nb2*9cqj3H7nO$gvDm?w)!qjGJ4sVPSyH}yDJaD&fTh7UaXaVQ`-bfYZf>Kc( z8#%o?zNxH?5{8qCb~;9(RVFrU|KM9nq@-TcV)yI|)iBMaz1+wY{UfBp-Pm~{ZT zm4ohS-Z=wSj)Z{G0p={ZZ^wj_Q1JU(96%U-z@(xA5P1MOdJ|2&h5l@UUBHvypqnl= zg8uVc|3&iW2*B)jJOpnLQU&H7c_<))79@oQKL0yU;dmjC+=b5CpZ-HyD6pFM_t*bD zkC)>;c7fV?DDeacWo^wPo@gw8tmXXU^?%3YZM|{|1>wo^>jeM6;a?~CO9uZhl0kn2 zS#f#i$xi(RuJyfTJZTvLM-8;~Uj|K$Dtm(6I?am3 z=huTz;rnazeDt@~DkVQwD=Y{8cWiQeS1W=3WV~Nyn>C<}=$cP#p zDm{W&00KZIp%nJS8Emw=bM^t`K2Y3T%U(3NZM9L{>_N&27dgH$*Obj`N790Lb8a3$ zC>$8lS3-HqM&xvH&vQjL82&;^Mmox{D#^FB2jZF}5R@Bml1O_^xT>ZkV#+~w=5wnE z*Nx5(pJUY?P4849@X_#Pe| zf^_o$5=-~t05Z`^ecgeOZ^o?096;D8Z+A4H2avWF^bC6Mmf_`(5i(n|+k}7Zb@@x> zPXBG?OEL@4Xmk-v6Phz%ujbEmw*p9C^&*Y|-XSHf$0F0-1pik(a@Sqv@dW)~9m^kYLva3|+MX9>#1A_}P_5 z`Ro^X-SrY{wC<3Pd(v*VI?)s*a+}Sc7odh<)(}MQ{i%8o%NcLc7OSTI2V~TJ=@yaXWhuP$S_gV+2^|4XQtw=$YHfpJ1lt#T$NB5+`|m8Cn}Y&U(a+#G2bB4K zd|DyndGad&Ma7uv}SAFgEdM{&D zKCqFm*pYqz^lXK`Yn87hU!;%ZRf~J^JOa!-JbJH=2|rbG$}QjoR<02EP1#(Ny5rMy zJ|ixFvQXOo?v3AEcNk-;wr`u3joSQt+9DdlZuz^KhTAzPFT$m(i&OH1EM#djp)q?X zZ!@V_x@c)(0l%6fbpo9$^bDLB_xX1{AGrm5;5`9Hoc^R=6L?qLK8t~&@`ll1{%lD} z>9uE-x^_Y*?4HHyh~7Aw_Z!zx;JbPRbT(d1uXcbnSH>RuTIyN|$B{oNmY7I5fYgAN znggxq`*ws9xdOV=h&}yt(vlysR`8Vn9U(eP?>F#b-0)9_{~O}{|JgNJ{_Gw2FY$l^ z*nTqDv zQL@SYs)+gtCz{P!u)wW?us{N1+`ua+MPQDQ+)xQ^^muWeIcjGA^0gs#1@}tp)^M16 z#+L|vnUYYKsf^yFt5d2bn|70f4mGB*2}BF;be)@N!$L~{yqq{+L2PYFVJ38yKdV+q zn|4i#f0>xQ>?)A1>wmH^>TYS7wqNp7-4m3~9&y)2SO|uo4-bSML+Rr3%&rq!Dsm

SA(4L3Thd zq8!!?HtHH00{b&$Ecm`N??$3=m5g7-bI1t0v}<#h@~PIvjTysLjD^~2A%x-z8l!oD>mBudE>B=h*VV6Al2UyNZm)FA?dm0}sPuQK zXN7NmERKKSUsrO7ptI(TM~th0sL2<@H6z@#fFF?@k2zJ)yuRxw&NPjd$dtw7mwz5Jh$ zo1WN2;&g~&?^7^GQ@C3C)zXUw4kuPK_v>@?2S+_MovejtYJg2U_39dIl(W4k-Hb7( z^TXMh$a05F5S`X*gpzD=uPq?7z6$@ym zoKi#v6+Kv%B~1F(Vd}Pdx0lBS>cg}uJB(x33f#;(_zr8HJ!M>X`s5Fq`IU`GXzBLO z>ISZLh;o4_(})?XRUDM{+PBi`t5))zjqG8`D|nkZmGLZP!GKMvDdpPAu^8e}0C(dD z>-QKkH?`C1$}dFLI1ej5sLPT@Q6^FnU5B(i;DZ9PxjtH5&kx$h8{Su9npxhfI) z^30XkFAXq$Gc5wx1SSXECFJkasR#-ZGVOv_rkn}ZlRCaMdUQ$IB-f~j)I^UFcnN$pZiZ$2JaxG;~eX;fyy<*khCGT)wyDBDJ=YFw_f;?P_ zIs_-^GFg${?0+cLO(hgGf~Bk~O@cB5)jByV!?jYw3xfq(xx-s}9jPZr^dqPqB5kf4 z^69K?t>bX!RBpBA`RP+;|tRDhQly zLMEGFbo$i?k>4$y`@fgI|022m;W7i{C3=F%;fPJ)`|0R*Zqq8Dh;ckzcb2e*X0#4BdJ*j9OmDaD8OE_wM!2~pHkd4|GgEPHl0DmH16r(g_vnDYRfd=rH# z1)zl1S(PvinfIR8h$<~*fUgfu1XpvOQK}>v!)5LCP;a1>;XC73^yB3v;TB^tv+(cL zdE1Ca4?rxsE;<;&TCIe~vH*hm0*>`bAuXA>VK*P+l!?a8p5ugT3Eus;6}fuVea@~2 zikj<6PN-M~oXn)2$dBuxw4-jIW0wqHOMLyojQqL^U`=n!>2BGil!k9k%y$!L%?yxgOU^;0$2 zZX&e%EPUUEojPN{))J=^f?}JNp@`K0abz)2!^2&$;pd?((337nm{6(^FhAVTc(d=P zlCodt3Y2@4HvEpS||ldq4YqKF{+<%cqsO z@A)0>`~F_v?{!^YEL`bQ*hk_90m*~pq*IPf5*6C>x`shVd z8L2pZX2^6kN(dD+D9-v?8AlHLGH_(7*RtzF_r=J~??lfDm#}g&t-U|THn|$#rnXb% zs6!7xQJm^VMl~_9GC19_#NrQWS~53-ttrn+dQ~5t!#(U$og9gh{dl|Z^!7WJOK#M! zR;G4P_;F_X@QYmBRHw0x?s2BDOjAwoY=rmrzMS*#U&PZyB&WA7-8WG6E^F=FJ%x~C zh&^;zkv_TXDX$wu3G{08O}p;O;=JPF=#`&nEsrD$;;wB!S89~d#D7Q3-}B*}{VyBI zw~0e(JY~2s7w^bT@vQJ4!i34KgK{upQ!UAvt_01B9<`}7xwR}rq;qkCN%7&h)a`GY zbVF<{_n$I}uB5EOOGCXA<4|->3P0qP#EoWPR=Po-u9!yCHa}n3Ty#Wo52w*K4X?zv z{Y}FQ&Cdrl;d=Rj#-(>&Nu5_or7R)s5(ds;^y zKK{oY+4;Wg0)y4He!BWk80_yX+$sIbsw{sNlPmwE-msuYapP7LMVR`rL%DY*)p9+j zRh{AN0E+ams38ntZ{B!)`#=?fCqa=cNVk)4tjI;bc=w^<^Z;J-$jZLgs)1t-*V{4R zaa2EsNL)d=#lY`8nq!KBGAk5;J!V4~5wZsds~EzQ5BwH1y0Q_amAq$3%~QA&lU+ z8U%vE#1G?t|8&PaQFCnG7u5eg$e-Ng|A7xOSr}9(R}gak2r=&;{megG9r=Aq4-Ynj zWjk4Pjxss|RZ#MRjVa-VF>`yTbm?k@=@qybJ@)FI<@=5=Fq+cA%c z*?mOL0>_!>GE5wg!h-#T`q>5)<`moL&>->aHsS{}P+$Z3Vd2ql2#XBfiEoGnOZdz$o-%J8LDgN*DmNU)b|98IAyyqi;7q^m{6V|OYh#`wt_AK3Ku?8U-)+H!Y7_+d7M-DV3p4&E1T)< z)>iVnch2Rz2OK`ew+7i`rwkF5MB5`W%wg^l#381(6n04NF|lGY9%8A@PY;b4OxY<3+^4txW-Xc3-fX1t#{xY zgX&W=`_r~`*G(kud!wEFKx;n8QCe_f`8c-khUc~Y2(CBz7JBFz^|LJZK5-%oFq<>*Z};sY~rSjO&P zT}?M4qjG5j6LTx4V(U{l*s?Pg}pis55`Bw`lIwjF0nk zpw)^KcKALpGd18yKr}#x5w0L8U&SR=9cz37vdTp+MdjhRJX6k1sk>3oYjLl0@oP_H z8pd?-y&?`Jf@5;(>4H8yI&|KzEF((FUdH1~)^Pc+KE%zmH# zDrGL7zUpe9q~*HNsn>JC>?QH7Rac&*GcZWPD_X-uKjTwwl11Xg0YoXLA5J-kYCi|jR8#;5t;ZQ})*(RQv9i#vt0*ZxvpjeP>UPN6#OdEJEdWKvn(3OvxnZjJ!OH+Qlh%te3 zKvEZc$DlsypD^ZM&im`tJe-f0=LI%Rx#$@9U;x^)T?DW|hGD-O0N6#e_nT?ICZby? zUr-hRalHt9GwPZb@!d@Vc<#Gd^$LyVdIy8YY@+98)m}W9lxY9q4*f7~4;V&!p)Jq^ z;7Pp?v+Bvep|9gudR*?n2lh?9pUU| zQIK*REl@Dk+r$xp1A&VPC6`;CI{=Ru={n=Km-8D!Augy^mzC0*EGV9&~-$&obWy+*tX#2`+?8e24avaxA z33d28AAfySUhTdTv27ciz!rhQE?q>Qbj2Ix@<8>zFr#kYr5ZhvE{%TVD*U$OAOoy# zKt`i?rbFu3?xP>%dT0u#vYxWTq_^x>p3M5)`{!bIOLPd zy>}*GF^C{zt3h<05mBC#v0(k2ZU{bMZzKhvGhL(hz;~V5fHI}fH@N&!g}_(<#nBvC8+pGcy>M*>WtkV^#|(XkY@ zxzt(eXP|xh-%FG!{BQCUDbL_b*(W{dNFUkp7rOn~1KNZBBv*&2cIBNfUrH-L%avQ+ zTy%e{^wiRgUJUem(Jot1Iw=_U(WXdRY9ZP)jy|@|J^@-DhK@;V!OHu zBKH?E3?o>4`miq(B|fev0?Oo2Lw!7NdvEK_DN(w~^WyN=?6)iB_B#o$>pj+za!%?^ z>CppKa^sjy#40mg+thKI0^yK0`lcqTk2Y)yS20O~?sd5n#h%DlJ)S4-4{C+IiJZ*y zO0{a)+{qkxrd^5fFXf0vu+Q`okQ`em{Y?UCd00q=DwMCgGu53S+*_X-$WlJKJAOLD zBf)%yyoixR1yV*tfss~067}rIJdA_PIHDN#1-P7Xk0<7V7Sk2PLbP56s#=L6Yip}l z>XzjQhcj(8<}xaY1?qJ|ASQ4z%-aJ}MP;cBhK>0q2#~nY8+Y4%bd10v!x+ z^p{jv30aM%?JVwwTEhpnKs^rh1-1CABXeT!k?i!dJ5rn(XsUQkNgyUy{P7aH{tcVAJk}z(*6vo~ z_D8GlKWffsfgEZsU4aB$pV-QK=4)L0U_q8C+m-)f=oV}4c{(`u~ z-Cf+gPuGpA@O*Y{3Z%pUDh`5=10Pw-ZD_Uc-~hWG14 zF!CS{I<=iia^&8R+Z_282)j4hh@zQy|7tZ+<_}a8$z?ndVxuC|zzy<5e>q}Z9XE>s zo>U6FwV<|Yn!&qyWNy1EPZ(`IhkAqy;IZsE$}`$BN{=aPxHkXp9re%i{~bH)oH`ps zK0)Vksq7p$Y&h4xhO~B?x898?MnF|T)1Voko^(<7@<&eMWvOAt=T5b~aIj+#e(^c} z;LChVID)0tmoy|*N4-wic89nge=&jScwJ){AYOFvga)y&nX)T(u1$2ZSfumx(A@p8 z$CV{NFYNNo_^}hYVZHUlQnLo61l+_%V`)f3R(;Z=e%Q%&ff%;IVP9^}*>I-1>g1Q* zmtVxij)rbQZ(-b7?mr;FTj|T128=#F-X_?-em*`q7c_fDFXf;ZHhBGjOx3z4pfsfL-;YALQ=y~LDBL#$Z>1j#!|*SNs7cXaN!1Bos;BuV zS}$xG^Hz(X+Z0-t7oEfDb$W^`DOf0ky|LJTcAGK|#oiH7cLiN5e7u%gh^?k^H#WlWiPhCfA5zR`06o#)w{p3#*m+g|aQ7CiU?1&h+Bv)Q~&% zCdG;KW4PHj2O{N-l9OWQQQ#?@hdbGNa4&242)vN(K^IDG%L7e!Ft9%}S=})9Wam_0 zk>@tk6^^UOX@(2Tx-w;whBw@S-Yc@=i$WMch z%p8G`wJ$29a@?#X6MFr2wj8DugpLhbR`@#mm)5ssZ!2Lp3}_q^h$GZe1yl%22yf)1 zpuA+pK9iU162VJowp=P%uiWp<%z&x)hIm$rzIx&7mZP(X7sqOqG+Cf?Dw(|#J^&$^ zy%Q{ED<57JcrZ?jdjKZKP?u()SWQX1RBwADBYKU=CKCi-kh!v6|O!A3N60?Y3J(uFY#s;(uw?CX33SQevB zEp<+^czLGL-VI{yX72N}AG;|OrCOaBGfeX{)%?7(_E@C5Me4q^L_(wu*b75ZAX~@3 z$ipCl^4~Bh*&%_)NYEmwgE~WGWzDCA&k}pi`}xkIlzFKi0@G(nD&PMOni0kUd9wpZ zz}}$GQQ_`DGayXS(kWXA<{G_TFqzf^70ll;5wOt*^9amG$FUOz@%ccCf(8k^6*xbz zGl8sMedZ6NSbp6Hq%3cz#;1^9QOc8Q6?0C!wZuBomo=by!8b$_0PE&I43j;!XnSj$ zKhXOQHKu1x!}tT<5il?T$VzTb6L=4N{x@K2oytitoxWs)ItDoO^5;FGIPv5(u;p~>FFOG@9!#I{f$#aV3=B?2KsVG zSL}q!8N^5xw5vTf620atux=W(#g#Hd3fq1ubBq?Q8*BAJ7f#Ao=1cZKMmys_rRlc? zIe2`^ZiQ7SxkJ>xRK{#=^g8?=z>r)Z-fDb8T0#TlIFa0((=Qeb?)H|7xhGt*OVbXl zI93}XZCYC>J&f717n$HV4g#5)HvBSf=qRi%N0oe}+LDy@>9a?~6T!>GQqxNtE+Oyr zede{_lGgJ~w%)UD_7-(0SvZ%_g66B(nF_akOwopycsNOga*ok7{4UQJuTJ#ot7{H! zys0|1!JqHY7Hf-RIS(Hy@U`Fp-EG;EcHU;ZLYE6P9jc3F(r;P~?#+h-PCtZQ>f_5O zAvx~5LF3*aSIv8m``8EEV;kj*mL6`-d39Pvd>3%|ST)WhUgs_2KHd)c-#QeLMG381 zSC%!8BsekCDZ#ahmVSb4`{;s4pW7{u6xK_>Ew~%)b(B82cVQRqHJyFR)Ty4JSJs2S zG=!D>#M=S&qwng{5SMXO7KWt5>_}&LD~6=TYXOWjywV zEkXs)mp>==CGl4EKfzysN13QF?c{_SE0$gY!@gCrkHn8RDrSW|cxGoJe!PFcc-V zg+k4-qZrw{OCPIC3+z>mzRN3{r4})}xUs8upTE#PVY5_Z13$W;lp~>5hgmlY3qHk_4h=z4*NLu`dzu)5 z#=0jGle>0jKQVslFJ;A~ZCtnOz_J?sU9TsY8gy}$1?w{I9jYgKJ@2j56?FI)RES+* zSQT2-#7Bc9K8VXV%=h<{N_+-VXfEszLS{ z)exb3f!RFiunFoXRG$u-vH3F|?Ux!z-@{Gvqg6~544-ScRAIx7B|0JH2(J?6%|eRM z;fa?YLC0%42ee`t9<3{bv-|8#MvAO3w4jg5_Aftg{e?D{wCRwW?4A9(QZ;DE7PAVk z#!Vpb$?715KFP_$8H{q$8e1CP2+q;y7v5Gsc;aSrPif$~!gnp7e~FM$*>#w4R`HCX zT`9=52MxH%X~7;)lR1z-=&tw6!yEKyHZO~!4v%{(*Vy@v-2Sw_)+EPZ*&9FAy)klK z`XV#TcR){D&qsVog^Zhz4^gXuZ^2HSEYl%0j)ep#duU$8Cd~n}YLBO%95;4)oeTHh z_@XoNjaT})AjL>#nbpB{qOU)AwCQakyv9gY_(DV@sGoBT_6)orOy?-9%;P9WShV}5 z$F)_9)?yBw`fO=y?b9(mXcD^Nm_QkRPp>9X6h<0%X-;nG)$hTo-mz~I^k5N%bFN>! zc|n9fOGmHnRTWL!dXx@4bB5{Rgw2cWZXXAip@v!_;!_DqZ0dcmL$8|8-W*LyGa=kH ziB0yZhRh-LY-y=CA+Dw%y13EkbLFVFv+T2wOU=IBCn!BR6{w7ewbNehPX4@e z7Z0j6tvh}1dL%A#>4sN!bK^f4{gnUIcE@Fzfw=X!%S_wvvE8=*&5<;kI4{c<`i8hq z<_)0PmADH1Manoyjk^_PT1Ef78r@yi;P6bQTlrTR~SHz0Yhz(s)gy#~bZ+0)+;J?D{rv#1zQ zuA9qn<&M7oV%@zM&x$R^#5btZ9Q1$0#NgCv)33$M@=zeKo^QT3#RK2OeCBBTLTlVd za@Jx{thfj{M2K{l2>&?7*Cf6HE(nN6l2d0%%I%n6fsGjeHh`Bv1#&#rk3)=W36w7) zmS!EJX+7)5lwaWnV7T)yG6;wujs7Qe^xHvxy&eEr5-&#&;>iYqzru~*T=ma}$$2X` zy$D$}CQ%i0j=$^XfnjW)?V~S37B?E&|8u3p*Ixn0BBgvIQw_it@Or}O2TJ z{X)E9-RhJr1t;?>Cl>0+T@#s)!{OL3L;vHJ@(2o6LWk$*in03HN4qum@|vAISXML5 z2~K(ggR5EFqQpi0H(b!^?feNr+2{1uZN-cu_QvV6h0!}|kAzC*;;?HQvnPF$^lpLE z={F8M-}&i~BQwb_K-CZ;HLFz;W9D2qhlCpDHqM%W8nRyF-~Mna_jol?gYuPk0ED@G zJ9&o#0Zrh2bOG_Vu17wL75M+>3p76L4j}t~OnRGGyZ;UG4$6l*CqF^@-q`3nHzk-B zj_%e~oH3ckya(2w>Ztc&18Tg(3yRmjcIsCC9SUm>NQ`1iW;yr$>ZTV&i%Hy#iBwI!l{lw5lDHlp=Snw`aUO3Ay~nK7 z6UFJDfC!|A@RRYQ`R&tT!Dq_d-t2s48OcAwiTFU0* zyk7%W4i`~3KV3bp7G}4)^r;(R2~1K8(IhS#&_G@a@ZECnj=toR!ko4Og+j?%dr_%( zfGUAp;CmD1Zn3nF)dshBH&y2|Jk;M8GzP7IeM=ke9s5bYI_&+~0zq-WF>FN$Zw}!W(L-cmJQl+RaNhCSk zIHTbPM_H|QAwR=y9u-8^2w1R1hU)Hja`Q^>2Et04n(S>=(&wB{omd+7^Zd3OFt48P z<9zv9<_PGvep>;AEhyuQoxc=Fp!3(t#m-+_F`MhCRT*QTQOFlHBymug7(#H-2LW$2 zD*GQzaQv%3|IbXI{MqYfnZqUh0+wEc|C2GR%VnX-nfuwjR;4>to}H{6vmEw0Wf^n# z_KBbs3NoWb#A|W_5IZi%#*HTgrAJ2JIRB{A*FGR{)1XqZj*Ta;SzIjZp=j;xC8DW8 z*=ye-9F?;lU)Al!aBt}$apbxyTPm~gim=C1j})0u*+6;oGN|ru@0AnBu5OGPw7OAY zvKFCqaOsef#3iQL#8aqzcz1ZG11qeCh=9o_qpBTLHP<`UuoHScT()VOoZlR;1*bJNEe6aL|v9vT)%&vg_?w=g&yVBv))YAf!$i=xA7* zcq;3C$P5PIwYUHARdtRcW1sR%M~O}iRl#36zc`2)6ouEAbxx>u(0Zx|6;_JxJakpT z`|-A{$5+J>2!!>kpY|d8SswAH9ij?@09N{1IQQ{qrwI@_UdMbk=Is22IF)3^6^(<^ ze<UVDM|E}ND`)Rv9%ug+y9xnYO9zwrU zhx?`Y_v+EC?w;P;b!#ifG_CT=TIROn8AmL)akgsBe~hPI`-1)3s#48i%wOod0G9bn zm01Aw?OdtLuT6{ethr~wSu_&OTcXB01o|F-FQ@%pBI!|2WmJ4ai~+gYYtlD_J80Y7 z%1bxnJOwiUEOh>iSL>g8MvW^16r(|eRuVre7W{36v7_d1zv5r2)XcfjNtcPRDCj5! zpwk}W9Dx5!iwF*s{+}NIhS)~rW<^in`wM^V ztra%k2yksPinA2Mxd|Fzf2V)`K`h)G`B$}gCx}iX1EgOYQS}@}@mzrp8hrEjX3l?8 zDqZ36n|t}&+q{6%ngCuJpiLF8-~tfr837;B1dtU0eYC$5GWSd-KhO?LvtqN1_}6TR z+B1CYsm!&j4_71jt}X-R{%R7fpC{=Touh$@{p%dby-Gmt_C*j3Z_;tdw}3mR90ZpGqC_Yhc`>6zF6P4BXkXlm$R0A?SM-e**LkTDi*G>_!Y;V?{&PY0)u=u z%q2eYLX>Dz!06p`w$|=9W<}5*Bz|0>Da!)KXV*?qh7+n-0#vB=y5_*H8EZpDL0N@_ zokn6Q-lL6c_vp3>JZZ8aHEk(m)aCtuW0cD?!J4K{x!iOr-8lV``)4$*2 z`I+b8#<#9?7RB7yVr>7))@J*Di*E>3A51=$BkuH)SUi0VuP#5HA_DbB}y#aN=+|loy% z94YT&uzs=Dk~G0yIF0g1ITWIrci?6GK!pGHBUt=d)_m{eIAfna)30j1e3dn2Jsb=+ zut=Gnr>RxU^*X{C(I!A|>{ zXKP7_K6`uj-B)xwTA8wkJCyrv90RhgoHi_VJsoANaEtRQrf|m+<7}GLq~H)r9KRWh za!c6*5mJW^g-prTUM_1cq8+Kfp8cZCdZ(ww3dPGy1T>bsH9sjA46I>xvaG9hs5fLV zwb&(Nj(nZ7f!Ve3W!yBHK}iQ6w#-&YIq3Cj8>b6jv)1rvC;>0MHO8z}K%y*+db#r? zH{3&ZWq4458UN>hia6M0FxNl1W64 z-8fs=^(E;o`TSJZPK)+t*~Qd^H}Gt&=Hqq_9J+_7m!{EOscUuhtXjbmss-Ej+w zk?FX8w$bzUB9nkrwM1oX;Dp2i@r{>nPclCSh7A2EW2 zP3}9u%IvihF9cR|@%=Srnc*M2@YF3M?b9;L!@umbO^e%gsP49Z@8tRg1^l7zFT}{5 zIF}lVW;;hUmC%uB9rdK3tw`2BsnW?vZe8b{k@2HNm7yl~bT#wS7mqjH)-Aa+x%|{J zLME`*zh{LhLwieEy3^wD@!68(`z8sEOmYN~--j&1Io!@u{wULMm7;KROb@{d3!xxe=2Nm)c38co zj}6MYdO7b0x!&>;q0^DCg0_kuh#_^#DDl-2hf*B3vgo&{&beC_m};T9cvYrUm!?A0 z3ZKjEcJs~H49U`tx9YEYE}g9U(5fIb@#^!lJ$ubR6G07&Z3LB8p%(i--2CEsoVjl# zJsW6sLvg;XD3BToQb_@QA9BtVRhGvON(x<7Hj;_6c%7!ahG>-i6MLMWDtP}hJAQ#j zi~Sog8h`5F;N~%r2>1WmzhUm-ul*ZhO)zJBN8j1FBinM8((AOQOW4j*9Rxf6gJ z%Bh9he>H;mIS=+fDX$u>J)D@zmSHia* zDDgi)m@zO;z#_F|n)84>5e+KKR-o!}tW~V%?Uj}|n{K<$MZD2VB&jgVk4J+qTbKf$ zqL{y_wZwpiT;{xz9w0UKn0BcKZaN^MZ~YYb3bdm7t^O5+8iQJIAK5ft$`^SU!)rs0T>B-;KX$iu4zPRmvDhN|%&! z7BB&ewn)S|uG$OKVl%Pt1h?PINx>xoTO@m4Ah|LO*dn1hyo7hrpqbcj2LC~YOD@X< zrbxL!fZ97)15A-nJfg{z5yD?*q2WV*cKE=w9+-$77a4zRw9}t5NB`e zJ)t~%91a!g*4xmsa^iAw;nI1MWz74wCME4Pv3I=Y=Qq!TT$Q8uM9BC2rvK0W{;$Y* z{Wrc#HLO=EMMQQ<>8)rYw)z>uxJ%JkO&~eY>b+p}e(S3HqFKLS4p)qm1Z4QCq zHTFH5J5*d0tK}3{E4&D&eHdP-BcwO34@m|GFxMN(A|nzXBv|y* z_RqY^SBCv1(v+?%ojZ1PmysP}o)iLM>3^}^P`-TvJRv!A@Z z#{}AotXnWYd(F^4dwZ9B@dRBWf3`rPfA;<&0%Z;GAAYt%K=;QVSKfY{!n0E z*zmyerdn+u0JNku_e?!5Ex)E1>3jm3$$BO7@>I^tbweq|eLuO5{~jy-?|WPSX?xT@ zSa9Jquai_{7Nl0pMGg_G1U+K`k0@#XAOcPcltw7&z)WC-aoQ9 zc<01r>d#)^f734cZ@PDX-^mnBkRrS#7LC?XWjTl1H0alW8f9Yz>_V<%G+Ry)w!53G z>)quRuYIRzGhVkY^|SAa6Y;D3a)Q?`Nhz1KI;u4ZC*%`os< zFYB$?`q0f$zT!S_yZgZo6Hmio^U`Zhry0!p{qxRM7fv8#bR{uCjNE?4_wZAj7bY58U4DbjV?6 z)y4<0N<&Vh%)hr+pLcut+}{|kLtM2b*6a1`FV~k{!-m8x zKYne)#l3XL;NeJY6-5c;H>o%m3s&H0=vS1WJBmMVJ6_s1vq^~N`zAU|+5L{aPOO-^ z-TFO+8x^XJ7m_mh#-eYa*Wo3g1jZ<5^WZj+r>Ib8nC4U2J-Jy`&KaJua<((?ouh?g zil#<&t*F5jE~%VDP-WB$2G`!S*T=y^#M?R3ZPwV=!%zAn>-F{QrxPb)Fma^(%nm$g z8WF$~#pV;M^LTIJ`yc}p#*WvkqAnc7z=mvp(iUQYULV_w=csiF10vum1%s>5H$(#+ zHsmd)i;$e{4gow7vwWuswDaflyk52^RWXj6!A+gjbLeO7N7?_#jWzNc;l^VWU6P;8 z1yH6Yyh-QV1lBXAX(o)`2#T`1BVPwTa46TTL1veyzEn!eyF)}6x;R`FIRtW55m_HA5v zRe8mF1UmugZbP3&zBO481e_`?CB!x@RS#C z)qF7fB@0*)Y$Wsp;}%JBru!hOS5IcZeNa)dG}l+6B}R*qc)3Yr)cnFvgi_Y z@^f!4rb+C#I$Ut0s$j|2^*;f=>#UwG7~{3u_0;U}dX=o%pd3yBacyFM&GGU0{IOZ3 z6VJ{Tsg3R$61$yt>Rj@IzVVP2yqOtbc5{}pJ|9}1oze7UoSZjktAU-cy?Y$ z4wnOH^3)>KRibO4+_X7N9FAUr8#R0OfHrUv4zMlhVwBt!x;HR%c@@kPJwR^uR6HIu z!xN6^+!(~z+^L$YB30|%-&p>-9eMK%uS;~i{% zd(bscvG{qCS!BA@v;57v^|ofy2q8YX3$A>RxexG{psdlME%DS<93!wVFsQ*3^^wlr z46dEvfZ8uXEt=7PO3ta+Tdq2$DBcXAbIcsf)%smOf#MJ)^?MUjFRP8Jt?d@7n= zjmv7VEDs%U5P9PIFz%h9+~KbLwadC(6s%iOkm&+e*qz7+Kz1^}d!k`ZW1V zP-ICg);+%TV8Ghp8PzR98_=#+mlWd<<<5j77OH18%%( zaCzZk3(p6g##~kWnMQZ^}A2q z(_i{vbnOU5oAn9;fo0GuIE*KW;mA|_Fi=`9njym*{7h&7pwPn|)la}AfA#{qU!m>< zu?el_C*i?cxspjw(aYPI8|Rm9*+=9Iz?P5T=(TU}M|qe~LET7@#aixyUv zn7+~S+#p7~x{t~}1HXVU^;X*TVNh^A2B~W#9GdE%gKE$aR~m4 zueHPHA^=~ooqFD^-vlgo8ID+*o18Rk4bf|8q!7Gvrd|K$+}`NO_a*fncMTAc+mHoI zyle!#Envv;q!9)9@Ud|4I2{&#s7i41v%Xv~-30(5~#XW>Zr}?3wyZ&#v?CHgb zz`q~vEA^9g<@;Lyv*(0mme!lCzzaZl$|hDrc*X9aR^-cZ@v@Zir&SrY^^>zFn$))~ z4Or@*i(ZK2hn+mEtu_Bud`Hvtqw-he; zaaKdqb=@#A6YmTkKRw(_i7>$kzr&T9MOb^hIFe(<>`oW+&vRJ%WZ;d%h1CZ5Pm<9L zbiX>g91Z}H*&(PW45G7rSij8YJz`dBcgTWPOM)JkTxr|yIq~6@yrjvSF#}UKH#kg> z+*2LSm4T;mhq3C;`dTIi<-(EuFQ{k2yY7zw7s)4P~u~_ zgp#C{D&t81PNP zd~oHH_Ed%(?=1vk)weD53AM=q&_0F8-L)V^(|yDGFn6E%0ws)VeThM$hw=ytJ$RjL zoXJ5bFrg}G3oG(#dUs_>!m`Hh*B?hl3^r}P`?9xsUxW9pOw@K7VzzZ1#|M^%6oTT@tEPCbTEU#y$JN1Z!s$Qu%gW*W@AE2jrDohD7FGhLnm=0dUcUZQhyU8 zFJoACtq*%~7FAWZ0e=VnM|KW`U33&ArJb2XNyG zb>|lIw9b9J`gh)#o6*H28oC-9Yy z-UZ*2JG^~A)ayc3Nt;aj-d*bIqOL(Z(?f}pc!4yWbsc7Pg&-3vgu@@ws6<(|sj8jV zXcy(bb$~yn$ou?$iOZR^<;$1(oj4|-$`Tmz3j%%bL0<5>Q5^vZmENpSEYaZAbr)r- z`Ap^yH=$f&WOTPLZ!f*&Z8x|Y0!@F$t9!IjVPBHf54LMOH>iv!Wzf=dbJLt28;K$^ zQ=c7M=GOkxhLG#5!>H$4!yHB6+^4u1V+a{k)Vj_?$*D`%!0i#OCL6Q0-pW4xfXdaO z3vaHhGIe6R!rn~O^^BL=VPK!-r{ly6_d*})Lp-+Mu}yaa?Wb?o#mcM4md2kMIO?H3(e&4{yz%oF8XN4E{dTzz>8tQEE!d})}-2bxdG^j_5! z%Z5Gb09>ObPQ?a1qP?>jw@w<4o!ot_OgzOCs_lO-)c;ujL1u%e0m6T@irNQw=o6ow zcxYjel(l$WXfx?Xx0qFM&EUGi4raFmU)IW=6>UevjW;ZrxjGs3q=>hg*GgEzP5u&4 zsRN>|YaG;&gC6gaudfGVQl|fx&=HFrXML`Ts}I9Bwv?~>S!4S-GH+Gbf`bPLbE#D% z0S^KI8z|TgBZi}!Ky_2)!zOOqH3CI@KE75ci?bN(ojNa|s=Zx35%Cp}?5Tw=HRM}z zYVG&~OgaKquG0ogzz4=@?sk+gk3j$Q9iCOWAL68$Ixk*}v}zKqVAY`k9GpElC<--C za}=#SGH?m49Ye7^QCa7k3>&pw8IvM6(s0!#FAnN#-*K3nOaL|;RR_*M4K=EAqZYuk z6YZuZj%%_l>*Q#Ak<$=c5(tz!}>1u$n2qf_4 zH_wLScS18v>`l#N6egiYh8jGnqQdAc@;s;@YApORWkl!1Qmx2ZlIzZbW)Z7X!y9Dj zg6LDz*XVp|z9uAojx=mOG@k5LZK`aZpbvqCKzZb{@%ZMV`n7i(1tl!nOHNEmud^Dh zith7ZL{AL$HZVqONK0`m#;(hDG6t4*nk?Az$Bg)kJmH8E*jEzgQrY2Pvw22`?T1hy z90zEI(Ga1T>xB)UH>$yk;hats76n_joqJv$q!Zy{O$kL6H43o;Qw$Oh3!Z#AHE4cL zZU#zamv-{Da6F&GzWxlf6l_#4sfX<3xCNZf$&C#Rr?EfJcPPo3*xzq!A)i*>VR&{G zi}5zz67e-r`F%eMR-O*Rn=qz>t@YMH$U3aV7->C6GmuFXbe(rhI@=q$EXnTX$-Gn z!#x5*7tCnu4rl~zO)m|yIpcewLpZvK?-NbAjym*+UgQPZK@uAD)Zq|Dlf$-IJ7~A$cYSG;ah4zW|eZqj#t-Hzj>| zpY@>*)jSRE>gtg;hlmEh7e;q9BK&=Bf^_lWL+4X{5rL)#_*tlwx9R``6^;_c05SC~ z+(Jz=kN3uBM<_`LO;;5eoA7b$Bt-?U9UP&z3&+VtY^=6-E0K%{xYYbHW~lg&@) zD8&dpDTP4c0NAYzucu54z+ttC2E}>za|Q&h%RJV!ziU+RTe>GhdBiZr^!?sYW5bS@ zC`)t9PFRh%Dt8DYi{IZiu@PWB6ZCR8yY?b%w4e30=l)Whi+#8Jox=tdyHrNrtHkOn zm^W`O(^t-1DerZ1jykCf%mr?fYA}VQ$t6r|2z@0%9!EM3Z~TT>xjZf)8}o_16G!N@ z>}X1zOP^*W26z|!LU$43Ss6-Nm@2?Bb47j#+n_BZf0@NP-~T17*8u2?8$3t#D_t>TRF{LORmug3;HV77KRXya@`omZRR{CqQR|Gv~=sfp=DL~*0@{CVC6oK)4I zc44RDg6RXfjqRSrdnPx38Zj(P4*yEh;J+oJ4mSizd5DiMjtwIJ9R9J>D9>UXLgAL-CV2376s>(v|i&GS| zn>+d|lke`ZH&r=a`P#w0!c;t0+IF|pu{>*gOD^Sng)|h0H)ghmVkC6eXJb4r;QS1s zyho>4LbyOvoJ&S>w3C4ZOm$Tv^qtWMG71B zjdxIY=-kkC{=M%)PWvx8*Q08qwkBe#%$B=)GJ>5MC?Q+YG6My@^*h`y7;%Hw#mrf3 zej*;2Y=@4y9&o@Bxz5_m0D)`04*Ggh3wvwm>uuqT{V)=8(PwETUt;&0V$2|`Bu}D; z-ldTS?Sl%|jfxjGj8^*C`Aq~vNk(w_?pj&1kZ*|9llTB{Wiz##r=fvF_s@s>-c9<* z&qS)A1fG!(0qM(V z132@htIfbxyk@cj!z6`JSL02XP5VeLJ;fMdTSxaD=NFQ;D@3L_JYQSm9i?m!UhS`- z*{8fwVJBq+4pqg|?))-W*PUB>!^gw(sI1%mhI==)cUU*D5W<(mkMUb+?Qpw%tlwT= zqO!P5#oR!Y|8R_iE8zsETRo?6qwpHc41RIEE z-690jgizTliY>j?Mi{Xfk2-F=(Ck z=zTgz?-AloI=ZfgyX_;qH}G%EFzP$+6QfZ zxZW`v^$6d);Wt;S^pHyNh%l&8l@_A&WwzuwezkHW(P)nRdxY zpQ;9xbheOlO{#Dl+ZT(!q;-$;klapf!OwZ(@&p$7y+@C`I?Y=wAMY-?xvAcLa@3?v z@@Kq0_4^(uVo|{1qMumtM^r43)nUG)S}TWEclg(1Ye!-9b!9-S9;tT?-`^<>5R~Fn z0kRtFEDo5f8F7>c2w+J^eaRoYe1Rt^_w4d>E<`Axryh_|*NUC(P&{gf`FoiyP>Yhk z^hg+a4C67~gqg{)oc@?TSAZS#L+>yVK-Y3VTm2D@{44As?Ko=9E#e+nE=rLy*4*6Q zFo}iTNT@dxA(zF!eh|$e5n|o20uEBo>~Vw$`;qstKd0L1y6`%ORNdR0KK(~_SqY;->=(f&37x0B@z&)bH`%=$F!Qs?$}COuRT?RJRccvW60vR*+eO7| z@Z)FXDCWK8L&+EN<77WvcjeVk(ES0_ttnuA4){BM>S=mj+I5SfhQ`PRg?PII&|P$k zM)x9GJM!}C!zR1sU)@NtbDtjJWj1mG1rUAFu6?(z)_ObcX^&!V8+-1`Y!G;&fb2k; zy)lhIS{W)Ni6Qp|gXNs;eYd_lldEN{@gm_S?ig?>K_P|q9_`*9EaMwr$ScaEY2rMJ78iK&T18D`i*d2Y(A-o?v46OTyZ%nw7qo0b@2~?s+~Z4F zf1R>67TE9zJjRZ$_@bJ3?epu1S8VOQDM@|yyo|2Uc3oovdcO-lF2IgDnF2z#P<{@y zrQ#UTXY7N5m0JF+^$4?TiDSw&g1!!5!#+c3o~H2^4bcp(y>%HGkVj5xpbEA|dIDow z>K{J`y^G`D+_wM!wEw+!A$poaFts&ta&|N|w0XX=GkS->%*h5|1Uz4{u`;tT|4nB9 zL+0g0U{LX}Hw7?g$Q!*gHFic|P3eaW(FzO;Oyfw8o2MIBAa)9blLSPWLw01Ui1TctO z8#5=;&0Q~{MCjx_rowc2#vb~`(sBuJ1T`i4Gl_Z1_7=GK#%=z4aAjAG) zDA&IlDk`G#pUixkeOd*3B`q!`4h9Ym4rT)S2lli8CISWl4*vZ4b3j5vJ|8epP>|5D zFtD)CUpRO~csMu&I9ON&WCR36B+vm1kAjMfgz|j-T*$NdvlQrq1P2TE%<;c=JbeX2 zg9CR3V}S%G0fRsTheQK^>H#AH0|SQ!Y5T13p935M5(*jyq!I!mh@t)!NPS312#~VS zP*5OlA5cCR6dE)-F_RDshN2-XiNkB=fVf;ZQsL@O(0_%G$ykgW1K|;{uyJtTkW)}n zQPZ%pv2$>8af^tGiAzXINh_TB2 zOiE5kO-s+qFDNYfR9sS8Q(ITx(Ad=6($(G5+t>eXU~uyL)bz}c*}3_(^^MJ+TiZLk zdnc!7=NFe(*EhG%c7cOIzL@n7%l?C1Xdt^FK)(SL?6Y0q5N@C^BpMVnF%t~BkRq(1 z0|p6m0NiWgxZLVacv2RnV@xB*2?Q)M);02zXVZRL_TMus@PEs)e;D?+UGt#u6gcR| zgG2)p0DJV?0lnqp-#vEx|7rhs+U4JS{@z6yqp&;IB+ z8{}?8>};JuNhbg^7s$~*Q|7j;O`l1Bn1pO??S8YczOcxenpheN+qna@89@X# zE;f3`-v@w`mHE%5?z1=kYtHyx&a;NklfyrG!RMrch_XH4c}{s&26Xw)o)MHb|BE2u zXz1}=CWDx}vxKrU$m;{1#U+#t0e`f5p)#=mK%eL0o|zR4ok7!t?KA6hQXFLMZ!vLZ zE=G`j&+5N0{+X^KG zQ>k=4>l_$s8Hw%3tPPoUl$BV9Z&y6b`0xD^EazkUp!3D6uO+(76>{vOjE$f_eZl{* zTb`QW;h>j!cep5H-$I|ubvZ;^=&)|V+i*cUO7Q-lna5g1GF{(LQQ@)NlkIKnoMP$qb0V(Y^TS00*N9?Rz4 zZV+~=Y`!vqaumNgPuYW;mrCwe8M*%|-TY$vV+5E;{hFF42D!8hISarhu?ZicyJTjb zd2QQDr}+k3+I2rL2!2Nh;>*4ocQ5`yUVdLvhF>RHBbG`98@{#}s#for9S`)L=*uRHJrs z;-}J>J{Q$rr~7Q`{Xqv;*jMU+b!}5x5h``?00RfP8^`9zeb}yGiG4$DKCH&5{&ido zY1GpA+m%R2tWFBmjABFt7o<$HzQKbNQoV(<+!S$7eCng5vgLVg8g(^>cu1#Xa z_z9$@S3Gz#rYHq2-b|%xvoYo%6^GhmkXV09c4|%f$g1e-TMCb6=G8pMr ziKS4^uNyEkYsuS)xmAUB>rWTEbC7Qw;O##1EuS*^=Og?mm*SF}gPBRZTxXgcC%du~ z)g;9EnQqdqTyUQ$r{=48T<`=8$i#jEyJ#vQe;$|rVG;X#Fg}k^PPV_7uv~wwYM?KJ5+LRgO4gah_MWjTPO`SpM zmlfzgd%J&LHBx0#yiKNg5TF#;Zt{(x@h3L***D>#1}nMPjFk?zgykkaCcc~gQrC4cIYFgN`p30b(D2Pk)7#tsprM_RDa1G zCLfF@Jh#J7CiKndhl<~AW6nK_*&{-wo}Iz)+1Vgbs=>V-95C^Y^V7mbRZ#-t8bOwH)=Jf77X6n(~apTTsi&}~=u$8EvcpNn^GJ_4dte$>3Mfuo0Lbuet5XOPFk zp_xLzuygld++ng2P`f6huEFAo$-WN~O1QY=Hp}CZACaOaM7?r~@{SQDX$y&ad^7OL z+Tws4QpX>o#xvSB7>$RGT>l$Gk3>!2wYv5z-@U;*6HKOW{Y1&PCjFg*bit=sR9J~r zSXAChthfoU<$Q;UM$@l)iSkYndfw`aNO~%|qEMxf1}C9ch~|xamwv5@;7NU!XivR| zc^k#2-* z`kt9YUGnk!4%YmEIS@jt*knF$UE!A?Q1ci`pzJ=dQeQV#uEO+g#=dqRVYq2DNs-fC zaoJ0B#$PKD_*zLiNl=X9Iz9cvvJCMQ8#o+q9uRY^p{=D>N+%~U(`}rl<342;u{r$7 zbmaY3w$@=LSCnhkV)JS;7iWiHt8Z`QU>2p@*2q8?Cuj@&nA6D8EJ}u);W8cNPy6F4 zQvBajmK7U4joX%+*tiCx?R0*8ZYr_Z&1#_?&>e1al6_e3%PYj;V11NuOmQAcb~!kW zS2_lcT}k_VJT$69&qa?wR|f8#A)X?JPabQl>8NSx>&lz$zq1lOTx&Ei6ym3cmtQT7 zD16_>x5xtd&{W>lw7fyE5q+4WfqYwZXC$yhBzsqWZ_x z-XkPzQ2u`UaU|xUYEl~>Ms=K*%ZRG#10?ChP7D@gr=-!I`XutlC7WWTFYtlb{t7^< zTK{Y0L>)5hM8&}PdbYs$;hqx%3zvs)wQGP%{kEGgV?jgespWBTBIZjvpv~4j$mp6+ z@6YbBH{ABJ{Rqut_kVdq*dgm&|AO=i%15>m>2$j~m}5b=(ve`a$IbH~WYvH|#m$xJ zFBSBByY#v8%-u+P;JD{!gyX~U3}1zny1HZ^4dQA3Nn<>bWTW@zwq`CjLneD3)WyXb zN<}pL{8{K}Y_x~u0SIm_;ea#fzpy>!0}$^RS@6xgA=C) zD=tk}=ck+4s_f4%cw1|`_YN}i?;$7Vf zNI**YlYGyhh^L30CHLhD8F}@e*c!kpirZ3F&d(RaK`TB6oRd@G>S{cM{dp9v$;KDKZTV(CfB3N6vFz#7%)uP<`ZLAL^q+gNRqDc!j1*0h>Xrqg6C+ zIBumTbXr;Jz;iBsSXwCN!Zs=1I&yZfDz2k9v5X0~#4=^1u;>e8HF{85y4OZai1=%A z30`P7ioENC40@}s>h49`>G30EfO`Upv1;K4@p!n<;RnN!)hB3+iVub=L|jeWIZZ8k zdF5l03?Z)Kn8jnocEdv-cxa=4Vm38+uEu?xsX53w$TX0ZQ$Id=A0!dGdN8(a1jE5W z>8YzD$;G>g@7}weG=yuT=4xwboG{Q{`UcgGPkAB@U!d9}X~xj&_}(Iq=`J}_C#>k* zz~Ow#5Z2b*0qktL*0?7e?_S(5Q76TE1=D@y<(|BKrCz|HQpk?E)*#uZO{Bi-(d1b^ zTRZZE<5sRQ2ICVKt1ufv^_^i!92rw5N(PZr7Z?7?qpQADk&xyy?C3Y=cXsvss(Qs9S3A)8^Mmo6mTrd&PG+ouAv@UwIvMH&w8;Txf5MX_hBnV7AP- z4sF?LmsM$ojckd;bOr>>V|qj#ySY9+VhcRoEZYfn(P^nX>S45g@eZ-+->>R8S??2a z^-wOI0YkUbu==d#SgRGphH;XCg?H1nc@q6DXhKo&4z7pH)TtWudKv|&jGy17H09$3 zPldxqs=-$S_TRz4N(is)y3Ll811oG|6y%TQr-wB2eUGrhBN}+^CM2)BB~X4jA*)tt zseE2{7BM8QRJmI4>0X8eLmH;HqtLPj%g~3(kkZdh5}f-g{kDARZl1bm(~rF4YlO^w zNWw$a0Ja=q-=`bo0kt9*juoUf=-uGuuy-tBDlVC@(6E`IQH))49Xw-xoFUf?zE7lc zh5K5&Ay!F~h(GE9huI~52{47);bCVVtX=VM=Q-A6w;ptVO5DPv)6xl$duL+qy? zF_cq%mwdbeAAh18_fiWSaSX?$u0{uLr7d42l(|2SYj2xC|M*7oZDy4=9(nkoz^ce) zc5ss_K8NLs2$oPS{LV{IE&dXm+M%SfNH2BpfYgYg?d~et8&^*kd(X~RMI;`p{rs0q z(q7V5!~3AeA8qYins4(rtEE=Hbmb!ly+bDR`Ce0b;WaP?OQ`=ny>N&f$-AQN-xOm7s=gX6on+W8p)wG-@5vrt=!~1vUrWWo?kGX9 zlWW{CwX+51^qgIz>USd9`BJfm=*8(ukD68nUa=(*$sknek|k%ucxOYF3zeVNc^H(P zp36uaZ`+Z_dcy!ig&Z$$nRd8PAytVb4ZoVf;fucJcHh}ZqrE4+?ltEZIB8(M>FqJq zoZe&`i26ZuV(SaL0b zq6@+^8Pl=QXdgD~Xlzqb)hnv!>J#u;ZH2y3#eRj+Kb>dIipS!Jdo2UeIO@&?o~<8KBw#?NGZ?RN?apaKcDtE8Pe zv!Oo+#W5D-FetU_fR3wWCAj^)2RpQFr~ zMb)hAqP6GW1z#O81?@mC#>#&-8}_@wwZx2>ySA%VWKRpo z8ySpAy*44_D%yEfy^INsw)iis(^HE3KH0UXeBK67<@&jf2Ty0)HEm5brRGj_gn-Au z(z$J%_pt{S%@_y6Fk{|uuIP1U6Qtxa?&=}vl9-9UP4_wMRXWgNo7ac;l|Lv(Pf{Z7 zd++0ON6ddB67~N~viVM|Zb*5Cmdx(T z!{(jmS3_T4d)~tXm%paa zlB?DHsveopjjY-ufp~)~ET#0K@E*YE6>XDD~kVN)9taL z?CiGqt<%`({@9mejuqdEg_r;V@vxgR^a_6pe|cL%DMg^v@(sGUyw z72dMczaFLETDd7e={N>|n#Ds~&BiyrBIpsa@hIS5AXK7I`?#2$p*w}zsjJSsZ);OkZREbbjd9Br#P?!&)2Tn9V{|i2R_=oka@u=K3uA()GPmeq{;bWkW+*>uOtNL+FjNuaIe+uqO8_I0E+t zu3(2w;c2D9ymAnp@j8omo3O(5tn+mue1;j$}VF;Q!MrrPL6;>+4o4j}*Tj_9Ns=UuB?QCaTE zMp#y|#QZAa5Yc*mQO%HOXW@Qu$rwkwla34M!b#!dBD{i)D^tyqN_RAMw)BCoM zx{f?@WO|F!hJhl*!Tv|GyXNR+iy~gM;p}It8F!RF2_M0~WH}>m7;L-&U+XGiFt|W{ zx|ZQR+22H*J!T&p@*Ba23icbMds~_QrLQSLUNZ8Vn;@M|k-png_twJ9L!9?@<^v1c zXyX94AUB0i$Tg%_O(5^*55C+t7>_mOL5_p>B}sas{JXs+R`wG16#*witLuiD{`<^2 z+iUNFhroYmH4U$~5mXX48Lf-W@K!3WC+)br5YN=ccGoL7*lE0(jdSaqe(CuwM z{h|}?BF;5KWJDT~>%Y?5(k=8!01CqF-Mdeo=mf2Tv9EL_O^n?_jjYu`BD30@*sU%*0#zB1WsxMir;}?|*Da(G;OIvMrI_C1 z&+Qjo;Y<%fdu8VNK)~qw4+4Iof1;&+ayNMW%0VZ4#z6~$T0r!Pb2HH2iNs-^(u4xS zuNy!vbdfpJCkqT$E=TTsmswe4;$07wlqy3%PAAk1$B$cxb3Bp$3Y!n3z$p!@@LIzB zqtZCLkWcYoI0`PTC9iUI_UH=EftpVUL1|sq8?6+LLCtTl0gd|Sd&4^`i+hRNP&TBN zqW$K%w)1(4d$Fq=@gD|ZP%BD^Cxq!m@-iODnN`l^c&jm~bP{s}6CyVJHOQ6G92Mtm zORM##>H^F@i7ftviZRr}Ei(R~8CAr0{8L&GCBG>Zxf-{wL?`W1!wmV`V!u*GmQg|I zqzg|7TPL0{x!W>XwxK6Xwb4P)IlrzzyA<8Jfk$w*mD~i$1(N)dHN(k(hSn2cgkNCf zr-~S9OMh=E4Kt<<=+4;Xh^8O&ChUNBvmtl}J#t6S;Ai5v?I9FvOVeSCsfH+D+X`9{#|#lD@m z-pVZ1tjx+DEO)QhdOZ6_!oO1056WI)udM3O$u01C!RE?mwe;dzU^sqqn&Dy*J>$>J zwGti>fJHE}My8Ygf}VHiFv`^me=V z*qtqS)Alv#A5~cRyh*ESaI=S^*YwkCnY8$n%`cs23YjCFUj;a$qGP%ZZ{p;J6NYx^ zF&T9=Q+**B{w458OEaUc%|^B*sl$uSXDMG#N}6OWWadudNO!y`=rb-qzmpEXrLnVZ z{dp2m9wwD-ylH0#L6f0qZWh+KYa-B-iXk8j`4N2?GQ9AM=Iz_;8OSzV_qaCkDS13Po6*W$Ax|W9_9Meb1eOyJz32XV4BKETEd6pI|8vt_~UmqIJEHyzYARcjF@)K=t|IoFNk7u zDQ%MyP7{(P&a5++b=X>#kFF8vS0(^D%zi?&oa8z)mWPbN{MSnyB?J&vi3e$DtO~p? zk#FX|FJF7M3m-CfHE-n|@tim>WqUZ9yT*RkwKRJw87!_(%kozUS)j79$67isSI7xr zvAWHotPN|O7)bJz!ScM_{lziu16Qx@&M|o4yHqES?b)f(LW?#UYv00xTUhqpyyci3 zr{Hzkkrxw<`e!=gU#TN9I}BNM+JH$Tj^nKnx#Bsya5T?lL?!WEPI_00p7vl#nXRMj z3pM<#3$+UuCds)|m&e#icZnW18i5POUCL>a6)Ner9ND{Icfsph%uLJ+%X2haWD8d! zY46pM@kOAx&UL)F$rfNrTA(iuwP2If>UM)hn{b2EH5@Tmf_CbF<2ti+bRcbcaY!ty z{43W38po%-A^|Qgzng76*JKlc;%|NVava#s;$d^2&Dm2j@oBMHvMZV_Ya;HW+W5qBySm^%@@59<(x@TQCX5i4w2^y-{A z;EuwtuE5>w(Xk@~f}%=fB5D28GFJ{f!DPvx;aD1-_{)_Jhle<{q=h zXaPQk(|mvtqQVbj>}2^ch1_I zuFE46APJ;mb7I@UC%q3cY+Tu(6m)`F2jjy5Q~tCd3&hruI32=;ZbJt*PegEZV(Q=! zoj!)?BWcH(6MePk44!~97dJ`Ct{v~s*|^GR4hZU`qgZcGr2mdD)T>|+eKF?Go%;Ic zx2KOnmIDCsOev!TX*3l3et4MZ(EMLG+L@!hMkGA-U$GLVfJL@JJI;|@EImT(XqE8c zkW5C}vpH(f3xr|ihFNiN1*uL{U*n)VeOGyD8TrjKFSv}q#vzWJBZg;)H)Y5MFXnai zvg}J&8?23x;32|FntdOS6Xco$D*=39pzaF)&USDfX!s#2*S^Kq+sR<$6|@+l$|eM1 zo=R(+O?@gs`O@Ux&iA?K@_|t;n`FI&P78x57gu+BwQ3&}^QLH|wg!Ox@Ec8{J~u_2PD6pP4tV)jAMgH3VxgOK6^k zQHs_TXN17n18H ztpQSmEg7=xwZH*S~_MqS9=b0;yY)$(uLkZHdizNT?ER@7TAWw)Dl=>JSM- zWkh%+I35T;6|IPqGIE^ptc*M%tFr77U0U5Mpfr||wug(C55VO!OZ$M@a8Wl=f6hq{|SK#ifuo~^q&E$%m@s^hEArxAwi%p`oE9kKgYs7oIqi7 zDO)o;5I6_`f=8KKg3tsW04gC6Al8%`z##8vV(MsVYYw22G699+EuB3;L}eFyduvmh z=g>SO;4kRW-%tWjbp0>Pla#26orILAtRV>d^j86(xV}1ooss!j@*g0ozcHzRzk=-? z%$(0Gf6xsKAZ?{=Eu8@j3XXQh&oO*6OIs7iKX@*H5lC}e1SV#HiKVggpVV)fv5lcU z2s7}%WU8u&@_)7x0K!*-3Idt(0+RUMLcqU_0)k}z=J<^f2I&HlV0uyJ8Sd-!jE;3Q zv<1P0d7mL=`~Y5Y(DAz!{zE?ViH#r$#t2|g45aEiU8IDVg4MP5=boa`?(v9tXqa=cW;`f_6D zeBu0)5`GbXDU9Pqfc>Q~Hum3n%r7djz2q^!sKokG5$hjyUpQG`s^xf5knK+mFIsa5 zy%hFRJI5ad|H%EZ;f0g=PlLSVvAqykU-aa75odd89=1P9{As0^Qds`j@P`E?@EZ>I z*N+40!@oP(Ke~poi{mp2@pn)B-C>?Pf~BqLKRTmPU+j%VQEAMKxhAJ_lc9u~&GA%p)7?2*F1!5;ljFh^``9Q5qZFe8qC#T+ql z&~tFGu(EIfm>8KkUSLW8_c2E-AQ$(7{CvS2u`s@P#lPG1h2vkrlpxFz8_4bdGv??I zbm_l(DgcBz(ot4#Inv`HrqY52FHzk`d94Uva2lCMLJS2L43*$t>>q3*lDBDyF6tdE zCT5kSWK}j(9pmC@UG@EPcz3tXVte*dV}a(-J+)a!{^;$#%3=46W!uAC3~CMEik25S z)H@qLr(X|Ct8z1XciJl(Pkb|tuI4yBjKfr0#Nu6y;=Kp!J$#ou{)x(1b zk8d-GZXnImFJR97SbKG~>yPK=Rm*o#vXgtyQ<*1o_^G_fz1yDrNeFy6R$ZGHAtC8G z92*0tDi^Q|r~xkckl#MO)~utGqHt9IS-P&|XhW}MNji8D~c^6RrGNd z12J3EM7-EQXn%SB&E;(MP5lu2V-W~(x?lB>1*GxyzB%nPy+3Us=dqp%oNCfw$1Bb7#cD$2(m11q@SA}JoSaejcyIS_?%kChWg0KwN<}>K%t>MUyMZx8}D`|s|GjB z%Yl{!>_Q9^c#=sf`iyjVxc=V2rLV8RyGrR)_2|WPYU&!*H5D!WR#s-Pc53m?g{`a2 z_LG$=8k~pJWUC8urWczgZRFJPdHpH!njr5KJwq8Ub!hz$-T=ab0A^sHlLN>#?Gq#q zC86pP7^5TLCu&#~h=JI)HPr{ZmX`KBx@@|vN~c0e4sn*!_2A$a`J?3Ih{?9%`HDIgbyGoPbp+a z)7wmpv3P8?Jmy5glIddJch6@*sZhw^F^-=2OF>MNpl2tvd2p4nTh{l-n5J2MVMqt= zcp#m%$4|DHb{O*568N@Ty3WurY;8eQd3>GGv=<2?mpdnnFu>VT0PBkBsXn)Mw3WMQ z;40moC>S7*Dq4KHPrP&aned7KDwEghQrPFxdffTHKcsvxgcHFjh*QcQx7Slj4%yuQY?^_Ym zMzt*%+vhk%_5<;PVGYM$rvktVk*=^E-uc>GgEjCv$KDPZTV9I3BWO#Y0Z&?wT^{}q zNX*e$(a(&sG@(o=X*&w-(pInx?CkeWHXDwO-{Cdnz-2ivT!gHW|eUk2~N*GD3)q zk!f~>(7i8HhzynwE;^(%fe+eO==jX4(S_xLfG8vem88{z%i8x%F)N>REtzT5Amu#xH zy85L{^-i&HSwl}v@5#uAPfPD={ZzWmlfLinD|n(mItspIX6mEb+Jo{3x9PdsWz{Qr z&2T;xp8Pr-d!ms=$m9WsW1*%2G*M)uajwlb&ZH^F@aZ!Pv^MxEm*!xUIus?WI>E$k7iE;+VI}*#X_GY1`Bqk?WuV|F-ij^%0RIzHl zoe}F>r>uKZFs|N^jUcGYJFTUddtkbqZKDfLXvgP;HApliu$JE`n=#SkRrICw?OWj} ztOwVr(4V-{;Z>g$StI$com-3s=rhq`!HRw=s;60N5h(lCafi~>Y7jbEczjXoC~se5 zO28c%@N(=W!ozE{#&xdLXztp!a6Kq18O>=dtMBmTnxDD&vDX(`+)cD8-`Y_;Yc(_= z+s-kxcE9BBhAEw%>QJeZ9axusvFvekD)lOS>`SYwtT)8!HI_=h*6~;Oc&G0Y);+KK zXcXwOZKo_FUMZrTpJrWyo^-=V^-!08im z7E5xt4cYG+xqr}w{#Fn)u zeWa0*UVcPZ$&|7^8YzFk6QqW=u|YY?*$Q@v1Xc1FaNN1}(V*UupGy8Qoe5E{nD`Uy!tvUu>@1iP35|oO0nqVAK?? zq_*V~uyD1sG>~#ZsLS%Jt0>#ja(}}U@S0oONj9~vgW(-u$KVPY6~(nyJsbIQ-QB+@ zd8Vsn;xkH_=u`{c3Dmv@|Fw*Ug9;VT8x^67MWA<=Z&YGaZHN}JRD{F|YWBRH$Y8B7 z<$SouTtEuqr6leQ_@!u~ksqX`;s9RYk)47xT|BleL6`Fiq%M2}Bn6*%fVHr&X$=ACNxS#{@w`0<$4c;C_}tt3qv%!d3RxU>6A4R}*g& zDQu8@(GJAy;1TDTFZB$`J<*+t!BGeR4s;FZ#L>Kr5i%v%&IcrQ4=PBhv zB3dgR_uItYk3&)YdR1{rMSiQn z*HsaAxjQ)Ia%X};uiJFKYi|E=xK8Q!aJ>#a>xhO&%Qct{MowmgI-KneUruQ7ovF#? zE8lxZN-t`;?$5PAb&Wb3uJHdl6IUb-#eQ zUlWuqS8=YpJ?Ue*lc@d27!g!6m_`X?cV0j58e6Vb*6aEfdu_@CJe-N|0CjN|e{tsJ zA96BSa7TH~L6j3ZYr1gT+IX>qNv;rW=sT#8KCFeXKNFQYK1@&+K+cT>6gwaI6emn# z`$zUpM3On;Pop=Jg}5O3Gd%v}ac)^5xUZ}ipdqJ9`r^z&-~zw@nSI+Ji)cnH&Kv4+ z`*!wG$ZHBL!V)WuOoALQ0y|GkU{zqCFXgs`qgX=nJSpT%D~8A7y3d2Jwu-?W<<~wqkxbcoGw=&Wnztkhfa9wiI zYQ+-r-Cnl0K@%kXRNWtv{-9Io@zi-oLF~8C!N#uj@XilxXbId=)ju-&8bwL7UF1~w zcu1f+Kd@O5l8u9>(}S)Sx&@5SqMr#>{2Uwy26M^CJ_t`fqv9I{YFO*0x1m(pqilw( zrt;zA*yVJw@sfUUXH5Ohi7u6pdM*b4a&WD+GIkHqq(#0SS9bcVr`e4z?8`6sb*B4` zE3P(TJ6HV^^iwCxJR2K1V2C)%9{0ZW%X==q3jLo+T z(s_Dw_6=hS6SN-At0BwjEdt*)x0IW3R(s`_!ijKJ!L>u3G#kxV9Ivt@jX zX{EVO4t@^eoNaC^?QN1Fr`hvSC~ZE{vt-WMydmQy2^OTcy(NtfFgbx5mZTRv)HU0Z zQc2&x_JqJ+csJ({8ZbH|dY%uC$jy$kFWsNMO=Na&&}pnM({Y3H@bP<`ZKb*9wMX*b z-U}bOwtgkk9m$S#Qhk0sHmT>>TIBwuoW5=}qI?&{=BL$YsG!k`Vxz&q*Fr?nD{iYATj=;tXgI|I28@yP$_`WFnfU%<-E`DMW{6m)xX9d6+ zYtNO(#D{f2(Hkc|zjo)QOdWcM#mg4y5^O~2qaii&Il(m*y*upsfs6VP(%7d8lK))3d!F4kDy>7 z>%kD>kx6N6nBAiUOgVV(2{}r!t0g!a9C#Q~a8o{=F1g9WHj2p-+)JN!8eG9|L>6wEl!>uw=a%!9-B+vgKE3yBd#HcN#JuP&kh-+efxFBqQo87^DYoP# za*T^P73D}P5&zjQRkH@^b|Po*hA$-skBKG9pN91f8UuA^B@6C)_R=G-coIjr$4`B8 z*LiaDo-9i6aWwOWrrRqWc->ex8LosfXMB;$SI#Q|$hUgpafv(&D3Y@926U z9+r&WXnsgY?AE3x9S4FO)g)1y@5efm!Gg*7pdYPkjMMpL*F)2MPTQB8V+&^^{Vk68 zs(8fg(iX_(3ZhJX5agSOczkcd^t~O8exxE?l^53Pe4;&C3@z)XM3j+1vYRiL)YRR$ z9h*M1;^7yMuP10F#BQhgkyPuox1aOiBI0v6iLFCKmm7uZyY4G{B|cER1k+8*Q^loL zZf)5xmmVW%AS`^e)ZrJ_si3x8Uzb~5Xzby06Q<2hEE{2>mHysu9o6O#j=V>}p4)EH z2NQECgXTg)q0_su!vH)|KGnfnOQ(G3q1A6&y!zO0Sp%CaFp8eVMC6>C;Xq-fp6s%~4NY_nv=c12s}*WDfT@?06OyMY z%HYshRC|6E_$Zo7Ngk2kRE$}IFXvNXp;=AJbkp^u$&AirJ?Dva)gYUFbesn}C$5ftE&)Yj+hv<W9~E)zX|$*8z%tn>)T|II>ct;j zF8G!FO%w_bjDF=qI!*j}Kg0)#^c}~^MWcR*h<;7uiYqb7HXH@umWuCBz@OvtBxm(D ze9oAA>TDnMC6|hOEuEdH6A!v2Q#d9q5Gkyx96}D1v~`BT~4^V#wVK93)cIlsCE43;p*X6u?2Q z^RIU``{hJdew@-!rDcf@7^Qm6ycxLeRW#Gj-EfFBO8+1_<^K)d7&GKpvkE z`k^orjcVRse~29lRz_E{mqYylfg_|V7;IJ^3GZqaJ@z;-9u5Btp`Z9=n0`1j0{b|+NR)?zC)@DmC_1jpQyU?-D_eD0N z@LSB8bk5Q3s%9N`A+yWV%*pQ_i|N`~oTEn$T3NOz09{qKar6UCSkJ~aLmK?r>BAj5 z0ozpC01M<=G$^96Z@!^DLRE#qB)_0_`622VI(agbyTE_$xOpz=zBO&I7r8h?L0mR&OWBU5 z=>pdUpXyOS!^~&o40jGS^D}4RXD$~uAxB;Rv?N9Vs4r>3k>-~cU6WWb%>@!G6*nhJvjuW zwRtl}YV)f%03@uQ${mkHQH<3`Hy~g;9+BOOT=$LKf;0lRlst@*v92-GL_Uh|N>vF) zy$v}I9a-zg0jBk_*vgQzS>(@{LWUt^*2VEtl+pHB=OUYjg(XPWPs%1{IK=F3Lt_qY3{MfS@` zed(dWnnM+Cr^O+^LmsSM zmw)hkE8rk8g<)hFbK+q<6?DbSAl~~Ku~BoVIab^?pY|$+4=f5Rw`YcXHHF21&#PwaREbX<5v&ah>VvrHR92iA$t#Uho*#Rxc%$5HKQKDa)$!UQ0lv;;8Vo! zz|Rcsw~V+J7{voZp%L)IUOGOl9Ip^>79Q*CLCjRax&tc7HyNpXcc}Mr=tCbA1Hag? z6N_eRA}VIN2}hdEpkywy7qp#F9~r(?(YieemwJxiT@f%MD4cNGoK@mL!AU)H8J2FRz761ab6;vA!$Q#YWaW){a|@XTAU|tOh}`#3WK-+ z;EBUv$kecd=!x5~1JabCm&Nef6@}>K%)CKSE%3AF<^S&6d7eW#elrYVYPb_`4pxuts0^?ks6O58k@sh++}!yioq* z+c4en8qQ`z3g+sLx_Dbq+4B|9?=6Q)X031=X(drYU^X4EL1fZg<_%unld(+$jzIvG&6Nj^yhy7Sm z0Jfl)?qM~;DGF?j>^WvT(0~R`>|-QNaLpW3Gy3=Z;7%0q+_l9#Kaf(X z$0*Wo+$+b7>}pQ~qn2TVc`_Ej_{RI-N#u^v^B@{* zd~yf2X}GZ!%c-6&`7lsfF*J)NHZ~skZ$L}3a_KmH1I^0`sxA$4!7+HrN|x6g9_>M0 z#hfz65WzfZejKem5JB$PS!s7Ig1JldHe!mR;TxYf9x7Oe2nkX3gT<7~XHWB23rCXW z3vdzvyi?0nE8YN?$M1OL8&=lA0yD4>4fu-6flH&g#D@$U4D(66r2Xqb~ zOm0OIdKXAOWeHB@(@Itt<6B6d zlg46f%`kh+ew#Vp>oTYO_6w#4%3umg-mImLg$-yA3HEZf{o~E8KZhI!2BT7(olU`v{k0R-^hLaJYnp_gdY!vfT9s zuo`)681&pWHc8S}oK6zx#h=S34(b5KY~~l!eY|3{8W0Bv67a>d>iZ0xQ-&0>wDegs zk!k9d^69LN>ezc1yu)aa8u_(2fHAc9W!q&_R1pfQ6&e|hWtOT*VBDD z;SDPA5+LMJ)s|t>8rr7Hon-KGblefrdgT>r8FUz$V&tjT>oC$(K)I0H2JxLWlj^~x zZrrG0Lu%c=j9kPxEe8%gi^O!WVZFE+yS=zJKwPhIHoV!N7OzcPqjWWVI%!{}!b1v% zs$d(T%O5+@5>Y!ryK;3zT{{X18ALKm`g1jkOeaz74|Ep}iH}+>C3sYROcY=QDn*oJ zogf?!lPKRqZ=nF#=hZm!$yIa_E~XU$su|9v<)UFjF#CqS-Eh`M9IIhjX1RBU#A{8& z63|L((^H*>723!M-!-F%e~3C;%+9&nfediU+g9_(tI*9TLWXHq!wAEqG?O~?@vsKE z2ak~P#b~Yt$HUtV!D;(A-1_YXFH13WTut+*dxy!WLd;6L@QLqPT}`@qHOZb< zddHmlc!PDQMVWa7(Ra-4`Z>7F+U<)oU6vBktg$EIJIaco8{ha7eQ-rQrhjGQ{K>iD z=3?diz5cgyGPXlUD=q zRUqVimG543JJ#31UaULLSIh5JN_=tf{-}Sie%`Cz_qz1D!>iu+suR9yh%et{een;u zUY6Kit-=@e@6|YDe?63!p;=$nvA!<7`iHO2_qz1z5xxxes!OuIZt}AGs~P#~JF>m3 zV|y8s?e(?1Y{~X27rs2OzZ?VGi{Z%eawr@xr93~aA&+{-brzS^BHC+pSAWP4d+1HPpHQSFiCUt5Cza0mK7c#pvJ#Q)59 ze7V`F{FCqaa<5SNM>p^9iD`fH9a#YXMR){Sk0<}?F8i--?Z4m7UT$x%d24U~(Rl>= z)bIq3Xi~KHBK%bPN4kA$^zhEVh4W3LBhfU;9>e5w+8sXAw0gM zNd9G80|jlizuwZnQYHWPW9ILk_n(sr6dqZ)IR8<21X|pGd6WM~;ZYmj8Gkyh-Hl?t z3nElH^Mu>F-xYlzcaW-I+1^hg*;uE6fhYbK3JHagg>lq7@-ZogB?`zpZj5+#n>+?s zfmqjCt%aJYLIIm*NU?<;*LmBq`K!e5wz6M~}Uvec6*e-rCiDuu;<8sPEpfL-YMlD8v zOt}nXu(P(+om`qD_!@uSymfcpK_~ducWcpiYJUNiG9lNy{!rZ!l2mV5FREhsyL?5| zcVYR_QMkw2?vyJk8;YcKD}D`rzj$mP19@$MO}d)&SPuM5{1!V4oyE5r`d`azr@yJY z*jTmLIoSSM=-j>IB?Wdh{PE+2Jcp2=$a(I05FZ+ukoP2GR>;F|0zBszJ%-QiaDYPT z=$9ZG?{z7Mr`}QOB3u}-Jf&QQ%i{86-C{qrcg$u zc85QAmv$k*83>|@Q=Wbqw0S^eSw zkexU!I4wHcMttswX$L&_6bepF$haNdJe+1h6TWn|<>ppB!qm8|T+U9{=V zNQEpFV;;sP*kD~dY$#WX6KK^h(GY|%1mkVgB?$$;T*S4Cy~;PD7w+SCYGykZkABxI zRKJ3zsHmfco>`x-hYE$;1-Pq>c81nnq=WSw5-u5b&B-%J%A)8aaT;9M7!eAO;Hx0$ z%@O05XTBh>TsPNP&1SXW2^>A<5EGU8CsBpRX!KZmJUuKwgCfu;S3YXx*Pds$yc5(# zJP%VleNQ>a?C)V*bR)S28p{4Tf19c#uV@?h?&EsK#lE5Ba`+~&&vPWbg483ulGtpb zeL-SUoIkG3C*WtUU9^La0W*1GpyPi1p>&>%M~$MkykYz4`$BR$`B32{xs#n1{*GWI zD;M)a_k?K%#q7uJx3Lp_&RjJQ`ml}8pi(vng*iTJ@GFIGn2Ne?HqXLNwf3tu?N5qA z(~DLfg5uB-`ikF=Z+g?~r+hX>$1Xh0JFaDWBUx|Mq8*Lo6K5Ukup?MqmPUH47vnRD zKZl>YLEY^}6XKYQVw3f;tVQ~VL-rg54)S<}tcBf0npUsWdAk*VY-f@il_;pZyoZXA z^u<415)KLWv2Ni=;=Nv9Otao#t-?Pe;8nyI3uKa{P0Vk@f`3QTCqjBw+jB9Px30A> zq-5=RGFvI6D@UAf70&FH__QgwM!JwBgIOFtY8?Ml`GNC6P{vG^Hh4Gz#cDc~BM1qm z>j-Pg5IPX=hv)rDf{Q_EzBaJh*F@#d0BZRlUwIIOhSj{YQSU-VH`uf`HeOwZtNH=?%D zoq0&mJD6Q@xCb9`rFJgN0paB8lm{kuN_O9z)%oMEseA6!_7&*qhz%v=4Z=3pPF7zF z#@wgYAGY${dRcBz@wiGfa&SD)+aV+T$h!7P$_`3j)+MOT4oKINum!u7Z-vbu{2Fx) z`?lN^+>(tojEMMxke{0y0B}FawL6(|Qk%ztJ-i=%^1i?FHPff5Ii0`d%0`DuOfft& zJ}R!1-!^A>x||BbDFhd|>uqW($T@Hx>^o2`=dyq|vl+1IFdI}k!oTND;o;)MCrmN3 z*U84uT z+f9Ogfm@CTW_Q)6n~SeU%?UoI!+olKcKnZ@;#Lz{E%%Qh5j1Dl@#R!qRJ~Gk&p96%BnqG+WzoP5@bXQ!>F5rG%gQAB)pMf7UI&RK^TB_;`~ka_Q(ZIjkTh$B@m8fu zXv@KA0ZsXxlql%WClSM6n=Z&ArtkFY6V5*y$g**gHB{>C&mI4I;4&M_>0wGt7h={_ zoeK$!8NnAYhs;Fu6j@id*EaYp??DnIcw;#Jb#{AB=b|mO?r9IP`Lp}4sHRWS;IzXO zQ>dA0H1Kf4aYa-!ZF0iRGG-9Ng%ss2EUD%laShmG54KNfz(0g;z7?|@NA-GqQ!^4- zUw!WKrf$s~Lhf#yu9w=J_v%Mj37a>hLnXLKM^zYkw4kaA->>8T{G2XxM{1@~!HSN- zNg!Zxc>KXV#|r-7QBv^f$Dvzcd~F;dU%qt4qAJbBQiIRq#~hE5$bkdH1S8lH>WbA3pAKFKa3vjdg z2>ww6)_5pQF1cB-(bsg*^&65L@J8)@Q9JgyJo;g;twn*wI9YTgo3qC6tK?5?S!@Cf z1q@;yz1BP2JL_>@Ih?dSoswh9yZ*^OFaalPpY1~Xl?OXgbmujcy5Z@Iomk@H9idd? zQ-L=7WS^MUp_*RTR+_Uxd6;8GRspSUAYb$o6F;aY$&4(Rx zq^(yycV>_Du{?=WNl*sz-bFCpHuKjjx3lL>cN$76TRTt(*V0RzqEr<^Bn}6|!j-}2 z=LW3iRv(2Vdb*}-(nlDY(s~&cYSN-~nz6}dV&bg~9;DYOAgqtU@ZG?kx0|QmRQg6D z%w&-#G_cf&-q^94w`K3n?1)@R*I;aBLAA*n3*b`glltb)P8xU;w6Ej}VSmB!3@Wr& zyU|(G>0V6cj4-^--^#3?_6*@L6R^qp%47X;w+nIe?I7CG8f4DFF5#!stW8P7f_u6Rz>cT-`HZCbv z8LBO??#EYdZ=OBW8T-5NEvuk=Zf{EI@}DDnCY$NgLfg*dT4XBgRCGge7Wt?_aVT;IM`8aj5Avt2Mq8qfqc~WLtk@Qw< z7jc-7#bM8iFZLm3W$CTo)Xja~ylkbC#ckOgmLSZh&%zRml*JaSVX|u3N-gLjr~XtO zfFmz8537YuDUX#@o=P8CoK%9N$`&6F2|1k{JdPZcWpH~|RZeR^3vXHqp&-##mfpOn zo-)W8jLs`p8VdaVsVaioKy=1g{ChY)f!?U41@@q}nh^mcp24^C*!1QNORUvz;Gqy= zX(7TFu}C-ljgiYFJ)l=@fjxn5}79gS?WP#09o68LisI@(`0)*e7`x?k3JkXeq%x& zHgd6Qd5{9P-zB??5mRd-AkN6j$bEYJ3r%@kqpt*#1Svfm4P^`)m7qiJ1b@tIk~M?X z`>c=iIU(ABvrG#HqizYulg|OkU<+CeRKY}>EVKOvoH4aU(QdQvcj_@9hv8`YI*s9+ zNc;sz$Kr-oH9tufc~#KSBU-_S=CzUWMvlJc|E`&Gpb;{C<#yWh?yMI4K0Y))$`fEr zPcXf|tG{H0&eOA?OIvWxp`~$U4tF}J8xK{Bw?3y@yCl{mYJ}jMhQ#*{7fpIKG@t)t zF>B0Zt86-Ic>WQNcDcRmhbmrjuOtXG^-;sGom< zCLO%F&{~hfW4^Run?+!cRAADh$fi3IA&c>bs@!^VpsgPKxWltFOK}ue09P7OVUjAB z@@wqjyU1cEGXQFVB#hG|xlFAF2oJIGkFHQvbr9PMxGNfp9IU^l5; zu!2SE7fP_T1A}_1l8l0PAMVuVHw@KrsSF~qYFF2j)eb)QnXup=@*i2~7V8#%wrT|* zGS@GX`NET*!a7-=v7q;6`%&RbcqfJ@X3r&K#IFcO$_^_HfREFxP3a(Kf$Iau{RsC= zo3??K|LjNHuw}q!hJaMLE0R&IcjG)acrB@cS?Wv`C6OHl=Y8~4{#oyOKabiZvK0Ij z&__7NI#{!A@Y9`!VGb_S^w%{(Sh4%QKPT{AphefkRJR&|Ad?}NT`x!bj6=B!lqal|Q_3V3gXX8;9=o17xb5t%W5Cbby%&PNv1Q76(= z+>d<7k)8l1rc8r#M$M>2KU1`i#uz5JtU%Y**e(Q>N~iaOD;LBAXl&n%=TKHj5Bx;; zAg<_q4`4s!bIN%&rY#O`&lf&VE!i3IgIiDr ziC1fxVh_bUMtu0l`gVnfMg?t4;aLph)8x1`HwXAQdEsVJSK-OCnJ(t5IQ;}Kx?0yF zuo(el2AZ2dNoUuT;PJf%M8*4bvdqb7B357i#%v41ZsndDk{H&4VHE-b*&d|eXH97* zoX6`PjW^Ha0JN^TM&Wka*^w-tM1bzM0_BUbAZ`d{G3HSg4BYG|G_w*iI@{iez9_9D z5qYLJ6s;xHMRohT49SE=!9Evb5mL8tdiKK&+<_A5xzWyujMTs@&j;7IiDb8JH4CdiX%eCaZ5)&BP74(YE!(n(Tjx&V@c78e>FA`QdKYByoJ!-Hz3_ zljT)vr*XWLR6KB2T6gwfQMp^6L=9R1e@$*z6kN$~d0}QWMkjQxmc53x*fdgXydkGA z_?TXdT;PU3CXrOUf|ETNRSQfJNW!@f(dJE)TeJ31LTcw~<@}akpGV+~~*JWUvXh_!HFC`A; z6jG$l3cu2&N4)6~Zj=lo;T<055_7sdQzqTcZWLy7EhUn5QUMalc74 zUMi?GllpC`DJe5MOM&HCzHP+qUM4|`a9j_d%#)K`p6wQwqo@}%*<6JexfB`#CdrWH zV#zOhI;GHGFQ~3CFF&=M9$kywh)f_$cGntpScw)+)VZO%PO@^^*jRT2L{3HnrUbQn zHmxC%G9YaJqOL^k6K`YT&@bO&v3C-?2y$5XwQr0E`R484%S;lWTNn`XRRdcYvv5Rrq`%~Y^iDBIIH2Y_31VZ>kiXts&e@_-%Clz)|c|Rki2(9`l zAtr(9GBuG&F!U|wOk9pt%=-ZUP#mNy@rEYRcjMStlA>KKIRgi%I=TjpcGVG!UUB}b z=5HXPW9d=mnV|09XuNOX-h_Amm47`N7t2L}^^tU(i+}yv!(as4{$5g`UASWo{s62i zboUzZo{WSYt@o2|;uyYZcW@i&HONx4r?-#3af{xsb8#>^Q(_pGF!C=-y*osgEu!m# z=H?VQR{;pfp@=tN-lRX)39kasNd^fC=84WOk>C8Pq5=Ep%7W(T(c1InM{JfB4n&F= zSq*omOf0GAz})(Y-|#W^2k$t0icJ?pws*k_z9ifu06au@T~vJl$(3gprbgw8)g089 z#z&@=D!q%wV7}bdF=6HIom*&Vi%(u+I`A z1h(l&8i3r$VWPx>GM9ls>z?G`Gm2eR4sy5tqziZiryX_tcY*#`VF*yyy z92rpVOn_wWJTzf3G{QE8wy&OE5{a4Jg7!Bs?T2iQ)%z)+%#&i)^gUwHJZ4TN>d9iD zoFg5i(B2mdZWc!j?F^R=-i@fBCn+MrX2|uYkJi24ui)iD^N#9eR%el{dbAScB#s1H z@d23-8$iLCw_?gfF2dWS#$0_F3(caGk#Z&)C$SL=IEJ)|M1FR3WxCFiBCk-pKD?DO zOM&;=mWQ*(0?>R(H9884e0~~6_qf{m#v5hHYhTE{#=T>$Mf>=DBSJd?i%)PwuSc2>Xl{?p&- zZ_E^Us{bD|{g0R_3lNt5W~P6_Q(lSYD>Hp1p|4=`6?(qVz*orniu(S9puFzz0{7To ziQmi8D-C>wbbn~zE5LiDh_77qh4`_*?)N(83w?YIa(Sh)uN3h&j{P4+eJ{PqUUDz~ z&E@*c#Oe4_Fq z|Fxr%sGYU(zaf3>K)T2ESBMFa^zpDW0oZ{pjDYQw*Z@pC99+M0{;k-Pq|*J0;-l=RYKU9`^XN9=>*< zDp-1i?9BA><&sLR6tRg?aX$<=prm61VZbmzR1#^zb-`r8DE!2$;FX;>Xowaa2sH!` z7L(P8%hDY#B-cIpD+Z$1UE>>kDMpoJ22Ra!bX+pH@%knUT^YXIwHY~tCG#urQnt>0 zJqE`6^R4uJgCP(6BBn2i73k%kJafN)prvQp`$Ap{{~-) zm_H}jEIxK4{O9Q>9R6pNynThh3Okv~e6qmsh45@)n3dk+(|o?!1bRblg>VgsRybq(I2GQjk){9R&`Yi~hlDgX09GI8TSERhrO#H$h}5!)^GF91SLY zn1J$)9y*)`b&xP{slsEmul0u>_AMKRTDLO|HD@cUHQ^N%CR;b_V|GhNyGILaRl2`Q ztAj8%a= z%h62KtmEl;6GHJ{_JQO#meo{DkNZD&-9Y}FTUx1X73BM9W+;SnxYv_F7%jFDeTZY{ z7D?>rOrY=esd4k-4R8`ThxKXL{kVESC;dcnjEJDm{bIFtEQ*MqTgFB4ozGZVz>zwN zNuY?hIFH6S65XjK;A>4;ja+9e*?7hpGp|?&HZiyBaS;5#QQyr^BW$Ln4>t!q}Jey9GIAk>7L6zj-z82I_tu{9+6UxZbr56bq(|L%(zq; z$p@=(2Q^S+c1W4h$^|-_qbrqklnJ*Ju6)WPG2NJ+?EGfD-@+K!i*%tR9-5uf)*jWb>OR>bakWS%F7bVy(8wuC$NS6pP84| ztu66>WPV-6+gL{OC3(0TVR*Vz);+VcIn2Z5;b+SWY!8r~Zme^hEGh;4fc{g+tM!3C z;_FI7aULrDTFMFz@#2E&SJX<*6aX z?RD`3qau@#PoJ$;`p*X)ZI9a@??rWVPIYFX6|Y)Y6pDUon3@{ZpyA~}5zovJF5bIk z`#ay6g-{`Bx#>$R&V1=Quyy>kY)M-QkF?@zYQBQ_nai-wd-*QIc42LcJ9KYZ{e|5CY9U0V%GH_hufOWGyG8LlzQbu_0g88mgc@N=$;J2WQ? zfF$qLYjH$?KR~jdfk=fqJtbUw0peZ;&0imGLTgOfH}_Uqp0TCJUG|KVGtkH6VKSot z`c#n-9X_Yshg$7Il%f9)VsndNBS_FeToz?ZwE>S`3BigT4$Id^5daJ%5-1P~6&XwQ z*4sO_E3$cG`RxEM-l+T&uFzGW!_S-5uwsDiGOGt%qUdFIPF7IoSm%YESrkpY$`X#xNf4^_U#qJ~C9a?~(n(UV5!GVm%`3UXj63)*9WcyZW(|jCk z8JvPQ2a-n}#~X_6w<+!pJVYn_xJX0QF`o!q)V8*lDWl~vF>g*KPk6n0!qAb03?FQd zzUX8g%q|BMEF5LIU#BEY?PGWCWBt(W%YR4bDWPur`D+8t@q%UR$15!B)(9)ki{mtb zYPZUZ8N-5$irZ+L#^P(M2+0cc;;zhHhA0VipXsw!XD0M0Dhs5mbf^B7Tsw%qiu0KP zWfsa_%tk_;9pN+KEjsQC|k$7vcfbO?ac`FbHNA z1jKr39Do>$$OlFT8RAjI?Ah-bbga{F$3IWt=nLW18QsIhWFtWev2Sy}W9{imbjFN` z<>TQVIP^^AvUoui@x}PNE>}M5;KU;9dCT^e^-RXlqQ*~fcI-aYeTT5V$h;QT+ab_* zo{{K;gc~6Zd<2WgQEtwfqcZ-Ag8Up!pD;IyvpcO$7O07OzBBgIC6AAVJrvE1%JP+W z)Pj`QLr>3uSKtpFkUr`Sgm2yfHb2<^xzw!aFB+&RQ{;N9s@hZ)z5~uid zkbYp)>wa#yE~yQn=3Q_}v@jF%4(clL!Qi@{%Fen~|6;OPg&kfcZVJ|3qHc}HM@YSp* zrQJGQ2(a{)7(8k&PsepAW9=p2dK^(K5{Y<;*&H1&U4`SN-!MVZJ0Lx ziujRK{sFlPx#MwA8gR5y5)Q^8T3j+9-fWSXG*HA~#X73V{n;3e^qo#P?LER;0nG;N z;Ap|54G@jw00oekZf;|$9KS>eFKT~Nv`q>BXpjy#Pm_kX0ZJ+9nTq1YDelqjaiN8d8X@;eW5uj7QL0`GW%6%woH3(O*hxrVZ}Fl>+(@~KE;{` zP)sINn}-HYHxkJE1$Y&L1}7L2fDpiX-k}?UIf{~lTY{PL8t_61D;MLz>+66Gv0{89 z^QD9B8F|KYmp2i#38JYZg=V0kWh|qTvU18G*N-dhSDR2P3Ea=6OHT&l>1%Wc+a=SI zvsbkQ1IrV0N0CJ%6m3OEYGWkH80JP`P50Lb`T*Dc1>ixOO!A#X1C$73{BmriC_df8 z-WX@gu)PK#O9G|;AXfkEi*Y~kb98|K^Bsk?o+%HC*}JSD9!xS{Muw>x5h~`Sx%K$DeI?{>2}aHd$r(F!G{BoWx8-~Px(C*+N;bx*GzovDOcx*DtM z$*!&qx}@x;IQLwwDd_%uJKoVeU9`i!U`$nT8Bji~%|7se`mBpLVwq|vz(LBO=ExpA z&oyme=C&V(n+wC@kx9iBW0VgBUvMnT2Ep8Pu}8+!xEQ*uQfgXegZ(65u}uW*O{jA} z#4?qM3>R=%Q65w;5ycKmrhcypoiZ-6%V_Fv>*8zjN^&o=MkXV>a&R5HiWx(PCuC5p z@s`KJ;@I)nw``rFKF573lXHB!1kzZrV5A`YD6n`JBg=zZGKzSvu(|;t2Bx85f z+>mL#QNKYuXGW#9{Fz5{GM{KfiXeD;7mY~u2kQ1tV973p*9{X@?P!@Xx8uebi+-CS zS@|To>nwyskja$U4*XZ!QX&P7$w<1D9$Am1O?M`)VEsB%4u^QEZnWC{k??%#P|a9%v$YS}Zz7K)9-u|mZa1Fujl3Jw6Y?dTtC)AyWAA=WN4Fex;M&f1jYU3aC*T;!2bMGT+xa3!@7o0eF2XYZ*B z{rDh)wdInBTGRtM0TwwiW{lif4t>NVBFWSI-V`Q#uMvBEl4f=X@(aml!f%q*_Jty; zW0v0~w@mTmjloYgp>Mqnr(tWB<%s(1%(C;1?4ZnIg!hdF^W#fLn1nYC6rEjRjy?)w zzkhOO&EU~yuFZp~c{6R(A{QX}5$g#bkB*#p zIkV}s1ll#pWnc4C^Yi>XG~}EZJc6uXic?kCZt{CNe`-;0L2XM`Im?BT*BcI$q&oIK&^`~rz-cq)sy z%Qjh&$R7}U+F!qQ_H!%1o3YpDcsH#*tHWt0o2a&UV(GkCpm=sW8^Rs?$fWKRtoawi z@tD`xx2NqPfgZ+sr?igv+cd!scN~hut#0Ql5>3S`0KVe$+T3KGq?1Rn@0oJjbC#}( zI~`CPk!07`+5H!e!xI4oN?1br-+t8z*IUTCpIh>&tugmfEFL!{^Kj1e4FxWwVAVN4 z%>?N8l?Ldm&xZS34A(#87@jJGuc#?+8+c}0V>zl0K6ocz!d`;--eWR{dUD>E)Mb^N z5Xg7~vOe-Nkd3YsDrZr`TvnwxTx?N$`=@(2$l$SylP1W>Wm#EM1I7v$p91BZ`~+fF?rtv>_v!;u3B~hX+o~r4$zF4>3jSjpSu( zWh|v4!}=+Bk~Am`RWy_F;+CmB#*|S1VO#`eG215{5=~yKf zn2-Ht7HaYH2&-0aA_m`26_T|=0Z4|n`1z(GHpRnxrxR-m=ilTg(y6l2SZ?Q@X>6SF zClPD(jF-~Lv-1>*?RS9$ep>_7X0}Anq-28W?xkiLhIfZ!Whnq~CaZ6a-xSEPi*2F6 zjMIdKNzzaCvN4SiQVlplV8EbyQ6-nZ@ks z1>pmVi@NcuO)SSHTr%K$C1hv&m!QT^L(|jLa??wu*n9o)95ka${b(hfOYq336O@2T zpj;mOl25EIN@{3%LTI`F8_Kw2Y^9X%Cje>cZm=rGj>@^lAdQIfqJDFe+8^V>LlhEx zFjEoIsfl8>XY4po^{Gm1j~nOIZ?oylwLz4_~#> zK=Tw>cQ2rq^~8vZa}bbjp}j$|2X~>W-+lc$fUKfAg2sv0N=m{-J+X3K@Z?d6b51NT;l32|=z=%2f?MUY!J#n<+31>|x(_Uj_9 z^L=aKBxDgcp8!)dqTJpY_cFNa#36zGRWq0tWujbaf(x|Cu8W7BPw{{P*vBtST!ena z%RU+!vC09*UFbwmUx#-P8?TVMAbzCLk&t*Z6@ekxcl+ug;Igg21AknKjVjMfMhgIIgpZ) z-e>yGN2U>C2ZUsz%^4{$Xe@^jhwqT0%R25YR170V6sTGSW zr7StNH3NXIygXMzyb!Q4fX*DPJJuI0S4V`}YlrW@md(+&&sNU$9#@ofw)1PplWFRD z$iELs)remh2mW{lQlv@NuyH)j8n*wFUTl7lD7%7Jvmve15~IKk@!A9OzFS-wT@J zdZ|hKQ>6D=823*Fb+1)ne+u|sc6cq>do4zLjnw~B|M!}g{{p!F6u-Tck^L#|d!bOQ zFG!0W2&4W-fzv-h&A*y6F#oHiBj0V~m1U$XcAbQ*9bVPs`tVfsA=kW~Q@xPiTtiG`WD zGYQW>ZmbGyMDq6clQ8jc1AxVBz%75jN5CR56CkJtQt*Gu(r5i$ul!G?Wq)n)UxCwa zrvA6n%Le4;{}FJi(1!I=n{E;^+a9F|q%h72WaL_un@OWc80yZ>LWz&XB$I7qb4qA3 z;WU+o;e!FIX(fwbT%XX^S1%XD6tPg>ytVdtymaZZy_#Q`32#_fXt#U>ZSq**xgJ3i zwpp?2|FF}tOB;w1veBc~|r z^A-wZi+d3xeqL`a;O(KGzXk4T%IdAR`>0zZSVp@_>|D%`NDB9##}{*fK?6Hocewfi zJ6I`ILlGCiGW`z7u~r@Xu$83EXNl0Nu{}}E$L4(N7OCxGxd)lKY$mZ-*~MeP@X{VUtD4&de<2r&})!hIw0n6X+Q4 z6c4`|j2dElvLC^fZ2rTg*9lvM@{}NFT9?E<)&CfUX-cndcvD@$FAXCRp4E|I z0mmkLCRg$8wA!rNzOZgOQ;#kzvN}{7DVM}B?Ahg=`bW3S6>sXFO&b%FZtLY?7^)js zd8Mda?2(~}^2M`>iEHQs_6!RAUMR#Gl*=cA?Musx=k@2ydX1m)owJ2Q?*sQo@~%#r z5%eTHwIh?g&d%Z!5=#3mBZ!>$&lOhnR|9|AfIng;4fFDHdhH}t3Uc_qdxylCo~%tY zp*uL};*q`3;VG}~qH@=(*d%-AsV89~?w!(?i6iN?0u3^4AE88d%FIJe2$8|&%yP$H z#)KDba3S~%}2$djurA{@6}6Wq+hdg49c_2)tre*xKr?0 zSCv{-Nb2bIqp5u$I@a`WX(9457RNr)1q~$*x~{tE?Y zNUYPxv+2ad?)+vGm-9*IREYJX*;!Wx<_YRCrSIO|x-4d{2Fl(&Y>u48Lf)LzW7eg1 zbD}6(ythnd5Qrw`sJ-1Fno~4r)2nq%A?|YagOuDTg{wxOd{TofK~mUY#m!I=36${{ zk9J@5Y-p6I`wzBO6cxkO84vgL&g)&o8tV$3ZmTu;;3Ad|`zYN@cyUH5gSxi2z9$Vi zXkOxPl$zM!q~PFZj17+wTbf(usApgbsVXpX%h|CYzh}fb9;S&>%Es%6@{)x)2Q!&{K0qa zB*uQiTc0UuW%d5;QR623s^4=ThnQ8mTJ00(>BD}%skNT(Rod)|&sAC;r~ayAl+&qb ztI0vm*1-?(OOIrDh+>$cx*o7}nUKC+0Lk3&o&|@drc{^U`+Rfdh_a!AW~ZkGQVX$X zVSggCwM|^{Alc-Z=}*NQ<S&NFk?kluj`%gkkwL4#mOh>+cZP6PhOsE5TI;Hx z@*&2?2*Ee)%ANDxo#`=I;)q z;l`1hw%$GonT7)L;&qn&{(@4dM>5?qiv5y8(llTAI!zs&*M$l#SF~#;wvUqhc5f_R(t#v+P^?I}`5+d)?`^36P)LX64 ze6s!P)oQhROZq7ffqIL)x_hoAFFhhhw29;orio+Hv)qP>3l7eFA7HxSUJ;>(!fo(| zw&60WjBe3w<5%53esk2D7-;uZzJ;l6n4xsrFhdUcSLiU5gnfy(tBr)~&h7Na}?I8f!$ZIp@#+hJ4Il&3kFmqXn*#>)p0B0;bFwO{2@=HP~UY>sc_tB(b_ zcIs3-kiEmh{T|uV23z_j8IU3=0st2vz|XGJ#;d9t zE6&LZx~eha@?Ey&=L@V_pTkq*tnS0#H~2? ztnl`reY<*A$74P-v;FNxqB^59d>l%TE_L0&!4vm;f*oMSmoV$l9uAkK6rD}WdTyN6 z&R`?>q!zV1m$XsyEhtqCN=cE{?emzrGg=a7!ZNtXggOvT`L)_~fys5bJTg=`xb_7D z%6VG^RlQrjAgiHk)3x}h@JFJ$?*rbBHukS4*Wq>|>f(k3H0i$2T5^Uu?r;9^vDnMo zE-SC%MJg@^?N;LPSG~9WTBmbE@RkCC6XDbo$dRF@P`@(zs>eU5_JNFM?@oPC+BaLt z!K|A_Y*JqQ7TvFhy>OV?xz(*F-S1m_;S9A7hfb6%Q7ZD%Us1=MAi1wm+Ua$_cus#y z_D9yBc*FkU$CPtDQ)hu-AItd!i4x3%6rvH&xRsE##XUT?h}-B;9B=aS+!vm>e#py9 zuMin4(?83@VWssjFEH||$&i}Xu+8ytX*lPY;3x^haj&z!=~Vn&MrISy4oz)=8I!_E z;;3>-VQvoATwwc7n)`i+xb|Jtp5AtsCV%l#U(NX|xE>dEM3M(?LFMmOa3inAzj3kS zQ?p8PQ7zf|`DkgLWFfs^#&D;Bf9R+Darr}@W0}_qw+T6i$EZ$rJ9~n$8Q#a##UIaG zug4^(K>Gar_2oO6%gGSzZ!Cseg`+S3jLG(8x<@D2_>*GC9H$3=hqgHMTdLbO;jmKj z*z_vyYr`#_yj%&j+b0xse%aFBtQ<&(xSy7v-_j-+78z~nRk|WZ{9SZ#?ix+armrcM z1+L*@@_L=nnc@30d<}zVDU+Y}y?L7F)8FU%{eBg#O+&3(m)gB7r)*sn9VLr_puzM( zhDVv&XUhU<7GBRCzik^*HCHoxVK&)gVv${vI@&RsO_;4+{3@aJbAOk&#JI_`&sBFe zAGTBZQ$jU;4G^_P#nib^GC1J=eQ+^@VjSa#lg7mq#t&gsbWe2$U%~__Rt%l^+^8#r zW|X8_>|!!Z#1*B78gEOrq|P+X1uOKt9z2fj4KS0REh*p?G9iRevvdWAUda{Lz70zq z%z&rG_0k5)X>^(q1uAMZn{oH3NwqLq1jhHizlK0O?d`w&ND7)dr}{CN0p=!{)w%@{ zq>qKs8#p{Ud=bR}5xhhN%X`fBO693lKn0f6BeQqJDw^l#>;%uJ3Pin$mo(=Nws5>a z)%E7G4tAQMjJAVLu%G%eH3!{=xvzpWK$=V~*%foH8iL%$`){K6uNRZ*`Krxk_uTd% z*9^!P=lpuljP0L)_LlNs^X*xMd3 zJZ}@aR3EXT;69D0+L+#Fwb6Y=GQ>uQR73({0^%zI1Fw02Tv6(#D#z!8*^kDqB`Vr8 ze!D3pL2N{y>Hw|3`b{|XY*HsIiYL{+ro)VR$ymHaYKDQv*V{5m@4b>&ll0dX^j{O3 z=;atu_=_r;TMaTdko$|hhPFFQxM@ORxaBhh5FUEO$4C-0drE!n6k6e6)Pw3v8SH{Q zM`CQTA76gWpfpLic4hHvgF1}|=i&9~>I~vf^2WhgZ&P;)KH^V_6qsOH;`Q7UVeBS} zAqn|7p1mcq>u*S z5*JKLvfYM|C65zl1trt#Qy&dT(CE-4f3v>s>p>PTJb)8$Fq>8wAc=e!o%E0e_H0U_ zmi)(4RT@RaEiE>sgR`%k`T0i1SdlX6K=)vQP52Qt7tM(+Q$8P>Phy+Fr9LWME#=%%c$f*-miKyT9PahDvjQ-~DUQv% zpTll%<$#PZ4|Ece?2yYg68<77!>=JGwS*n`EOdnt@izHN@|pyN|66x+;&L+*q7jp- zwER!;q$N0`0_zaLI=F8I*Gfc*?UE8xE93GHGq!8ws+ZZ)xVX~J+Y9j>vvxT$WP4I} zB@xY_PV|1%kj7scB9a`MW3Ij(K1$+#E>x{&M>wHBpoaK^v(LtZxN4>W8LvZ*Sz`9C z=Yl@@Bu-%zAE@hD#GUJ}X-u8lTX3kNl5(3-SWPB(0{oje^z@3lXa%O;XXw&CvD%I! z3FV~V?EO}_FSR}#{SGwd8`FOCGTSJ+1-iYHUJaugbEMwnH5 zdUd+K4BE&LrS6l5q)W?;xx@p~59J9A-SiXcB+;?!QRNqtEx}VkFvCY!AkiOVs>Uy~?6uJ5%H~d24 zx7K6!!v5sh5c|^N-i!*HK%Y(aDwc=1nDD|%burhGHt>}#*-*ntSjnX*n?cBqC3KKEJn_}}g8P1~VLI>Vr8+Ju zp6EG|XZa+C`@3TcN7oBUlWQ+LuQJ_Bb!yfiE+U7hG%Zsb`32=e%-~X<*%+HqD+jg<5k1vux)wq8~e2E zWS5%v+!Ai`%`T0N7v!bn%&Pt~9pzq<1QWMZ=x3be?E!6>}qK`0A)+{PLc=hnKGHnCsbjTq|N-gA`VN2D}PMuR8=N{c^lidLa#Yv-C59 z`qgKepEaK|Oc7!XsIxlHyiCKteVMd7W0|b3`my5Wb3Ct@F94xtdKIG%L>lzj5f4zy z4(DX8uy=S!u7!{9CX3zB*}-j2G=P(`qP$Whzn8P}FKoFYAFH4JQigpqJYLfz=Gi5Z zScXS3({Cgk+|FJi5n~PsjPjAvm`*%{yGeRhsLbfRQ~etGS*bF4EH;91(z8L7{5~+A zUV%?fZM^UbBU^1{6$oq|FN7qm6x9=Cx8nXx(YdKIeucFe#|q2a>+^Y@r?+gcUkn>( zX>?4&vm@D;lYMn`hN_Fj#Q~q?qe&Z4O4H+9)w4t|$JlCzIfBW^jY_m=zqw=czQW;h z0?eNd0`xy_?6_*vU+=ooKIj@~K}4VKIeCVQnM2DwCwKmW5Nmw5#5vVl8tr&;(hO+~ z3qL$Add5tT-S9Zh8OODeVkDAmMaA8#8=dONzj&_d_2$}irJsMu0K9jFvW2$J; z3k!3LoK1_h)%i-z{RQ9xC9%58!_z|X(Ie?crh4Mq;@U~)pIrJFhvkQdvsbryCPd;h zeTGQ)bHy#e=1lsCV=Rs}l-LG-L^LuYRbQvaD*XUg<1B|HjHXchi3g6;gT||Ytll9< zj9icK!i4ELIYiZ|UKtSjSO&Ac!JDCw_3%jHJ~IL(T$cXA?6VjAJj$0{%7qT=vi&4A z;bSvM|9QtN3t{yPd<1=Bgpw}MHYG1rTO4f8`Lt>Osz6<<`5zPT{uT+{$BJC2yO+;x z?gb*v)e9$91xT({n7@c9c{0Hhennzq-)!wVTZ3pI_c}g5)k2gusU2R_-5O}9%~L&D ztGFhI9vF@QS+O8n?bGG68U*7!GByPa;tO<3(NU&&^7n3iHKTcfl6ISHPF_xbn5;E= zD=FS}+R#bGq_%;~VU+2@V;EN8e*X zY3%-#1=jUgKJ-kGP{{Yap>M_>53KIVU(!=i(o)mCrz>iu=`BR~^1iC-z542A?S^4h ztyL~Ze7hGn>V&$DsA*_m72-Z+uG+l_rfqrA2f_Mh+3=)%-qMGXUoR%Bc!{g&!NH-N zWE6>2b3eIc#$P16bX&zJp7v}^|2#pMchE!o1AnZ(tHDNFo7xa|!3U~GM{M(Ljka&c zRlIms-inFrFLSc)DEB98<$aK_*n%nq=>gy4dDVY>ixKlJeEd_@nS3+OYBy*-nzwFyoT5TJMCI52u zIim>5Z8^IwT|=zt98bJfW7iUO`NO=IS|7RRN6RZXIDc3N84DdWlS4!uRSz<)8&v5~ zR6nH>aiw!JGh9E1rk`Ap8i1|;gV^Yo|jC{}LVZ{f|x;|C8wWPm$99q0IP~ z3D^H%I0^VWWaQ&VF(Lt5u3vVJfRk4QAgB8E9l+3^(f{Z)=y!hL{a@*U-}(7|+eiLA z4+;kRjRU{KfY0c%(CN^5(N1LlD)aB}AX`cxHKr}40OJ4KQvO%Alzf0N`j;)`slDWH zk@0Du_EWj_U+!do8&M)pO)5{#El;J`zq9`pvi>yXZ)x;j0_)$h@Y4wNf4Q1H^}70} z4d$sWAuKm=7EAn@SQ}?c?j%WXJ1pB*zFrcviTj}@Tr{RAm{r+=x z|F>fAU(^I7_Wrd7{x0_ZCAs}mPRoe+)7%m`^B@oq zeiRh2vE+mE@I!tXR`NmkP&|OZ`In6)jGqVas0x@>14g8>4i7BN4R2bTS{eiEnt=Bv z;OovBB*jKI2Mzu&MBe-`9zHl95X2q<5_zMQUw&)L{Iap+`%MY|W@E|sZ}phJMBIRl zB_9H?`2OoVK)OyP=l_#8)xSjEOP@$fZ-^s}tC@sYBaQiDzg!r>GfHZE!O9PFHsOg4 z(clZfGQwwNOffhc^MrXI4O=p#J8rchrTeg7)1oAQP;GtN((1=*{r8jr&WRpWagk#N-d2^)MHcv|W7Izd*tDE4;Bfz3JP)z@3pBtiP>8|P{Ij zO1k{|Nvd}DkAEI+j6cy*n~}@DPd?y25$auGy4UQ;=uU0PgFB+yfeI14Ns;{`@pWu$ z_{n0TbKcd~{(Nt|?6^g-$o%m8Dd$u}?^2sZ6*95tXkA;uVjxpiE_EHT>iiu0u7$S-xlJApSz1Za zmnvOGBBEl3*okWw?=Cz!{_sHt;_UP`zaF=e|Ers!tCMaqw5k9(DuRcc~$ec(zk*{1sX2ZJsd*#N=X8fG>Q5iyaHcNHaX3b`zFl*J!DluSE#`9hog zQ)l1191WT>c$)1`zrZY?EIs@g@8Ff%p*rCu8=pbk2SG0vDRn$;rJ(M)XPeWLAs#q$ zWr1^~Uq~O{gG5H*zgK~|>rt(*$STHja8Hd)_I$9Wvps33R*xRbbZ-@FO^DCRsf&%L zF1@o~dscX?ZnGAMhHEpmgo+PLAVNU)M;hZ4OY_HEjOWH@h;dO6E;_4pmF6 zJeR?SpHiF=M&wVQd+mD8DnrhARk?OFWtqZjuTQZrH4j~ICc`ul^V_wGE?eJf?*?C= zl+d`@#lehN;a}l-$ZO)~vG{Ny)?e)BdW-_1Y_{gLG=u9-OS(d|j?$xst2L_*nf7ng z%!D@@mYfBs*iW3v+`n%1T;TQC?9Ue&nOYm)G5OS>6)!0GE_D1yU$5cLj*BgB?|Do8 zT_1Y*^)O;4qFe3}q%!uxKeifB$3vqJ^}g*6vK>^+Uq1RIREQh8KALIXI$6BkNm|8Z zY_|V70e|1~+)*B-smw~T|EWU6K6i1zckw{4 zl}umydV(e%SrIH_L@DAbX@*vS_v{rrtRP~Jus}%8OC9fxA$cw5T~+5L^6Az3F|O|Q zu^>6l&X;XT^tCi|Mg6rE%f$ylc4|_F5@S3%rqV4NW0e&P6$?V&;_P$>Gd5fNs;b%= zHtFeh?%kVdseN*Fi|l^VwBM3wO>VZk%BNi)f5p9>@85k&voA)poC%CcHgjt>FNhl= z(cm&sIJg=M+p9i4ymR9zZY}eV^zvLi`~<`KPT3PYBZ;f3lUntkcCL|F;mD=g`rnDl zIwNALFRVbt!_wG@6|0`Y?6>tvCyx1xot|scT9dD2X=byZguk~;Pe_?H;6AW~WwD~` zL+PYZW-e#bN~Tun^6uKshwP=g8ii_0N0W}yaQ}5=OP;^{m?qz&4>Kz0Uf9qx z(0_F6SnP_=_9t{KiMPN#I?t_DdV{Xdabs#~A`Q?Wx1ILC)iifaDu?2&CTFU0V^Mgd zi1+aKUMopX-Kas;O?olrTBnuIZ6`;M^f#JFc)h;1D0(~L>`I6+hn}-Bx*?(ovM-{a`vUc}%S~q|_MA2qLpc@? ztQD_4A2=`iRXL0m?$n(#HDoj~Hr(GU@W%RuUim<^=b7Old~pfG@jHdXKL)PY3{V)9 zjJoJ|P0LVIn%9bCVZG3U}*G!<6UT z>m|tK0#@8zybAFfcRP6sq$DdwQ0ZauUN&QQLuH1m96+)U3#!`z;aX8?~S zv`Wm&fWmog_sho6TIJps^NJ8xk`8)-{(j&0*K3`pUz}&aIx?kSSuH=o_F(_z6o62x z0D=tkZO}jAI%7>xEw6ZadDvvi>xWfOu3US1NCx~PFX?mELAY=ICoUv=1`iJ*L+#sc zJKftkIafAv@><)qtEnj`kY+#AtKF}Xc&zPzHZzu#OxxUj6qDn$IF{(P=VHSEHApEU zS~IX7rkML)9Cv-KHP5*0`(+Awh2yO`mi`ar3;Pp3Vpv`WpXWqGB!rCOaL-;I---#{ z`ThV;s4YRoHqOaUQ6(XG##`xqdLExxqtY?%tMlJlPntHTKX({-O?yAw@LHs-C2oB% zMHUA2*Pk*NgA*vto&TIIQIYK`Plp9hT-<;xxOFMG3Olbh>7m( zyszBA>bCT^JSIx`P(u2!X&yhWIN6YJFNigNxr_O0vy8Pjlb~V~&EDtAN~DRnJOAC? zMXmKGnoqN@+b{^ZdUbD9Xf|2ix!)bxUF;ZTCUzn}MHfw8;z;J+U1evMRgQha*bMBZ z973_&oSE7E87ia~?2CdN=&C$jG8h>mhK)vRj}(>zvn+5%FA!V^;_EmpbFVg$lcj1l zPSfST`91aGTKALZ#LO^(870@%agC98<(nPs_=4FyI4QjKt3NI&=RF>TIv^D8T<@DT zT0Un-@S>U_eb#6Et=7y@W1tOIMH2D%>n8apGq()KVvHXRQ_tJz47YmQCt?Q=*IO~4 zcPmhj;!v8`FZHyvXPVV{qV)H(cyBCXLY~-p*wVAT?{@k*3vlh zy;Az?SNEf-ulrdR$p>1;rM*Uc)j#4!p1%*rbyYcg^EKf%o`I5f#@YoR#QA3?jqS56 zZr)cCEAAGSwDDO%DamL1_*(MDaH&f(3>*_{p!Tk-_U>+n=bp?iq|#}`5{0<$CDjz1 zFkW8xUd(smIO4l$+rU0oTVsBX+(}bbm%sBwc^BV>=Te%)<{SLo;2E!&sL1^-bE&L^ zoLAmfNf2etcO0}MuC``lrQ=ISmd?Y=8F?!CQzDZ?cKck`mY;>}X1>(_+}Vkx$&Ov< zY0LK*YnAx6e~4>BW+W6*v8UHF7XSHM*35?4`bWf&9?K6Dupj#Wgy+ zGSJblC|1pMPpdEI^;TtUL+LE@2Wh00XU7TYXH~N0u%FcX@0f_hWoImV?uOo;Ff$+> z?~medMt;VLeXX04w{vG;c#?YE{ZQK0;j#txx34x|ya<=Ft#+mJT%;HV95)gf6BRf2 zU+GR&X0hZZGkV`}Ke!_5zBt#9yK%-NX_CL}Tepdvt81BV>B_{LH*e@{Y9B%_0=7gH zTkGl1b!hVLZJqV(dmHx_|Ckdy($QwEb?9A!{FTrb*pq~J<|d}hY*ZGIl(dAjK3QaR zG5PeLtv$`BZhon~*6`uI*VGLwM}y*dLu0{xW+8|CWbzwdp4N36*d;p?9y05a)U7OS z?{9b5Gwz zf4kb5_|C(i{CC#N>!Uw@uAdJaDK`}rv@OuV{SYVm-9lq*yy*U6nS>s37tV{TPVBg& z#z`Ihz0|F5gL^V_n^sZEgtG(ctNWYJdAm3i)UC~wzg+rX2JFtyknW%%~9?pnjWS$};!`bPJcLoTB;kq?_2v4`42anv|d zcy%gv8RlPJ;O|a4vsq%mZhdjhsr9C^tp9zD!Pk4ZV~#5toG(9dg>VcxIlz%QdQVMj zgd^jWbIf_aL#`fmPef0>iYSrQK(LQRbG*9zH=!*3lQ&%&FT6%bj`%|!Xu_nrchT-uwGNRsMV)F^?#a9``X&2 zqV@cmNn3sjO=83et;id$n>a3Fl9S{U-@NuGh`UqU^HY92sCvn8WDtNT+_R7FoX9sm)-_dTu|8f6>vj7${r z&IfGs97rzTDkRrz@(fHT&*zBlp{$77<5)_WO$ki-q7;)Vs#p9l+_9G>=-A5cXqG!D zBuJW4taM+aH$CGFA`DN~hW{ARs(C45@%(o!srx+j(WG6;3xT0*nto0<_&NKwpCbqy zf@U8DsHH5lJCf4*>Z+K?eP@oMM=R`WEckL*tNJ9d|d{&jq}c&QVG>=8R|6#9tE#cp=`v z$xT{~*VNP`^W8u->DBdKxhvL9m88{|7p@YJRug8DF+?q!X`Hn4v$+WzES00da5KGc=PE~ac;6C7qQr_RUiCHc6Uj@3FC~L{FN~&0 z&$R})v|12TO~*(oeoU37xLwAGTi7rcuJ*o1M=0!q*>+d`ha2|`AO^lauP3iAqxQV# zqiFhqeY55sLv74LXqw}u??=Uu@F$X@wCq{49={l>Bj!AE`bZC3o_~LM zu1TLY5q2o?ZD-a6l&8lB#LrKxz4_+U?t4Uh zp0YVt^u^5R8wc+ClL}LwQDu@5pX4m)qGGNI0nw1FL?WaKx7ghln;q$=+f?%Lwm7$u zGAz2Q=A_w>+q7^Vo>e8z2}L;Da)E5+6H-EllML2-VO(sFQurHmA@#RE%F`14xEEHn z7RGgH*^Srpg7l#LC5yDtpT>8vU@dfozMUi2Y9S<)tyJN~3#=zJ*WPL1@7+wI%Cv;h zk?;M`mkKkG8B%B3WtO7dvhpieY8zwrx8->RS7R1bUzK=jRC^=UB+ViL-hB%`x}wk< zA>(j?$>=>qj9s!>s)XtD<+;U|d?VC-4N_Admv_eR+KlsmHVrc(R3QeQVD6mdwi#tG zu83TL6`qD!%4ZV}oaPLhiObIP)I^W2t=@8mPRa5Z`xmxxzv0pjZPcI%!SlCH{~?)+ zuXjF?h($ii`t78B9~Tvg#-%9v-5<-s(jqevMq#w1)yr>wJf+4h7vk`0C;)!F+d#~l7ss4YO+XuJ40hXB$3X4XEN-LM225r&9}blnb8)x zk(<|5Kj;QIiibTc(#oPUY4;@=)SVp@m8H&PPF3!rCr)%rxzjzhb?2g1&0X^Ow9Z9| z^0^epc9ub+$Y(!l=kxVT$wI$g(*8I&YvL+}uZPvqP<$>(lSD53y}@;upAzIxB!)EX;YVUQo# zjc1|!^0jrOSuQczEadZjYBSY!{>D1Tr?m|U0iMK~2O-KjbZH{5NF<%?yu}W0dKoBe zE9bx8x<$NQDexkt>|^44pY1Av(5IK?thY*582XT37UJ2szHm}JY?PZQ#8qfz#Ixi{AE_I-Q!|gACI^n^$Rurrt|ZD0kKIt?@o+cuWqjYBX4=gt8Sq&#L!9%( zn{D5WgfVa7MDH!ulD$ox;qx-D@wRx>`EJp+Rc>Lq<2g|h!uKV_G5s^M!cQ7L3FhLE zYqhw3s4cn{12J?Y&W;KGFv2eMrGuBFt-~k(9J!WZNnzrXky*Q<#Hx7bknLto|A~e% zJhEZb+M+&L@CEjv)=KOmk@#FY{Df#k-F1b>vhfW~MHKlVMHj3|EDCISK27@&S%>P| z7SUfYHGN>6;P^`Y>|2yhRXG2aby>rLi9lue!sFUu{Rh|q(fXz$x2&V_KfFuA0^+h?VOuir}yz6#9^$;vm=+&nZ2^0L;GsU?rTB|j*8LK`U~t80g$o= ztcS|vcXYGKWwJP*mkHc>uFvl_LH{so3}(H+B69P|9J{hhjC?^qIZq2-!NLvir<7PD znI=*`Frn6}Zsy0n6qBo1p(yntNP9mvyq(qp+qnQq?_o+wSdj2Y(A73|qVDO%-idQ| z6dj>HP~@cGrzcj{c!kkh1^8;Kx}nc#%2>P42>H1Vtu2P6@E_>trsNFYIO>k0)#tOt zN)@KBw`PA=>GHg?B~kw4JWh-fZGCnK>`~bTC;cvW!jY7I{YoWUq1t=c86LoHK`L+2jUCyQJ>wsEC33k@(Ib@L}ELK$&I=Q;&NumDk zp;bRW0zNpj96zc#Qi@Yro>^LR?|%0X+-YdIY@lov2nf&HtHpTvreb8l#b$k4_4PMO zcq`{)mmrm>bmN3}rs=C*)byq;bh?H8H!c#4x~@wFiq>JB37n;dFrA5eAYkhBRrqFp z;QCW53gYCsE9{xLLLwKUm?pO`;cZ{Ee0{5>iAMM_5!t?I4kdnNLuWtRWr{bR7Zq+C z6%3!xxhaop^x)Y|s*PmjGsj_^;_>+6BTAoE7yQmfC(zs_FV|{v8sYfV@>K1yys|AL z8)|5Mp6H1zWZY8Vf^Mt`jquDBvIdl_ zMZcbj+&yBeu!p{lc=NWel?#*Q?l&wJ#5Vbka;e4ZB}CqT6;tM7H;lZ}+0o6*^~@$$ zv*Te9oGmV5nT;Z}MI$bL?c0HBss1z(v6hj-mStklw@Z3A2%ad{W%fe}sYVG99cQsc z<5@H1Ab7Odb7s~bW*V>a>~mH<;--&B3@>(6bM!bSEI*l%WB)=%#@Suil(pyr?XS(VIGUzQEvwV=!Zt@qZk&Z&nt*UGB z(K^A?O})*G`^PHn@p_CwdUYY&k@=BJ9c67a3*=im=duOdB;mK$pJVGaFBv^Ab(v>) zpj|A&B7E`CrUf^4_8-K)zr>elaWUZfmhazsEC05g{$IL0_$Ap!i-iC0R95)VlIs8L z=HR!lZ?wt^TAhRs`2V{K$uAWZz-Ae(a`MOTrx^P8U-+pi%ir_<)91fbUeIbWzf@RG z^Zojc#!mmy>MsA3AN~7ZsxauNqUe8gIq05{gPA7ms5R~-`XapDlexV8&1_)PMs{A`uP6KRl{$O-={7YPBmsu9gV~PaPjb$ zUdnF`7PLYNpvVIIo&B$H#lLGm4H$eHVfa+7%#9u~5@-?pRz?9FIG{-z^jEle;QiErHx!Q6BLuz!MB&#vpyY;r z=ld0b9e4+b%dhW%X3DR3)bH=W(@5Aj0_rkQC;{(XdmBTvqKg*q-CI%sRX28VVC0px z0-7Oy`Y!SJNChtT#wG-4Ite8}`#<^pVniYkFa)Csib_^1?m?x?E$tOa9$MPn*@X*_<+3y14Azh z^y}YkK_CP$(;=Z47*YVUUyuR_VAlUx9zPs#h=PFuVKP7%N&vkg{>+OK0FN&O&@h8x zq!WN)H4TG90WEAW#)pms^k+ICdJV?&0#P$Co)-zhSm!V#1hcRB z5olLVf7Zc|08~W57_fjbF$4w%XqRHNSpW_^DX2Vj+z(6)qYvN^I7VLq7{;20L->IZ zLx0u*hoCT?4bI1hL5BbggNDKR_%X&8z%a%a4u@mVE1-24>kR?WCh*(^9sldZZi~ETHrZ^E)UJ=pMM3k*yEJSX}1kPtA>0ANrQMqVTz_`Cp6 zb_jUyMq`-I0qldIeg@JZU?7^q#|In({s9BeAs`(beMEM9L3T9pec)vvF1@8;!oe_Kv1zHSrKSmt@GmnX3j4x0g zm?i>sz`?YR4>(C;){6j`M{peoICy=)0Cp05-a?lL=4pT)MS=HUG$sJ50|xoqFd!i~9WY9u^?^iH zJ^_q91;~rRKLZ$M9l*5;m_G&Vr7&nGz$L=LbQg_bJR1^VeZYMHVBmcp;4q=!^?}B~ zYXQJ8_F6OsrhfoqfpOM_AyF86Ba9!gGXsw~aNC3ej}ed;yzc{?6db&Npvwc#dmt>S z0C>HjG4OhW1NL=b9vzK=?*P!p8Sp#>Fm%+@Kj<#{h=W-k9D!LL0xh}#~j$jDPz5t<^$UQ3=NiB?A;D)gGzRzz{Tc^jZ6T%e&PIZU|ECe1u*cvBajXtCK%}uV44Wj z%MZRA1~@nY2zZQu+g&hU4Ce;|^n%9&pnhPw0SEGec{6lg@V)?G7<&}3pn*d>=s8db zIL33JfMYVaUx2(|eiyjUhJ()m00t0QP#wUnDEPh(V9Ze9eG9nv766|ifOH6qxeKI2 zg69Ts(gojD0k;gmiTcmB0OJ81I>8t~O+fPxofkaE5df70w-3Nz;ITwN1W;hw4&3uY zzh6dy^RsDu}LaQ5&S<&FIsB= literal 0 HcmV?d00001 From b0fcd79df10b05f6092282a422d2fa2832dd673a Mon Sep 17 00:00:00 2001 From: avr-lab Date: Fri, 22 Nov 2024 00:06:55 -0600 Subject: [PATCH 6/7] Update README.md --- README.md | 297 ++++++++++++++++++++++++++++++++++++++++++++++++++---- 1 file changed, 279 insertions(+), 18 deletions(-) diff --git a/README.md b/README.md index f746e56..8a15081 100644 --- a/README.md +++ b/README.md @@ -1,29 +1,290 @@ -# Project 2 +Ajay Anand A20581927 Anish Vishwanathan VR A20596106 Mohit Panchatcharam A20562455 Sibi Chandra sekar A20577946 -Select one of the following two options: +1. What does the model you have implemented do and when should it be used? +2. How did you test your model to determine if it is working reasonably correctly? +3. What parameters have you exposed to users of your implementation in order to tune performance? (Also perhaps provide some basic usage examples.) +4. Are there specific inputs that your implementation has trouble with? Given more time, could you work around these or is it fundamental? -## Boosting Trees +1.⁠ ⁠This algorithm predicts the health variables such as blood pressure, age, bmi and level of blood sugars to help determine if a patient may in +developing stage of diabetes. To identify those who are at serious level, it +searches for patterns in the data and operates in a manner that guarantees +effiecient and accurate results. How It Operates: +Preparing the data: To improve the models structure, the data is cleaned +up and modified. For example, to ensure consistency, figure out such as +glucose levels are in standard level. Examining the Model: +To test the model more than once, K Fold Testing divides the data into +smaller groups. This makes sure it works well on different sets of +information. Bootstrapping randomly samples the data to check how reliable the +model is over and over again. Improving Accuracy: The model’s settings are fine-tuned using a +method called Bayesian Optimization. This helps make the predictions as +accurate as possible. Understanding What Matters: The model identifies which health +factors, like glucose or age, are the most important for predicting diabetes. This makes it easier to see how the results were reached. When to Use: +This project is good for doctors, researchers, or hospitals. It can: +Help identify patients who might be at risk for diabetes early. Analyze health data to find common patterns or risk factors. -Implement the gradient-boosting tree algorithm (with the usual fit-predict interface) as described in Sections 10.9-10.10 of Elements of Statistical Learning (2nd Edition). Answer the questions below as you did for Project 1. +2.⁠ ⁠we tested the model to make sure it works properly and efficiently and +give the accurate results for the user to avoid any failures +TESTING STEPS: +Trying different data splits: +we split the data in several smaller groups using a technique called k +folding testing. the model was trained on some groups and test on others. This helped us to check if the model works properly how the data was +divided.We also used Bootstrapping where we randomly picked some +data samples and tested the model on the balance data. This results in +consistent results. Measuring accuracy: +We used scores like precision, recall, and AUC to see how the efficiently +the model was making a right decisions most of the time.The AUC ROC +curve showed us how the model was balanced between finding patients +with diabetes and avoiding false detection. Fine-Tuning for Better Results: +We adjusted the model’s settings to improve its accuracy. This step made +sure the predictions were as reliable and correct as possible. Making Sense of Results: +We checked which factors, like blood sugar levels or age, had the most +influence on the model’s predictions. This helped ensure the results +matched what we know about diabetes and made the model easier to trust. -Put your README below. Answer the following questions. +3.This implementation allows the user to change some of the parameters +based on tuning the model performance. To specify how flexible the +model is for learning from data and predicting outputs. Here is a simple +guide to key parameters that the users can change: +Parameter Visibility: +n_estimators — Number of trees +It does this by controlling how many decision trees are present in the +model. Increased trees can result in better accuracy but can slow down +the model. For example: set it to 100 which means the model will use 100 trees for +predictions. Learning Rate (learning_rate): +This controls the weight of each tree in the final prediction. The model +tends to learn slower but often more accurately with smaller values (0.1) +Tree Depth (max_depth): +This defines how complex each tree could be. Larger trees can model +more features but they might also overfit to the training data. For example: if you set it to 5, at maximum each tree can consist of 5 +levels. Minimum Samples to Split: (min_samples_split) +This sets threshold for the smallest amount of samples needed to split a +node in the tree. This model gets simpler as the value of becomes larger. For example, setting this value to 4 would require a minimum of 4 +samples in order to perform a split. Minimum samples per leaf (min_samples_leaf): +This parameter controls the min samples at a leaf node. It helps prevent +overfitting. Example: The number of samples at leaf nodes must be greater than or +equal to this value, when set to 2 there will be a minimum of 2 sample in +the leaf node. +Subsampling (subsample): +This decides the fraction of data used to build each tree. Using less than +1.0 (e.g., 0.8) can reduce overfitting. Basic Example for Tuning: +Let’s say you want the model to train faster while maintaining good +accuracy. You can set: +n_estimators to 50 +learning_rate to 0.1 +max_depth to 3 +By tweaking these parameters, you balance accuracy, speed, and how +well the model generalizes to new data. -* What does the model you have implemented do and when should it be used? -* How did you test your model to determine if it is working reasonably correctly? -* What parameters have you exposed to users of your implementation in order to tune performance? (Also perhaps provide some basic usage examples.) -* Are there specific inputs that your implementation has trouble with? Given more time, could you work around these or is it fundamental? +4.Yes, the implementation may struggle with inputs that are highly imbalanced (e.g., one class is much smaller than the other) or have missing or noisy data. These issues can affect accuracy and fairness. With more time, we can address them by using techniques like oversampling, better preprocessing, or tweaking the model, so they aren't fundamental problems. -## Model Selection +README -Implement generic k-fold cross-validation and bootstrapping model selection methods. +Overview: +In this project, we are building a machine learning model that helps predict whether a person has diabetes based on their health data. The dataset includes various health measurements, like glucose levels, age, BMI, and other factors. Our goal is to train a model that can accurately predict if someone is diabetic or not, based on this data. -In your README, answer the following questions: +In order to achieve the highest degree of accuracy in the model, we utilize various techniques which includes; +1. Cross-Validation (Stratified K-Fold) +2. Bootstrapping +3. Hyperparameter Tuning (with Optuna) +4. Feature Importance +5. Model Evaluation (F1 Score, Precision, Recall, AUC) +Extra Techniques used in this project for bonus marks. -* Do your cross-validation and bootstrapping model selectors agree with a simpler model selector like AIC in simple cases (like linear regression)? -* In what cases might the methods you've written fail or give incorrect or undesirable results? -* What could you implement given more time to mitigate these cases or help users of your methods? -* What parameters have you exposed to your users in order to use your model selectors. +1. Bayesian optimization hyperparameter tuning. +2. K – fold base model. + +Key Concepts and Techniques +1. Cross-Validation (Stratified K-Fold) +A method to test the model effectiveness by dividing the data into multiple subsets (or folds). This is stratified K-Fold Cross Validation and it is implemented such that number of diabetes-positive and negative cases are in a balanced proportion within each fold. This is useful to reliably estimate the performance of that model. +2. Bootstrapping +Bootstrapping is a statistical resampling method in which random samples are drawn from the data with replacement. We take a small subset of this data randomly and run the model on it couple of times, this way we can observe how the model behaves with different variations of the data. This gives us an indication of how the model might behave on completely new, never-before-seen before data. -See sections 7.10-7.11 of Elements of Statistical Learning and the lecture notes. Pay particular attention to Section 7.10.2. +3. Hyperparameter Tuning with Optuna +Hyperparameters are the settings in machine learning, by which a model learns. For instance, the number of trees in case of a decision tree model or a learning rate to control how fast the model learns by adjusting itself. Instead of going through all the parameters manually, we use a tool called optuna to automatically find the best hyperparameters for our model. This improves efficiency in model performance and saves us time. +4. Feature Importance +After training our model, we can see which factors (like age or glucose levels) contributed most to predicting if a person has diabetes. We call this process extraction of feature importance. By understanding which features are most important, we can learn what influences the prediction. +5. Evaluation Metrics +To measure how well our model is performing, we use several metrics: +• F1 Score: This balances precision (how many of the predicted positives were actually positive) and recall (how many of the actual positives were correctly predicted). +• Precision: The accuracy of the positive predictions. +• Recall: How well the model finds the actual positive cases. +• AUC (Area Under the Curve): This tells us how well the model can separate the two classes (diabetic vs. non-diabetic) based on probabilities. + +Explanation of the Code +Step 1: Loading and Preparing the Data +First, we load the dataset, check its structure, and remove any unnecessary columns. We also check if any data is missing. After that, we standardize the data, which means we scale the features so they all have similar ranges, making it easier for the model to learn. +python +Copy code +# Loading the dataset +df = pd.read_csv("Healthcare-Diabetes.csv") +df.head() # Show first few rows to understand data -As usual, above-and-beyond efforts will be considered for bonus points. +# Checking if there are any missing values +df.isnull().any() # There are no missing values + +# Dropping 'Id' column as it's not needed for prediction +df.drop(columns=['Id'], inplace=True) +• We remove the Id column because it's just a unique identifier and doesn't help in predicting diabetes. +• We also check for missing data, and since there are none in this dataset, we don't have to worry about it. +Next, we standardize the features (like glucose levels, BMI, age, etc.) to make sure they all have the same scale. This helps the model perform better. +python +Copy code +# Standardize the numerical features +scaler = StandardScaler() +columns_to_standardize = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age'] +standardized_data = scaler.fit_transform(df[columns_to_standardize]) + +# Convert standardized data back into a DataFrame +df_standardized = pd.DataFrame(standardized_data, columns=columns_to_standardize) + +# Add target variable (Outcome) back to standardized DataFrame +df_standardized["Outcome"] = df["Outcome"].values +• We use StandardScaler to scale the data so that it has a mean of 0 and a standard deviation of 1. This helps the model treat all features equally, preventing some features from dominating due to their larger values. + +Step 2: Training the Base Model Using Stratified K-Fold Cross-Validation +We use a machine learning model called Gradient Boosting Classifier. This model combines multiple decision trees to make predictions. We train and test the model using Stratified K-Fold Cross-Validation to get a more accurate measure of its performance. +python +Copy code +# Defining features and target +X = df_standardized.drop(columns=['Outcome']) # Features +y = df_standardized['Outcome'] # Target variable + +# Initialize the Gradient Boosting Classifier +model = GradientBoostingClassifier(random_state=42) + +# Initialize Stratified K-Fold Cross-Validation +skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) + +# Lists to store metrics +f1_scores_kfold = [] +precision_scores_kfold = [] +recall_scores_kfold = [] +auc_scores_kfold = [] +all_conf_matrices = [] + +for train_index, test_index in skf.split(X, y): + # Splitting the data into train and test sets for each fold + X_train, X_test = X.iloc[train_index], X.iloc[test_index] + y_train, y_test = y.iloc[train_index], y.iloc[test_index] + + # Training the model + model.fit(X_train, y_train) + + # Making predictions + y_pred = model.predict(X_test) + y_pred_proba = model.predict_proba(X_test)[:, 1] # Probabilities for ROC curve + + # Calculate evaluation metrics + f1_scores_kfold.append(f1_score(y_test, y_pred)) + precision_scores_kfold.append(precision_score(y_test, y_pred)) + recall_scores_kfold.append(recall_score(y_test, y_pred)) + auc_scores_kfold.append(roc_auc_score(y_test, y_pred_proba)) + + # Save confusion matrix for later display + conf_matrix = confusion_matrix(y_test, y_pred) + all_conf_matrices.append(conf_matrix) + + # Plot ROC curve for this fold + fpr, tpr, _ = roc_curve(y_test, y_pred_proba) + plt.plot(fpr, tpr, label=f"K-Fold ROC Curve") + +# Finalize and display the ROC curve +plt.xlabel("False Positive Rate") +plt.ylabel("True Positive Rate") +plt.title("K-Fold AUC-ROC Curve") +plt.legend(loc="lower right") +plt.show() + +# Display confusion matrix for the last fold +disp = ConfusionMatrixDisplay(confusion_matrix=all_conf_matrices[-1], display_labels=model.classes_) +disp.plot(cmap='Blues', values_format='d') +plt.title("Confusion Matrix for Last Fold in K-Fold Cross-Validation") +plt.show() + +# Print out performance metrics +print(f"K-Fold F1 Scores: {f1_scores_kfold}") +print(f"K-Fold Precision Scores: {precision_scores_kfold}") +print(f"K-Fold Recall Scores: {recall_scores_kfold}") +print(f"K-Fold AUC Scores: {auc_scores_kfold}") +print(f"Mean F1 Score (K-Fold): {np.mean(f1_scores_kfold)}") +print(f"Mean AUC Score (K-Fold): {np.mean(auc_scores_kfold)}") +• Stratified K-Fold means that the data is divided into 5 parts. Each part gets a chance to be used as both a training set and a testing set, making sure the data is balanced. +• After training the model, we evaluate it using different metrics like F1 Score, Precision, Recall, and AUC. These metrics help us understand how well the model is performing. +We also plot an ROC curve to visually check how good the model is at distinguishing between diabetic and non-diabetic cases. + +Step 3: Bootstrapping +Bootstrapping allows us to train the model on random subsets of the data, chosen with replacement. By repeating this process, we can get a better idea of how the model behaves with different portions of the dataset. +python +Copy code +# Initialize bootstrapping parameters +n_bootstrap_samples = 50 +f1_scores_bootstrap = [] +precision_scores_bootstrap = [] +recall_scores_bootstrap = [] +auc_scores_bootstrap = [] + +plt.figure(figsize=(8, 6)) # Set figure size for better visualization +confusion_matrices = [] + +for i in range(n_bootstrap_samples): + # Create Bootstrap Sample + indices = np.random.choice(range(len(X)), size=len(X), replace=True) + X_train, y_train = X.iloc[indices], y.iloc[indices] + + # Train the model on the bootstrap sample + model.fit(X_train, y_train) + + # Get out-of-bag (OOB) predictions + oob_indices = list(set(range(len(X))) - set(indices)) + X_test_oob, y_test_oob = X.iloc[oob_indices], y.iloc[oob_indices] + + # Predict using the model + y_pred = model.predict(X_test_oob) + y_pred_proba = model.predict_proba(X_test_oob)[:, 1] # Probabilities for ROC curve + + # Collect performance metrics + f1_scores_bootstrap.append(f1_score(y_test_oob, y_pred)) + precision_scores_bootstrap.append(precision_score(y_test_oob, y_pred)) + recall_scores_bootstrap.append(recall_score(y_test_oob, y_pred)) + auc_scores_bootstrap.append(roc_auc_score(y_test_oob, y_pred_proba)) + + # Plot ROC Curve for each bootstrap sample + fpr, tpr, _ = roc_curve(y_test_oob, y_pred_proba) + plt.plot(fpr, tpr, label=f"Sample {i+1}") + +# Finalize and plot the ROC curves for bootstrapping +plt.xlabel("False Positive Rate") +plt.ylabel("True Positive Rate") +plt.title("Bootstrapping AUC-ROC Curve") +plt.legend(loc="lower right") +plt.show() +• We train the model on 50 bootstrapped samples, calculate evaluation metrics for each sample, and plot the ROC curve for each of them. This helps us understand how the model performs across different subsets of data. + +Step 4: Hyperparameter Tuning with Optuna +To make the model even better, we use Optuna to automatically search for the best model settings, called hyperparameters. These include things like how many trees to use, what the learning rate should be, and more. +python +Copy code +import optuna + +# Define the objective function for Optuna +def objective(trial): + params = { + 'n_estimators': trial.suggest_int('n_estimators', 50, 200), + 'learning_rate': trial.suggest_float('learning_rate', 0.01, 0.2), + 'max_depth': trial.suggest_int('max_depth', 3, 7), + 'min_samples_split': trial.suggest_int('min_samples_split', 2, 5), + 'min_samples_leaf': trial.suggest_int('min_samples_leaf', 1, 4), + 'subsample': trial.suggest_float('subsample', 0.5, 1.0) + } + model = GradientBoostingClassifier(random_state=42, **params) + scores = cross_val_score(model, X, y, scoring='f1', cv=3, n_jobs=-1) + return scores.mean() + +# Start Optuna optimization +study = optuna.create_study(direction='maximize') +study.optimize(objective, n_trials=50) +best_params = study.best_params +• Optuna helps us find the best hyperparameters by trying different combinations and evaluating their performance automatically. + +Conclusion +By using techniques like cross-validation, bootstrapping, and hyperparameter tuning, we've made sure that our diabetes prediction model isn't just accurate, but also reliable when faced with new data it hasn't seen before. These methods help strengthen the model, making it more flexible and capable of providing better predictions in real-world scenarios. With each step, we've worked to improve how well the model can understand and predict outcomes, ensuring it's both trustworthy and useful. From 243384e16c3347dcc5d34c1d55e16a1fc8b98d76 Mon Sep 17 00:00:00 2001 From: avr-lab Date: Fri, 22 Nov 2024 09:08:40 -0600 Subject: [PATCH 7/7] Add files via upload --- Healthcare-Diabetes.csv | 2769 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 2769 insertions(+) create mode 100644 Healthcare-Diabetes.csv diff --git a/Healthcare-Diabetes.csv b/Healthcare-Diabetes.csv new file mode 100644 index 0000000..851b8e4 --- /dev/null +++ b/Healthcare-Diabetes.csv @@ -0,0 +1,2769 @@ +Id,Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age,Outcome +1,6,148,72,35,0,33.6,0.627,50,1 +2,1,85,66,29,0,26.6,0.351,31,0 +3,8,183,64,0,0,23.3,0.672,32,1 +4,1,89,66,23,94,28.1,0.167,21,0 +5,0,137,40,35,168,43.1,2.288,33,1 +6,5,116,74,0,0,25.6,0.201,30,0 +7,3,78,50,32,88,31,0.248,26,1 +8,10,115,0,0,0,35.3,0.134,29,0 +9,2,197,70,45,543,30.5,0.158,53,1 +10,8,125,96,0,0,0,0.232,54,1 +11,4,110,92,0,0,37.6,0.191,30,0 +12,10,168,74,0,0,38,0.537,34,1 +13,10,139,80,0,0,27.1,1.441,57,0 +14,1,189,60,23,846,30.1,0.398,59,1 +15,5,166,72,19,175,25.8,0.587,51,1 +16,7,100,0,0,0,30,0.484,32,1 +17,0,118,84,47,230,45.8,0.551,31,1 +18,7,107,74,0,0,29.6,0.254,31,1 +19,1,103,30,38,83,43.3,0.183,33,0 +20,1,115,70,30,96,34.6,0.529,32,1 +21,3,126,88,41,235,39.3,0.704,27,0 +22,8,99,84,0,0,35.4,0.388,50,0 +23,7,196,90,0,0,39.8,0.451,41,1 +24,9,119,80,35,0,29,0.263,29,1 +25,11,143,94,33,146,36.6,0.254,51,1 +26,10,125,70,26,115,31.1,0.205,41,1 +27,7,147,76,0,0,39.4,0.257,43,1 +28,1,97,66,15,140,23.2,0.487,22,0 +29,13,145,82,19,110,22.2,0.245,57,0 +30,5,117,92,0,0,34.1,0.337,38,0 +31,5,109,75,26,0,36,0.546,60,0 +32,3,158,76,36,245,31.6,0.851,28,1 +33,3,88,58,11,54,24.8,0.267,22,0 +34,6,92,92,0,0,19.9,0.188,28,0 +35,10,122,78,31,0,27.6,0.512,45,0 +36,4,103,60,33,192,24,0.966,33,0 +37,11,138,76,0,0,33.2,0.42,35,0 +38,9,102,76,37,0,32.9,0.665,46,1 +39,2,90,68,42,0,38.2,0.503,27,1 +40,4,111,72,47,207,37.1,1.39,56,1 +41,3,180,64,25,70,34,0.271,26,0 +42,7,133,84,0,0,40.2,0.696,37,0 +43,7,106,92,18,0,22.7,0.235,48,0 +44,9,171,110,24,240,45.4,0.721,54,1 +45,7,159,64,0,0,27.4,0.294,40,0 +46,0,180,66,39,0,42,1.893,25,1 +47,1,146,56,0,0,29.7,0.564,29,0 +48,2,71,70,27,0,28,0.586,22,0 +49,7,103,66,32,0,39.1,0.344,31,1 +50,7,105,0,0,0,0,0.305,24,0 +51,1,103,80,11,82,19.4,0.491,22,0 +52,1,101,50,15,36,24.2,0.526,26,0 +53,5,88,66,21,23,24.4,0.342,30,0 +54,8,176,90,34,300,33.7,0.467,58,1 +55,7,150,66,42,342,34.7,0.718,42,0 +56,1,73,50,10,0,23,0.248,21,0 +57,7,187,68,39,304,37.7,0.254,41,1 +58,0,100,88,60,110,46.8,0.962,31,0 +59,0,146,82,0,0,40.5,1.781,44,0 +60,0,105,64,41,142,41.5,0.173,22,0 +61,2,84,0,0,0,0,0.304,21,0 +62,8,133,72,0,0,32.9,0.27,39,1 +63,5,44,62,0,0,25,0.587,36,0 +64,2,141,58,34,128,25.4,0.699,24,0 +65,7,114,66,0,0,32.8,0.258,42,1 +66,5,99,74,27,0,29,0.203,32,0 +67,0,109,88,30,0,32.5,0.855,38,1 +68,2,109,92,0,0,42.7,0.845,54,0 +69,1,95,66,13,38,19.6,0.334,25,0 +70,4,146,85,27,100,28.9,0.189,27,0 +71,2,100,66,20,90,32.9,0.867,28,1 +72,5,139,64,35,140,28.6,0.411,26,0 +73,13,126,90,0,0,43.4,0.583,42,1 +74,4,129,86,20,270,35.1,0.231,23,0 +75,1,79,75,30,0,32,0.396,22,0 +76,1,0,48,20,0,24.7,0.14,22,0 +77,7,62,78,0,0,32.6,0.391,41,0 +78,5,95,72,33,0,37.7,0.37,27,0 +79,0,131,0,0,0,43.2,0.27,26,1 +80,2,112,66,22,0,25,0.307,24,0 +81,3,113,44,13,0,22.4,0.14,22,0 +82,2,74,0,0,0,0,0.102,22,0 +83,7,83,78,26,71,29.3,0.767,36,0 +84,0,101,65,28,0,24.6,0.237,22,0 +85,5,137,108,0,0,48.8,0.227,37,1 +86,2,110,74,29,125,32.4,0.698,27,0 +87,13,106,72,54,0,36.6,0.178,45,0 +88,2,100,68,25,71,38.5,0.324,26,0 +89,15,136,70,32,110,37.1,0.153,43,1 +90,1,107,68,19,0,26.5,0.165,24,0 +91,1,80,55,0,0,19.1,0.258,21,0 +92,4,123,80,15,176,32,0.443,34,0 +93,7,81,78,40,48,46.7,0.261,42,0 +94,4,134,72,0,0,23.8,0.277,60,1 +95,2,142,82,18,64,24.7,0.761,21,0 +96,6,144,72,27,228,33.9,0.255,40,0 +97,2,92,62,28,0,31.6,0.13,24,0 +98,1,71,48,18,76,20.4,0.323,22,0 +99,6,93,50,30,64,28.7,0.356,23,0 +100,1,122,90,51,220,49.7,0.325,31,1 +101,1,163,72,0,0,39,1.222,33,1 +102,1,151,60,0,0,26.1,0.179,22,0 +103,0,125,96,0,0,22.5,0.262,21,0 +104,1,81,72,18,40,26.6,0.283,24,0 +105,2,85,65,0,0,39.6,0.93,27,0 +106,1,126,56,29,152,28.7,0.801,21,0 +107,1,96,122,0,0,22.4,0.207,27,0 +108,4,144,58,28,140,29.5,0.287,37,0 +109,3,83,58,31,18,34.3,0.336,25,0 +110,0,95,85,25,36,37.4,0.247,24,1 +111,3,171,72,33,135,33.3,0.199,24,1 +112,8,155,62,26,495,34,0.543,46,1 +113,1,89,76,34,37,31.2,0.192,23,0 +114,4,76,62,0,0,34,0.391,25,0 +115,7,160,54,32,175,30.5,0.588,39,1 +116,4,146,92,0,0,31.2,0.539,61,1 +117,5,124,74,0,0,34,0.22,38,1 +118,5,78,48,0,0,33.7,0.654,25,0 +119,4,97,60,23,0,28.2,0.443,22,0 +120,4,99,76,15,51,23.2,0.223,21,0 +121,0,162,76,56,100,53.2,0.759,25,1 +122,6,111,64,39,0,34.2,0.26,24,0 +123,2,107,74,30,100,33.6,0.404,23,0 +124,5,132,80,0,0,26.8,0.186,69,0 +125,0,113,76,0,0,33.3,0.278,23,1 +126,1,88,30,42,99,55,0.496,26,1 +127,3,120,70,30,135,42.9,0.452,30,0 +128,1,118,58,36,94,33.3,0.261,23,0 +129,1,117,88,24,145,34.5,0.403,40,1 +130,0,105,84,0,0,27.9,0.741,62,1 +131,4,173,70,14,168,29.7,0.361,33,1 +132,9,122,56,0,0,33.3,1.114,33,1 +133,3,170,64,37,225,34.5,0.356,30,1 +134,8,84,74,31,0,38.3,0.457,39,0 +135,2,96,68,13,49,21.1,0.647,26,0 +136,2,125,60,20,140,33.8,0.088,31,0 +137,0,100,70,26,50,30.8,0.597,21,0 +138,0,93,60,25,92,28.7,0.532,22,0 +139,0,129,80,0,0,31.2,0.703,29,0 +140,5,105,72,29,325,36.9,0.159,28,0 +141,3,128,78,0,0,21.1,0.268,55,0 +142,5,106,82,30,0,39.5,0.286,38,0 +143,2,108,52,26,63,32.5,0.318,22,0 +144,10,108,66,0,0,32.4,0.272,42,1 +145,4,154,62,31,284,32.8,0.237,23,0 +146,0,102,75,23,0,0,0.572,21,0 +147,9,57,80,37,0,32.8,0.096,41,0 +148,2,106,64,35,119,30.5,1.4,34,0 +149,5,147,78,0,0,33.7,0.218,65,0 +150,2,90,70,17,0,27.3,0.085,22,0 +151,1,136,74,50,204,37.4,0.399,24,0 +152,4,114,65,0,0,21.9,0.432,37,0 +153,9,156,86,28,155,34.3,1.189,42,1 +154,1,153,82,42,485,40.6,0.687,23,0 +155,8,188,78,0,0,47.9,0.137,43,1 +156,7,152,88,44,0,50,0.337,36,1 +157,2,99,52,15,94,24.6,0.637,21,0 +158,1,109,56,21,135,25.2,0.833,23,0 +159,2,88,74,19,53,29,0.229,22,0 +160,17,163,72,41,114,40.9,0.817,47,1 +161,4,151,90,38,0,29.7,0.294,36,0 +162,7,102,74,40,105,37.2,0.204,45,0 +163,0,114,80,34,285,44.2,0.167,27,0 +164,2,100,64,23,0,29.7,0.368,21,0 +165,0,131,88,0,0,31.6,0.743,32,1 +166,6,104,74,18,156,29.9,0.722,41,1 +167,3,148,66,25,0,32.5,0.256,22,0 +168,4,120,68,0,0,29.6,0.709,34,0 +169,4,110,66,0,0,31.9,0.471,29,0 +170,3,111,90,12,78,28.4,0.495,29,0 +171,6,102,82,0,0,30.8,0.18,36,1 +172,6,134,70,23,130,35.4,0.542,29,1 +173,2,87,0,23,0,28.9,0.773,25,0 +174,1,79,60,42,48,43.5,0.678,23,0 +175,2,75,64,24,55,29.7,0.37,33,0 +176,8,179,72,42,130,32.7,0.719,36,1 +177,6,85,78,0,0,31.2,0.382,42,0 +178,0,129,110,46,130,67.1,0.319,26,1 +179,5,143,78,0,0,45,0.19,47,0 +180,5,130,82,0,0,39.1,0.956,37,1 +181,6,87,80,0,0,23.2,0.084,32,0 +182,0,119,64,18,92,34.9,0.725,23,0 +183,1,0,74,20,23,27.7,0.299,21,0 +184,5,73,60,0,0,26.8,0.268,27,0 +185,4,141,74,0,0,27.6,0.244,40,0 +186,7,194,68,28,0,35.9,0.745,41,1 +187,8,181,68,36,495,30.1,0.615,60,1 +188,1,128,98,41,58,32,1.321,33,1 +189,8,109,76,39,114,27.9,0.64,31,1 +190,5,139,80,35,160,31.6,0.361,25,1 +191,3,111,62,0,0,22.6,0.142,21,0 +192,9,123,70,44,94,33.1,0.374,40,0 +193,7,159,66,0,0,30.4,0.383,36,1 +194,11,135,0,0,0,52.3,0.578,40,1 +195,8,85,55,20,0,24.4,0.136,42,0 +196,5,158,84,41,210,39.4,0.395,29,1 +197,1,105,58,0,0,24.3,0.187,21,0 +198,3,107,62,13,48,22.9,0.678,23,1 +199,4,109,64,44,99,34.8,0.905,26,1 +200,4,148,60,27,318,30.9,0.15,29,1 +201,0,113,80,16,0,31,0.874,21,0 +202,1,138,82,0,0,40.1,0.236,28,0 +203,0,108,68,20,0,27.3,0.787,32,0 +204,2,99,70,16,44,20.4,0.235,27,0 +205,6,103,72,32,190,37.7,0.324,55,0 +206,5,111,72,28,0,23.9,0.407,27,0 +207,8,196,76,29,280,37.5,0.605,57,1 +208,5,162,104,0,0,37.7,0.151,52,1 +209,1,96,64,27,87,33.2,0.289,21,0 +210,7,184,84,33,0,35.5,0.355,41,1 +211,2,81,60,22,0,27.7,0.29,25,0 +212,0,147,85,54,0,42.8,0.375,24,0 +213,7,179,95,31,0,34.2,0.164,60,0 +214,0,140,65,26,130,42.6,0.431,24,1 +215,9,112,82,32,175,34.2,0.26,36,1 +216,12,151,70,40,271,41.8,0.742,38,1 +217,5,109,62,41,129,35.8,0.514,25,1 +218,6,125,68,30,120,30,0.464,32,0 +219,5,85,74,22,0,29,1.224,32,1 +220,5,112,66,0,0,37.8,0.261,41,1 +221,0,177,60,29,478,34.6,1.072,21,1 +222,2,158,90,0,0,31.6,0.805,66,1 +223,7,119,0,0,0,25.2,0.209,37,0 +224,7,142,60,33,190,28.8,0.687,61,0 +225,1,100,66,15,56,23.6,0.666,26,0 +226,1,87,78,27,32,34.6,0.101,22,0 +227,0,101,76,0,0,35.7,0.198,26,0 +228,3,162,52,38,0,37.2,0.652,24,1 +229,4,197,70,39,744,36.7,2.329,31,0 +230,0,117,80,31,53,45.2,0.089,24,0 +231,4,142,86,0,0,44,0.645,22,1 +232,6,134,80,37,370,46.2,0.238,46,1 +233,1,79,80,25,37,25.4,0.583,22,0 +234,4,122,68,0,0,35,0.394,29,0 +235,3,74,68,28,45,29.7,0.293,23,0 +236,4,171,72,0,0,43.6,0.479,26,1 +237,7,181,84,21,192,35.9,0.586,51,1 +238,0,179,90,27,0,44.1,0.686,23,1 +239,9,164,84,21,0,30.8,0.831,32,1 +240,0,104,76,0,0,18.4,0.582,27,0 +241,1,91,64,24,0,29.2,0.192,21,0 +242,4,91,70,32,88,33.1,0.446,22,0 +243,3,139,54,0,0,25.6,0.402,22,1 +244,6,119,50,22,176,27.1,1.318,33,1 +245,2,146,76,35,194,38.2,0.329,29,0 +246,9,184,85,15,0,30,1.213,49,1 +247,10,122,68,0,0,31.2,0.258,41,0 +248,0,165,90,33,680,52.3,0.427,23,0 +249,9,124,70,33,402,35.4,0.282,34,0 +250,1,111,86,19,0,30.1,0.143,23,0 +251,9,106,52,0,0,31.2,0.38,42,0 +252,2,129,84,0,0,28,0.284,27,0 +253,2,90,80,14,55,24.4,0.249,24,0 +254,0,86,68,32,0,35.8,0.238,25,0 +255,12,92,62,7,258,27.6,0.926,44,1 +256,1,113,64,35,0,33.6,0.543,21,1 +257,3,111,56,39,0,30.1,0.557,30,0 +258,2,114,68,22,0,28.7,0.092,25,0 +259,1,193,50,16,375,25.9,0.655,24,0 +260,11,155,76,28,150,33.3,1.353,51,1 +261,3,191,68,15,130,30.9,0.299,34,0 +262,3,141,0,0,0,30,0.761,27,1 +263,4,95,70,32,0,32.1,0.612,24,0 +264,3,142,80,15,0,32.4,0.2,63,0 +265,4,123,62,0,0,32,0.226,35,1 +266,5,96,74,18,67,33.6,0.997,43,0 +267,0,138,0,0,0,36.3,0.933,25,1 +268,2,128,64,42,0,40,1.101,24,0 +269,0,102,52,0,0,25.1,0.078,21,0 +270,2,146,0,0,0,27.5,0.24,28,1 +271,10,101,86,37,0,45.6,1.136,38,1 +272,2,108,62,32,56,25.2,0.128,21,0 +273,3,122,78,0,0,23,0.254,40,0 +274,1,71,78,50,45,33.2,0.422,21,0 +275,13,106,70,0,0,34.2,0.251,52,0 +276,2,100,70,52,57,40.5,0.677,25,0 +277,7,106,60,24,0,26.5,0.296,29,1 +278,0,104,64,23,116,27.8,0.454,23,0 +279,5,114,74,0,0,24.9,0.744,57,0 +280,2,108,62,10,278,25.3,0.881,22,0 +281,0,146,70,0,0,37.9,0.334,28,1 +282,10,129,76,28,122,35.9,0.28,39,0 +283,7,133,88,15,155,32.4,0.262,37,0 +284,7,161,86,0,0,30.4,0.165,47,1 +285,2,108,80,0,0,27,0.259,52,1 +286,7,136,74,26,135,26,0.647,51,0 +287,5,155,84,44,545,38.7,0.619,34,0 +288,1,119,86,39,220,45.6,0.808,29,1 +289,4,96,56,17,49,20.8,0.34,26,0 +290,5,108,72,43,75,36.1,0.263,33,0 +291,0,78,88,29,40,36.9,0.434,21,0 +292,0,107,62,30,74,36.6,0.757,25,1 +293,2,128,78,37,182,43.3,1.224,31,1 +294,1,128,48,45,194,40.5,0.613,24,1 +295,0,161,50,0,0,21.9,0.254,65,0 +296,6,151,62,31,120,35.5,0.692,28,0 +297,2,146,70,38,360,28,0.337,29,1 +298,0,126,84,29,215,30.7,0.52,24,0 +299,14,100,78,25,184,36.6,0.412,46,1 +300,8,112,72,0,0,23.6,0.84,58,0 +301,0,167,0,0,0,32.3,0.839,30,1 +302,2,144,58,33,135,31.6,0.422,25,1 +303,5,77,82,41,42,35.8,0.156,35,0 +304,5,115,98,0,0,52.9,0.209,28,1 +305,3,150,76,0,0,21,0.207,37,0 +306,2,120,76,37,105,39.7,0.215,29,0 +307,10,161,68,23,132,25.5,0.326,47,1 +308,0,137,68,14,148,24.8,0.143,21,0 +309,0,128,68,19,180,30.5,1.391,25,1 +310,2,124,68,28,205,32.9,0.875,30,1 +311,6,80,66,30,0,26.2,0.313,41,0 +312,0,106,70,37,148,39.4,0.605,22,0 +313,2,155,74,17,96,26.6,0.433,27,1 +314,3,113,50,10,85,29.5,0.626,25,0 +315,7,109,80,31,0,35.9,1.127,43,1 +316,2,112,68,22,94,34.1,0.315,26,0 +317,3,99,80,11,64,19.3,0.284,30,0 +318,3,182,74,0,0,30.5,0.345,29,1 +319,3,115,66,39,140,38.1,0.15,28,0 +320,6,194,78,0,0,23.5,0.129,59,1 +321,4,129,60,12,231,27.5,0.527,31,0 +322,3,112,74,30,0,31.6,0.197,25,1 +323,0,124,70,20,0,27.4,0.254,36,1 +324,13,152,90,33,29,26.8,0.731,43,1 +325,2,112,75,32,0,35.7,0.148,21,0 +326,1,157,72,21,168,25.6,0.123,24,0 +327,1,122,64,32,156,35.1,0.692,30,1 +328,10,179,70,0,0,35.1,0.2,37,0 +329,2,102,86,36,120,45.5,0.127,23,1 +330,6,105,70,32,68,30.8,0.122,37,0 +331,8,118,72,19,0,23.1,1.476,46,0 +332,2,87,58,16,52,32.7,0.166,25,0 +333,1,180,0,0,0,43.3,0.282,41,1 +334,12,106,80,0,0,23.6,0.137,44,0 +335,1,95,60,18,58,23.9,0.26,22,0 +336,0,165,76,43,255,47.9,0.259,26,0 +337,0,117,0,0,0,33.8,0.932,44,0 +338,5,115,76,0,0,31.2,0.343,44,1 +339,9,152,78,34,171,34.2,0.893,33,1 +340,7,178,84,0,0,39.9,0.331,41,1 +341,1,130,70,13,105,25.9,0.472,22,0 +342,1,95,74,21,73,25.9,0.673,36,0 +343,1,0,68,35,0,32,0.389,22,0 +344,5,122,86,0,0,34.7,0.29,33,0 +345,8,95,72,0,0,36.8,0.485,57,0 +346,8,126,88,36,108,38.5,0.349,49,0 +347,1,139,46,19,83,28.7,0.654,22,0 +348,3,116,0,0,0,23.5,0.187,23,0 +349,3,99,62,19,74,21.8,0.279,26,0 +350,5,0,80,32,0,41,0.346,37,1 +351,4,92,80,0,0,42.2,0.237,29,0 +352,4,137,84,0,0,31.2,0.252,30,0 +353,3,61,82,28,0,34.4,0.243,46,0 +354,1,90,62,12,43,27.2,0.58,24,0 +355,3,90,78,0,0,42.7,0.559,21,0 +356,9,165,88,0,0,30.4,0.302,49,1 +357,1,125,50,40,167,33.3,0.962,28,1 +358,13,129,0,30,0,39.9,0.569,44,1 +359,12,88,74,40,54,35.3,0.378,48,0 +360,1,196,76,36,249,36.5,0.875,29,1 +361,5,189,64,33,325,31.2,0.583,29,1 +362,5,158,70,0,0,29.8,0.207,63,0 +363,5,103,108,37,0,39.2,0.305,65,0 +364,4,146,78,0,0,38.5,0.52,67,1 +365,4,147,74,25,293,34.9,0.385,30,0 +366,5,99,54,28,83,34,0.499,30,0 +367,6,124,72,0,0,27.6,0.368,29,1 +368,0,101,64,17,0,21,0.252,21,0 +369,3,81,86,16,66,27.5,0.306,22,0 +370,1,133,102,28,140,32.8,0.234,45,1 +371,3,173,82,48,465,38.4,2.137,25,1 +372,0,118,64,23,89,0,1.731,21,0 +373,0,84,64,22,66,35.8,0.545,21,0 +374,2,105,58,40,94,34.9,0.225,25,0 +375,2,122,52,43,158,36.2,0.816,28,0 +376,12,140,82,43,325,39.2,0.528,58,1 +377,0,98,82,15,84,25.2,0.299,22,0 +378,1,87,60,37,75,37.2,0.509,22,0 +379,4,156,75,0,0,48.3,0.238,32,1 +380,0,93,100,39,72,43.4,1.021,35,0 +381,1,107,72,30,82,30.8,0.821,24,0 +382,0,105,68,22,0,20,0.236,22,0 +383,1,109,60,8,182,25.4,0.947,21,0 +384,1,90,62,18,59,25.1,1.268,25,0 +385,1,125,70,24,110,24.3,0.221,25,0 +386,1,119,54,13,50,22.3,0.205,24,0 +387,5,116,74,29,0,32.3,0.66,35,1 +388,8,105,100,36,0,43.3,0.239,45,1 +389,5,144,82,26,285,32,0.452,58,1 +390,3,100,68,23,81,31.6,0.949,28,0 +391,1,100,66,29,196,32,0.444,42,0 +392,5,166,76,0,0,45.7,0.34,27,1 +393,1,131,64,14,415,23.7,0.389,21,0 +394,4,116,72,12,87,22.1,0.463,37,0 +395,4,158,78,0,0,32.9,0.803,31,1 +396,2,127,58,24,275,27.7,1.6,25,0 +397,3,96,56,34,115,24.7,0.944,39,0 +398,0,131,66,40,0,34.3,0.196,22,1 +399,3,82,70,0,0,21.1,0.389,25,0 +400,3,193,70,31,0,34.9,0.241,25,1 +401,4,95,64,0,0,32,0.161,31,1 +402,6,137,61,0,0,24.2,0.151,55,0 +403,5,136,84,41,88,35,0.286,35,1 +404,9,72,78,25,0,31.6,0.28,38,0 +405,5,168,64,0,0,32.9,0.135,41,1 +406,2,123,48,32,165,42.1,0.52,26,0 +407,4,115,72,0,0,28.9,0.376,46,1 +408,0,101,62,0,0,21.9,0.336,25,0 +409,8,197,74,0,0,25.9,1.191,39,1 +410,1,172,68,49,579,42.4,0.702,28,1 +411,6,102,90,39,0,35.7,0.674,28,0 +412,1,112,72,30,176,34.4,0.528,25,0 +413,1,143,84,23,310,42.4,1.076,22,0 +414,1,143,74,22,61,26.2,0.256,21,0 +415,0,138,60,35,167,34.6,0.534,21,1 +416,3,173,84,33,474,35.7,0.258,22,1 +417,1,97,68,21,0,27.2,1.095,22,0 +418,4,144,82,32,0,38.5,0.554,37,1 +419,1,83,68,0,0,18.2,0.624,27,0 +420,3,129,64,29,115,26.4,0.219,28,1 +421,1,119,88,41,170,45.3,0.507,26,0 +422,2,94,68,18,76,26,0.561,21,0 +423,0,102,64,46,78,40.6,0.496,21,0 +424,2,115,64,22,0,30.8,0.421,21,0 +425,8,151,78,32,210,42.9,0.516,36,1 +426,4,184,78,39,277,37,0.264,31,1 +427,0,94,0,0,0,0,0.256,25,0 +428,1,181,64,30,180,34.1,0.328,38,1 +429,0,135,94,46,145,40.6,0.284,26,0 +430,1,95,82,25,180,35,0.233,43,1 +431,2,99,0,0,0,22.2,0.108,23,0 +432,3,89,74,16,85,30.4,0.551,38,0 +433,1,80,74,11,60,30,0.527,22,0 +434,2,139,75,0,0,25.6,0.167,29,0 +435,1,90,68,8,0,24.5,1.138,36,0 +436,0,141,0,0,0,42.4,0.205,29,1 +437,12,140,85,33,0,37.4,0.244,41,0 +438,5,147,75,0,0,29.9,0.434,28,0 +439,1,97,70,15,0,18.2,0.147,21,0 +440,6,107,88,0,0,36.8,0.727,31,0 +441,0,189,104,25,0,34.3,0.435,41,1 +442,2,83,66,23,50,32.2,0.497,22,0 +443,4,117,64,27,120,33.2,0.23,24,0 +444,8,108,70,0,0,30.5,0.955,33,1 +445,4,117,62,12,0,29.7,0.38,30,1 +446,0,180,78,63,14,59.4,2.42,25,1 +447,1,100,72,12,70,25.3,0.658,28,0 +448,0,95,80,45,92,36.5,0.33,26,0 +449,0,104,64,37,64,33.6,0.51,22,1 +450,0,120,74,18,63,30.5,0.285,26,0 +451,1,82,64,13,95,21.2,0.415,23,0 +452,2,134,70,0,0,28.9,0.542,23,1 +453,0,91,68,32,210,39.9,0.381,25,0 +454,2,119,0,0,0,19.6,0.832,72,0 +455,2,100,54,28,105,37.8,0.498,24,0 +456,14,175,62,30,0,33.6,0.212,38,1 +457,1,135,54,0,0,26.7,0.687,62,0 +458,5,86,68,28,71,30.2,0.364,24,0 +459,10,148,84,48,237,37.6,1.001,51,1 +460,9,134,74,33,60,25.9,0.46,81,0 +461,9,120,72,22,56,20.8,0.733,48,0 +462,1,71,62,0,0,21.8,0.416,26,0 +463,8,74,70,40,49,35.3,0.705,39,0 +464,5,88,78,30,0,27.6,0.258,37,0 +465,10,115,98,0,0,24,1.022,34,0 +466,0,124,56,13,105,21.8,0.452,21,0 +467,0,74,52,10,36,27.8,0.269,22,0 +468,0,97,64,36,100,36.8,0.6,25,0 +469,8,120,0,0,0,30,0.183,38,1 +470,6,154,78,41,140,46.1,0.571,27,0 +471,1,144,82,40,0,41.3,0.607,28,0 +472,0,137,70,38,0,33.2,0.17,22,0 +473,0,119,66,27,0,38.8,0.259,22,0 +474,7,136,90,0,0,29.9,0.21,50,0 +475,4,114,64,0,0,28.9,0.126,24,0 +476,0,137,84,27,0,27.3,0.231,59,0 +477,2,105,80,45,191,33.7,0.711,29,1 +478,7,114,76,17,110,23.8,0.466,31,0 +479,8,126,74,38,75,25.9,0.162,39,0 +480,4,132,86,31,0,28,0.419,63,0 +481,3,158,70,30,328,35.5,0.344,35,1 +482,0,123,88,37,0,35.2,0.197,29,0 +483,4,85,58,22,49,27.8,0.306,28,0 +484,0,84,82,31,125,38.2,0.233,23,0 +485,0,145,0,0,0,44.2,0.63,31,1 +486,0,135,68,42,250,42.3,0.365,24,1 +487,1,139,62,41,480,40.7,0.536,21,0 +488,0,173,78,32,265,46.5,1.159,58,0 +489,4,99,72,17,0,25.6,0.294,28,0 +490,8,194,80,0,0,26.1,0.551,67,0 +491,2,83,65,28,66,36.8,0.629,24,0 +492,2,89,90,30,0,33.5,0.292,42,0 +493,4,99,68,38,0,32.8,0.145,33,0 +494,4,125,70,18,122,28.9,1.144,45,1 +495,3,80,0,0,0,0,0.174,22,0 +496,6,166,74,0,0,26.6,0.304,66,0 +497,5,110,68,0,0,26,0.292,30,0 +498,2,81,72,15,76,30.1,0.547,25,0 +499,7,195,70,33,145,25.1,0.163,55,1 +500,6,154,74,32,193,29.3,0.839,39,0 +501,2,117,90,19,71,25.2,0.313,21,0 +502,3,84,72,32,0,37.2,0.267,28,0 +503,6,0,68,41,0,39,0.727,41,1 +504,7,94,64,25,79,33.3,0.738,41,0 +505,3,96,78,39,0,37.3,0.238,40,0 +506,10,75,82,0,0,33.3,0.263,38,0 +507,0,180,90,26,90,36.5,0.314,35,1 +508,1,130,60,23,170,28.6,0.692,21,0 +509,2,84,50,23,76,30.4,0.968,21,0 +510,8,120,78,0,0,25,0.409,64,0 +511,12,84,72,31,0,29.7,0.297,46,1 +512,0,139,62,17,210,22.1,0.207,21,0 +513,9,91,68,0,0,24.2,0.2,58,0 +514,2,91,62,0,0,27.3,0.525,22,0 +515,3,99,54,19,86,25.6,0.154,24,0 +516,3,163,70,18,105,31.6,0.268,28,1 +517,9,145,88,34,165,30.3,0.771,53,1 +518,7,125,86,0,0,37.6,0.304,51,0 +519,13,76,60,0,0,32.8,0.18,41,0 +520,6,129,90,7,326,19.6,0.582,60,0 +521,2,68,70,32,66,25,0.187,25,0 +522,3,124,80,33,130,33.2,0.305,26,0 +523,6,114,0,0,0,0,0.189,26,0 +524,9,130,70,0,0,34.2,0.652,45,1 +525,3,125,58,0,0,31.6,0.151,24,0 +526,3,87,60,18,0,21.8,0.444,21,0 +527,1,97,64,19,82,18.2,0.299,21,0 +528,3,116,74,15,105,26.3,0.107,24,0 +529,0,117,66,31,188,30.8,0.493,22,0 +530,0,111,65,0,0,24.6,0.66,31,0 +531,2,122,60,18,106,29.8,0.717,22,0 +532,0,107,76,0,0,45.3,0.686,24,0 +533,1,86,66,52,65,41.3,0.917,29,0 +534,6,91,0,0,0,29.8,0.501,31,0 +535,1,77,56,30,56,33.3,1.251,24,0 +536,4,132,0,0,0,32.9,0.302,23,1 +537,0,105,90,0,0,29.6,0.197,46,0 +538,0,57,60,0,0,21.7,0.735,67,0 +539,0,127,80,37,210,36.3,0.804,23,0 +540,3,129,92,49,155,36.4,0.968,32,1 +541,8,100,74,40,215,39.4,0.661,43,1 +542,3,128,72,25,190,32.4,0.549,27,1 +543,10,90,85,32,0,34.9,0.825,56,1 +544,4,84,90,23,56,39.5,0.159,25,0 +545,1,88,78,29,76,32,0.365,29,0 +546,8,186,90,35,225,34.5,0.423,37,1 +547,5,187,76,27,207,43.6,1.034,53,1 +548,4,131,68,21,166,33.1,0.16,28,0 +549,1,164,82,43,67,32.8,0.341,50,0 +550,4,189,110,31,0,28.5,0.68,37,0 +551,1,116,70,28,0,27.4,0.204,21,0 +552,3,84,68,30,106,31.9,0.591,25,0 +553,6,114,88,0,0,27.8,0.247,66,0 +554,1,88,62,24,44,29.9,0.422,23,0 +555,1,84,64,23,115,36.9,0.471,28,0 +556,7,124,70,33,215,25.5,0.161,37,0 +557,1,97,70,40,0,38.1,0.218,30,0 +558,8,110,76,0,0,27.8,0.237,58,0 +559,11,103,68,40,0,46.2,0.126,42,0 +560,11,85,74,0,0,30.1,0.3,35,0 +561,6,125,76,0,0,33.8,0.121,54,1 +562,0,198,66,32,274,41.3,0.502,28,1 +563,1,87,68,34,77,37.6,0.401,24,0 +564,6,99,60,19,54,26.9,0.497,32,0 +565,0,91,80,0,0,32.4,0.601,27,0 +566,2,95,54,14,88,26.1,0.748,22,0 +567,1,99,72,30,18,38.6,0.412,21,0 +568,6,92,62,32,126,32,0.085,46,0 +569,4,154,72,29,126,31.3,0.338,37,0 +570,0,121,66,30,165,34.3,0.203,33,1 +571,3,78,70,0,0,32.5,0.27,39,0 +572,2,130,96,0,0,22.6,0.268,21,0 +573,3,111,58,31,44,29.5,0.43,22,0 +574,2,98,60,17,120,34.7,0.198,22,0 +575,1,143,86,30,330,30.1,0.892,23,0 +576,1,119,44,47,63,35.5,0.28,25,0 +577,6,108,44,20,130,24,0.813,35,0 +578,2,118,80,0,0,42.9,0.693,21,1 +579,10,133,68,0,0,27,0.245,36,0 +580,2,197,70,99,0,34.7,0.575,62,1 +581,0,151,90,46,0,42.1,0.371,21,1 +582,6,109,60,27,0,25,0.206,27,0 +583,12,121,78,17,0,26.5,0.259,62,0 +584,8,100,76,0,0,38.7,0.19,42,0 +585,8,124,76,24,600,28.7,0.687,52,1 +586,1,93,56,11,0,22.5,0.417,22,0 +587,8,143,66,0,0,34.9,0.129,41,1 +588,6,103,66,0,0,24.3,0.249,29,0 +589,3,176,86,27,156,33.3,1.154,52,1 +590,0,73,0,0,0,21.1,0.342,25,0 +591,11,111,84,40,0,46.8,0.925,45,1 +592,2,112,78,50,140,39.4,0.175,24,0 +593,3,132,80,0,0,34.4,0.402,44,1 +594,2,82,52,22,115,28.5,1.699,25,0 +595,6,123,72,45,230,33.6,0.733,34,0 +596,0,188,82,14,185,32,0.682,22,1 +597,0,67,76,0,0,45.3,0.194,46,0 +598,1,89,24,19,25,27.8,0.559,21,0 +599,1,173,74,0,0,36.8,0.088,38,1 +600,1,109,38,18,120,23.1,0.407,26,0 +601,1,108,88,19,0,27.1,0.4,24,0 +602,6,96,0,0,0,23.7,0.19,28,0 +603,1,124,74,36,0,27.8,0.1,30,0 +604,7,150,78,29,126,35.2,0.692,54,1 +605,4,183,0,0,0,28.4,0.212,36,1 +606,1,124,60,32,0,35.8,0.514,21,0 +607,1,181,78,42,293,40,1.258,22,1 +608,1,92,62,25,41,19.5,0.482,25,0 +609,0,152,82,39,272,41.5,0.27,27,0 +610,1,111,62,13,182,24,0.138,23,0 +611,3,106,54,21,158,30.9,0.292,24,0 +612,3,174,58,22,194,32.9,0.593,36,1 +613,7,168,88,42,321,38.2,0.787,40,1 +614,6,105,80,28,0,32.5,0.878,26,0 +615,11,138,74,26,144,36.1,0.557,50,1 +616,3,106,72,0,0,25.8,0.207,27,0 +617,6,117,96,0,0,28.7,0.157,30,0 +618,2,68,62,13,15,20.1,0.257,23,0 +619,9,112,82,24,0,28.2,1.282,50,1 +620,0,119,0,0,0,32.4,0.141,24,1 +621,2,112,86,42,160,38.4,0.246,28,0 +622,2,92,76,20,0,24.2,1.698,28,0 +623,6,183,94,0,0,40.8,1.461,45,0 +624,0,94,70,27,115,43.5,0.347,21,0 +625,2,108,64,0,0,30.8,0.158,21,0 +626,4,90,88,47,54,37.7,0.362,29,0 +627,0,125,68,0,0,24.7,0.206,21,0 +628,0,132,78,0,0,32.4,0.393,21,0 +629,5,128,80,0,0,34.6,0.144,45,0 +630,4,94,65,22,0,24.7,0.148,21,0 +631,7,114,64,0,0,27.4,0.732,34,1 +632,0,102,78,40,90,34.5,0.238,24,0 +633,2,111,60,0,0,26.2,0.343,23,0 +634,1,128,82,17,183,27.5,0.115,22,0 +635,10,92,62,0,0,25.9,0.167,31,0 +636,13,104,72,0,0,31.2,0.465,38,1 +637,5,104,74,0,0,28.8,0.153,48,0 +638,2,94,76,18,66,31.6,0.649,23,0 +639,7,97,76,32,91,40.9,0.871,32,1 +640,1,100,74,12,46,19.5,0.149,28,0 +641,0,102,86,17,105,29.3,0.695,27,0 +642,4,128,70,0,0,34.3,0.303,24,0 +643,6,147,80,0,0,29.5,0.178,50,1 +644,4,90,0,0,0,28,0.61,31,0 +645,3,103,72,30,152,27.6,0.73,27,0 +646,2,157,74,35,440,39.4,0.134,30,0 +647,1,167,74,17,144,23.4,0.447,33,1 +648,0,179,50,36,159,37.8,0.455,22,1 +649,11,136,84,35,130,28.3,0.26,42,1 +650,0,107,60,25,0,26.4,0.133,23,0 +651,1,91,54,25,100,25.2,0.234,23,0 +652,1,117,60,23,106,33.8,0.466,27,0 +653,5,123,74,40,77,34.1,0.269,28,0 +654,2,120,54,0,0,26.8,0.455,27,0 +655,1,106,70,28,135,34.2,0.142,22,0 +656,2,155,52,27,540,38.7,0.24,25,1 +657,2,101,58,35,90,21.8,0.155,22,0 +658,1,120,80,48,200,38.9,1.162,41,0 +659,11,127,106,0,0,39,0.19,51,0 +660,3,80,82,31,70,34.2,1.292,27,1 +661,10,162,84,0,0,27.7,0.182,54,0 +662,1,199,76,43,0,42.9,1.394,22,1 +663,8,167,106,46,231,37.6,0.165,43,1 +664,9,145,80,46,130,37.9,0.637,40,1 +665,6,115,60,39,0,33.7,0.245,40,1 +666,1,112,80,45,132,34.8,0.217,24,0 +667,4,145,82,18,0,32.5,0.235,70,1 +668,10,111,70,27,0,27.5,0.141,40,1 +669,6,98,58,33,190,34,0.43,43,0 +670,9,154,78,30,100,30.9,0.164,45,0 +671,6,165,68,26,168,33.6,0.631,49,0 +672,1,99,58,10,0,25.4,0.551,21,0 +673,10,68,106,23,49,35.5,0.285,47,0 +674,3,123,100,35,240,57.3,0.88,22,0 +675,8,91,82,0,0,35.6,0.587,68,0 +676,6,195,70,0,0,30.9,0.328,31,1 +677,9,156,86,0,0,24.8,0.23,53,1 +678,0,93,60,0,0,35.3,0.263,25,0 +679,3,121,52,0,0,36,0.127,25,1 +680,2,101,58,17,265,24.2,0.614,23,0 +681,2,56,56,28,45,24.2,0.332,22,0 +682,0,162,76,36,0,49.6,0.364,26,1 +683,0,95,64,39,105,44.6,0.366,22,0 +684,4,125,80,0,0,32.3,0.536,27,1 +685,5,136,82,0,0,0,0.64,69,0 +686,2,129,74,26,205,33.2,0.591,25,0 +687,3,130,64,0,0,23.1,0.314,22,0 +688,1,107,50,19,0,28.3,0.181,29,0 +689,1,140,74,26,180,24.1,0.828,23,0 +690,1,144,82,46,180,46.1,0.335,46,1 +691,8,107,80,0,0,24.6,0.856,34,0 +692,13,158,114,0,0,42.3,0.257,44,1 +693,2,121,70,32,95,39.1,0.886,23,0 +694,7,129,68,49,125,38.5,0.439,43,1 +695,2,90,60,0,0,23.5,0.191,25,0 +696,7,142,90,24,480,30.4,0.128,43,1 +697,3,169,74,19,125,29.9,0.268,31,1 +698,0,99,0,0,0,25,0.253,22,0 +699,4,127,88,11,155,34.5,0.598,28,0 +700,4,118,70,0,0,44.5,0.904,26,0 +701,2,122,76,27,200,35.9,0.483,26,0 +702,6,125,78,31,0,27.6,0.565,49,1 +703,1,168,88,29,0,35,0.905,52,1 +704,2,129,0,0,0,38.5,0.304,41,0 +705,4,110,76,20,100,28.4,0.118,27,0 +706,6,80,80,36,0,39.8,0.177,28,0 +707,10,115,0,0,0,0,0.261,30,1 +708,2,127,46,21,335,34.4,0.176,22,0 +709,9,164,78,0,0,32.8,0.148,45,1 +710,2,93,64,32,160,38,0.674,23,1 +711,3,158,64,13,387,31.2,0.295,24,0 +712,5,126,78,27,22,29.6,0.439,40,0 +713,10,129,62,36,0,41.2,0.441,38,1 +714,0,134,58,20,291,26.4,0.352,21,0 +715,3,102,74,0,0,29.5,0.121,32,0 +716,7,187,50,33,392,33.9,0.826,34,1 +717,3,173,78,39,185,33.8,0.97,31,1 +718,10,94,72,18,0,23.1,0.595,56,0 +719,1,108,60,46,178,35.5,0.415,24,0 +720,5,97,76,27,0,35.6,0.378,52,1 +721,4,83,86,19,0,29.3,0.317,34,0 +722,1,114,66,36,200,38.1,0.289,21,0 +723,1,149,68,29,127,29.3,0.349,42,1 +724,5,117,86,30,105,39.1,0.251,42,0 +725,1,111,94,0,0,32.8,0.265,45,0 +726,4,112,78,40,0,39.4,0.236,38,0 +727,1,116,78,29,180,36.1,0.496,25,0 +728,0,141,84,26,0,32.4,0.433,22,0 +729,2,175,88,0,0,22.9,0.326,22,0 +730,2,92,52,0,0,30.1,0.141,22,0 +731,3,130,78,23,79,28.4,0.323,34,1 +732,8,120,86,0,0,28.4,0.259,22,1 +733,2,174,88,37,120,44.5,0.646,24,1 +734,2,106,56,27,165,29,0.426,22,0 +735,2,105,75,0,0,23.3,0.56,53,0 +736,4,95,60,32,0,35.4,0.284,28,0 +737,0,126,86,27,120,27.4,0.515,21,0 +738,8,65,72,23,0,32,0.6,42,0 +739,2,99,60,17,160,36.6,0.453,21,0 +740,1,102,74,0,0,39.5,0.293,42,1 +741,11,120,80,37,150,42.3,0.785,48,1 +742,3,102,44,20,94,30.8,0.4,26,0 +743,1,109,58,18,116,28.5,0.219,22,0 +744,9,140,94,0,0,32.7,0.734,45,1 +745,13,153,88,37,140,40.6,1.174,39,0 +746,12,100,84,33,105,30,0.488,46,0 +747,1,147,94,41,0,49.3,0.358,27,1 +748,1,81,74,41,57,46.3,1.096,32,0 +749,3,187,70,22,200,36.4,0.408,36,1 +750,6,162,62,0,0,24.3,0.178,50,1 +751,4,136,70,0,0,31.2,1.182,22,1 +752,1,121,78,39,74,39,0.261,28,0 +753,3,108,62,24,0,26,0.223,25,0 +754,0,181,88,44,510,43.3,0.222,26,1 +755,8,154,78,32,0,32.4,0.443,45,1 +756,1,128,88,39,110,36.5,1.057,37,1 +757,7,137,90,41,0,32,0.391,39,0 +758,0,123,72,0,0,36.3,0.258,52,1 +759,1,106,76,0,0,37.5,0.197,26,0 +760,6,190,92,0,0,35.5,0.278,66,1 +761,2,88,58,26,16,28.4,0.766,22,0 +762,9,170,74,31,0,44,0.403,43,1 +763,9,89,62,0,0,22.5,0.142,33,0 +764,10,101,76,48,180,32.9,0.171,63,0 +765,2,122,70,27,0,36.8,0.34,27,0 +766,5,121,72,23,112,26.2,0.245,30,0 +767,1,126,60,0,0,30.1,0.349,47,1 +768,1,93,70,31,0,30.4,0.315,23,0 +769,2,138,62,35,0,33.6,0.127,47,1 +770,0,84,82,31,125,38.2,0.233,23,0 +771,0,145,0,0,0,44.2,0.63,31,1 +772,0,135,68,42,250,42.3,0.365,24,1 +773,1,139,62,41,480,40.7,0.536,21,0 +774,0,173,78,32,265,46.5,1.159,58,0 +775,4,99,72,17,0,25.6,0.294,28,0 +776,8,194,80,0,0,26.1,0.551,67,0 +777,2,83,65,28,66,36.8,0.629,24,0 +778,2,89,90,30,0,33.5,0.292,42,0 +779,4,99,68,38,0,32.8,0.145,33,0 +780,4,125,70,18,122,28.9,1.144,45,1 +781,3,80,0,0,0,0,0.174,22,0 +782,6,166,74,0,0,26.6,0.304,66,0 +783,5,110,68,0,0,26,0.292,30,0 +784,2,81,72,15,76,30.1,0.547,25,0 +785,7,195,70,33,145,25.1,0.163,55,1 +786,6,154,74,32,193,29.3,0.839,39,0 +787,2,117,90,19,71,25.2,0.313,21,0 +788,3,84,72,32,0,37.2,0.267,28,0 +789,6,0,68,41,0,39,0.727,41,1 +790,7,94,64,25,79,33.3,0.738,41,0 +791,3,96,78,39,0,37.3,0.238,40,0 +792,10,75,82,0,0,33.3,0.263,38,0 +793,0,180,90,26,90,36.5,0.314,35,1 +794,1,130,60,23,170,28.6,0.692,21,0 +795,2,84,50,23,76,30.4,0.968,21,0 +796,8,120,78,0,0,25,0.409,64,0 +797,12,84,72,31,0,29.7,0.297,46,1 +798,0,139,62,17,210,22.1,0.207,21,0 +799,9,91,68,0,0,24.2,0.2,58,0 +800,2,91,62,0,0,27.3,0.525,22,0 +801,3,99,54,19,86,25.6,0.154,24,0 +802,3,163,70,18,105,31.6,0.268,28,1 +803,10,122,78,31,0,27.6,0.512,45,0 +804,4,103,60,33,192,24,0.966,33,0 +805,11,138,76,0,0,33.2,0.42,35,0 +806,9,102,76,37,0,32.9,0.665,46,1 +807,2,90,68,42,0,38.2,0.503,27,1 +808,4,111,72,47,207,37.1,1.39,56,1 +809,3,180,64,25,70,34,0.271,26,0 +810,7,133,84,0,0,40.2,0.696,37,0 +811,7,106,92,18,0,22.7,0.235,48,0 +812,9,171,110,24,240,45.4,0.721,54,1 +813,7,159,64,0,0,27.4,0.294,40,0 +814,0,180,66,39,0,42,1.893,25,1 +815,1,146,56,0,0,29.7,0.564,29,0 +816,2,71,70,27,0,28,0.586,22,0 +817,7,103,66,32,0,39.1,0.344,31,1 +818,7,105,0,0,0,0,0.305,24,0 +819,1,103,80,11,82,19.4,0.491,22,0 +820,1,101,50,15,36,24.2,0.526,26,0 +821,5,88,66,21,23,24.4,0.342,30,0 +822,8,176,90,34,300,33.7,0.467,58,1 +823,7,150,66,42,342,34.7,0.718,42,0 +824,1,73,50,10,0,23,0.248,21,0 +825,7,187,68,39,304,37.7,0.254,41,1 +826,0,100,88,60,110,46.8,0.962,31,0 +827,0,146,82,0,0,40.5,1.781,44,0 +828,0,105,64,41,142,41.5,0.173,22,0 +829,2,84,0,0,0,0,0.304,21,0 +830,8,133,72,0,0,32.9,0.27,39,1 +831,5,44,62,0,0,25,0.587,36,0 +832,2,141,58,34,128,25.4,0.699,24,0 +833,7,114,66,0,0,32.8,0.258,42,1 +834,5,99,74,27,0,29,0.203,32,0 +835,0,109,88,30,0,32.5,0.855,38,1 +836,2,109,92,0,0,42.7,0.845,54,0 +837,1,95,66,13,38,19.6,0.334,25,0 +838,4,146,85,27,100,28.9,0.189,27,0 +839,2,100,66,20,90,32.9,0.867,28,1 +840,5,139,64,35,140,28.6,0.411,26,0 +841,13,126,90,0,0,43.4,0.583,42,1 +842,4,129,86,20,270,35.1,0.231,23,0 +843,1,79,75,30,0,32,0.396,22,0 +844,1,0,48,20,0,24.7,0.14,22,0 +845,7,62,78,0,0,32.6,0.391,41,0 +846,5,95,72,33,0,37.7,0.37,27,0 +847,0,131,0,0,0,43.2,0.27,26,1 +848,2,112,66,22,0,25,0.307,24,0 +849,3,113,44,13,0,22.4,0.14,22,0 +850,2,74,0,0,0,0,0.102,22,0 +851,7,83,78,26,71,29.3,0.767,36,0 +852,0,101,65,28,0,24.6,0.237,22,0 +853,5,137,108,0,0,48.8,0.227,37,1 +854,2,110,74,29,125,32.4,0.698,27,0 +855,13,106,72,54,0,36.6,0.178,45,0 +856,2,100,68,25,71,38.5,0.324,26,0 +857,15,136,70,32,110,37.1,0.153,43,1 +858,1,107,68,19,0,26.5,0.165,24,0 +859,1,80,55,0,0,19.1,0.258,21,0 +860,4,123,80,15,176,32,0.443,34,0 +861,7,81,78,40,48,46.7,0.261,42,0 +862,4,134,72,0,0,23.8,0.277,60,1 +863,2,142,82,18,64,24.7,0.761,21,0 +864,6,144,72,27,228,33.9,0.255,40,0 +865,2,92,62,28,0,31.6,0.13,24,0 +866,1,71,48,18,76,20.4,0.323,22,0 +867,6,93,50,30,64,28.7,0.356,23,0 +868,1,122,90,51,220,49.7,0.325,31,1 +869,1,163,72,0,0,39,1.222,33,1 +870,1,151,60,0,0,26.1,0.179,22,0 +871,0,125,96,0,0,22.5,0.262,21,0 +872,1,81,72,18,40,26.6,0.283,24,0 +873,2,85,65,0,0,39.6,0.93,27,0 +874,1,126,56,29,152,28.7,0.801,21,0 +875,1,96,122,0,0,22.4,0.207,27,0 +876,4,144,58,28,140,29.5,0.287,37,0 +877,3,83,58,31,18,34.3,0.336,25,0 +878,0,95,85,25,36,37.4,0.247,24,1 +879,3,171,72,33,135,33.3,0.199,24,1 +880,8,155,62,26,495,34,0.543,46,1 +881,1,89,76,34,37,31.2,0.192,23,0 +882,4,76,62,0,0,34,0.391,25,0 +883,7,160,54,32,175,30.5,0.588,39,1 +884,4,146,92,0,0,31.2,0.539,61,1 +885,5,124,74,0,0,34,0.22,38,1 +886,5,78,48,0,0,33.7,0.654,25,0 +887,4,97,60,23,0,28.2,0.443,22,0 +888,4,99,76,15,51,23.2,0.223,21,0 +889,0,162,76,56,100,53.2,0.759,25,1 +890,6,111,64,39,0,34.2,0.26,24,0 +891,2,107,74,30,100,33.6,0.404,23,0 +892,5,132,80,0,0,26.8,0.186,69,0 +893,0,113,76,0,0,33.3,0.278,23,1 +894,1,88,30,42,99,55,0.496,26,1 +895,3,120,70,30,135,42.9,0.452,30,0 +896,1,118,58,36,94,33.3,0.261,23,0 +897,1,117,88,24,145,34.5,0.403,40,1 +898,0,105,84,0,0,27.9,0.741,62,1 +899,4,173,70,14,168,29.7,0.361,33,1 +900,9,122,56,0,0,33.3,1.114,33,1 +901,3,170,64,37,225,34.5,0.356,30,1 +902,8,84,74,31,0,38.3,0.457,39,0 +903,2,96,68,13,49,21.1,0.647,26,0 +904,2,125,60,20,140,33.8,0.088,31,0 +905,0,100,70,26,50,30.8,0.597,21,0 +906,0,93,60,25,92,28.7,0.532,22,0 +907,0,129,80,0,0,31.2,0.703,29,0 +908,5,105,72,29,325,36.9,0.159,28,0 +909,3,128,78,0,0,21.1,0.268,55,0 +910,5,106,82,30,0,39.5,0.286,38,0 +911,2,108,52,26,63,32.5,0.318,22,0 +912,10,108,66,0,0,32.4,0.272,42,1 +913,4,154,62,31,284,32.8,0.237,23,0 +914,0,102,75,23,0,0,0.572,21,0 +915,9,57,80,37,0,32.8,0.096,41,0 +916,2,106,64,35,119,30.5,1.4,34,0 +917,5,147,78,0,0,33.7,0.218,65,0 +918,2,90,70,17,0,27.3,0.085,22,0 +919,1,136,74,50,204,37.4,0.399,24,0 +920,4,114,65,0,0,21.9,0.432,37,0 +921,9,156,86,28,155,34.3,1.189,42,1 +922,1,153,82,42,485,40.6,0.687,23,0 +923,8,188,78,0,0,47.9,0.137,43,1 +924,7,152,88,44,0,50,0.337,36,1 +925,2,99,52,15,94,24.6,0.637,21,0 +926,1,109,56,21,135,25.2,0.833,23,0 +927,2,88,74,19,53,29,0.229,22,0 +928,17,163,72,41,114,40.9,0.817,47,1 +929,4,151,90,38,0,29.7,0.294,36,0 +930,7,102,74,40,105,37.2,0.204,45,0 +931,0,114,80,34,285,44.2,0.167,27,0 +932,2,100,64,23,0,29.7,0.368,21,0 +933,0,131,88,0,0,31.6,0.743,32,1 +934,6,104,74,18,156,29.9,0.722,41,1 +935,3,148,66,25,0,32.5,0.256,22,0 +936,4,120,68,0,0,29.6,0.709,34,0 +937,4,110,66,0,0,31.9,0.471,29,0 +938,3,111,90,12,78,28.4,0.495,29,0 +939,6,102,82,0,0,30.8,0.18,36,1 +940,6,134,70,23,130,35.4,0.542,29,1 +941,2,87,0,23,0,28.9,0.773,25,0 +942,1,79,60,42,48,43.5,0.678,23,0 +943,2,75,64,24,55,29.7,0.37,33,0 +944,8,179,72,42,130,32.7,0.719,36,1 +945,6,85,78,0,0,31.2,0.382,42,0 +946,0,129,110,46,130,67.1,0.319,26,1 +947,5,143,78,0,0,45,0.19,47,0 +948,5,130,82,0,0,39.1,0.956,37,1 +949,6,87,80,0,0,23.2,0.084,32,0 +950,0,119,64,18,92,34.9,0.725,23,0 +951,1,0,74,20,23,27.7,0.299,21,0 +952,5,73,60,0,0,26.8,0.268,27,0 +953,4,141,74,0,0,27.6,0.244,40,0 +954,7,194,68,28,0,35.9,0.745,41,1 +955,8,181,68,36,495,30.1,0.615,60,1 +956,1,128,98,41,58,32,1.321,33,1 +957,8,109,76,39,114,27.9,0.64,31,1 +958,5,139,80,35,160,31.6,0.361,25,1 +959,3,111,62,0,0,22.6,0.142,21,0 +960,9,123,70,44,94,33.1,0.374,40,0 +961,7,159,66,0,0,30.4,0.383,36,1 +962,11,135,0,0,0,52.3,0.578,40,1 +963,8,85,55,20,0,24.4,0.136,42,0 +964,5,158,84,41,210,39.4,0.395,29,1 +965,1,105,58,0,0,24.3,0.187,21,0 +966,3,107,62,13,48,22.9,0.678,23,1 +967,4,109,64,44,99,34.8,0.905,26,1 +968,4,148,60,27,318,30.9,0.15,29,1 +969,0,113,80,16,0,31,0.874,21,0 +970,1,138,82,0,0,40.1,0.236,28,0 +971,0,108,68,20,0,27.3,0.787,32,0 +972,2,99,70,16,44,20.4,0.235,27,0 +973,6,103,72,32,190,37.7,0.324,55,0 +974,5,111,72,28,0,23.9,0.407,27,0 +975,8,196,76,29,280,37.5,0.605,57,1 +976,5,162,104,0,0,37.7,0.151,52,1 +977,1,96,64,27,87,33.2,0.289,21,0 +978,7,184,84,33,0,35.5,0.355,41,1 +979,2,81,60,22,0,27.7,0.29,25,0 +980,0,147,85,54,0,42.8,0.375,24,0 +981,7,179,95,31,0,34.2,0.164,60,0 +982,0,140,65,26,130,42.6,0.431,24,1 +983,9,112,82,32,175,34.2,0.26,36,1 +984,12,151,70,40,271,41.8,0.742,38,1 +985,5,109,62,41,129,35.8,0.514,25,1 +986,6,125,68,30,120,30,0.464,32,0 +987,5,85,74,22,0,29,1.224,32,1 +988,5,112,66,0,0,37.8,0.261,41,1 +989,0,177,60,29,478,34.6,1.072,21,1 +990,2,158,90,0,0,31.6,0.805,66,1 +991,7,119,0,0,0,25.2,0.209,37,0 +992,7,142,60,33,190,28.8,0.687,61,0 +993,1,100,66,15,56,23.6,0.666,26,0 +994,1,87,78,27,32,34.6,0.101,22,0 +995,0,101,76,0,0,35.7,0.198,26,0 +996,3,162,52,38,0,37.2,0.652,24,1 +997,4,197,70,39,744,36.7,2.329,31,0 +998,0,117,80,31,53,45.2,0.089,24,0 +999,4,142,86,0,0,44,0.645,22,1 +1000,6,134,80,37,370,46.2,0.238,46,1 +1001,1,79,80,25,37,25.4,0.583,22,0 +1002,4,122,68,0,0,35,0.394,29,0 +1003,3,74,68,28,45,29.7,0.293,23,0 +1004,4,171,72,0,0,43.6,0.479,26,1 +1005,7,181,84,21,192,35.9,0.586,51,1 +1006,0,179,90,27,0,44.1,0.686,23,1 +1007,9,164,84,21,0,30.8,0.831,32,1 +1008,0,104,76,0,0,18.4,0.582,27,0 +1009,1,91,64,24,0,29.2,0.192,21,0 +1010,4,91,70,32,88,33.1,0.446,22,0 +1011,3,139,54,0,0,25.6,0.402,22,1 +1012,6,119,50,22,176,27.1,1.318,33,1 +1013,2,146,76,35,194,38.2,0.329,29,0 +1014,9,184,85,15,0,30,1.213,49,1 +1015,10,122,68,0,0,31.2,0.258,41,0 +1016,0,165,90,33,680,52.3,0.427,23,0 +1017,9,124,70,33,402,35.4,0.282,34,0 +1018,1,111,86,19,0,30.1,0.143,23,0 +1019,9,106,52,0,0,31.2,0.38,42,0 +1020,2,129,84,0,0,28,0.284,27,0 +1021,2,90,80,14,55,24.4,0.249,24,0 +1022,0,86,68,32,0,35.8,0.238,25,0 +1023,12,92,62,7,258,27.6,0.926,44,1 +1024,1,113,64,35,0,33.6,0.543,21,1 +1025,3,111,56,39,0,30.1,0.557,30,0 +1026,2,114,68,22,0,28.7,0.092,25,0 +1027,1,193,50,16,375,25.9,0.655,24,0 +1028,11,155,76,28,150,33.3,1.353,51,1 +1029,3,191,68,15,130,30.9,0.299,34,0 +1030,3,141,0,0,0,30,0.761,27,1 +1031,4,95,70,32,0,32.1,0.612,24,0 +1032,3,142,80,15,0,32.4,0.2,63,0 +1033,4,123,62,0,0,32,0.226,35,1 +1034,5,96,74,18,67,33.6,0.997,43,0 +1035,0,138,0,0,0,36.3,0.933,25,1 +1036,2,128,64,42,0,40,1.101,24,0 +1037,0,102,52,0,0,25.1,0.078,21,0 +1038,2,146,0,0,0,27.5,0.24,28,1 +1039,10,101,86,37,0,45.6,1.136,38,1 +1040,2,108,62,32,56,25.2,0.128,21,0 +1041,3,122,78,0,0,23,0.254,40,0 +1042,1,71,78,50,45,33.2,0.422,21,0 +1043,13,106,70,0,0,34.2,0.251,52,0 +1044,2,100,70,52,57,40.5,0.677,25,0 +1045,7,106,60,24,0,26.5,0.296,29,1 +1046,0,104,64,23,116,27.8,0.454,23,0 +1047,5,114,74,0,0,24.9,0.744,57,0 +1048,2,108,62,10,278,25.3,0.881,22,0 +1049,0,146,70,0,0,37.9,0.334,28,1 +1050,10,129,76,28,122,35.9,0.28,39,0 +1051,7,133,88,15,155,32.4,0.262,37,0 +1052,7,161,86,0,0,30.4,0.165,47,1 +1053,2,108,80,0,0,27,0.259,52,1 +1054,7,136,74,26,135,26,0.647,51,0 +1055,5,155,84,44,545,38.7,0.619,34,0 +1056,1,119,86,39,220,45.6,0.808,29,1 +1057,4,96,56,17,49,20.8,0.34,26,0 +1058,5,108,72,43,75,36.1,0.263,33,0 +1059,0,78,88,29,40,36.9,0.434,21,0 +1060,0,107,62,30,74,36.6,0.757,25,1 +1061,2,128,78,37,182,43.3,1.224,31,1 +1062,1,128,48,45,194,40.5,0.613,24,1 +1063,0,161,50,0,0,21.9,0.254,65,0 +1064,6,151,62,31,120,35.5,0.692,28,0 +1065,2,146,70,38,360,28,0.337,29,1 +1066,0,126,84,29,215,30.7,0.52,24,0 +1067,14,100,78,25,184,36.6,0.412,46,1 +1068,8,112,72,0,0,23.6,0.84,58,0 +1069,0,167,0,0,0,32.3,0.839,30,1 +1070,2,144,58,33,135,31.6,0.422,25,1 +1071,5,77,82,41,42,35.8,0.156,35,0 +1072,5,115,98,0,0,52.9,0.209,28,1 +1073,3,150,76,0,0,21,0.207,37,0 +1074,2,120,76,37,105,39.7,0.215,29,0 +1075,10,161,68,23,132,25.5,0.326,47,1 +1076,0,137,68,14,148,24.8,0.143,21,0 +1077,0,128,68,19,180,30.5,1.391,25,1 +1078,2,124,68,28,205,32.9,0.875,30,1 +1079,6,80,66,30,0,26.2,0.313,41,0 +1080,0,106,70,37,148,39.4,0.605,22,0 +1081,2,155,74,17,96,26.6,0.433,27,1 +1082,3,113,50,10,85,29.5,0.626,25,0 +1083,7,109,80,31,0,35.9,1.127,43,1 +1084,2,112,68,22,94,34.1,0.315,26,0 +1085,3,99,80,11,64,19.3,0.284,30,0 +1086,3,182,74,0,0,30.5,0.345,29,1 +1087,3,115,66,39,140,38.1,0.15,28,0 +1088,6,194,78,0,0,23.5,0.129,59,1 +1089,4,129,60,12,231,27.5,0.527,31,0 +1090,3,112,74,30,0,31.6,0.197,25,1 +1091,0,124,70,20,0,27.4,0.254,36,1 +1092,13,152,90,33,29,26.8,0.731,43,1 +1093,2,112,75,32,0,35.7,0.148,21,0 +1094,1,157,72,21,168,25.6,0.123,24,0 +1095,1,122,64,32,156,35.1,0.692,30,1 +1096,10,179,70,0,0,35.1,0.2,37,0 +1097,2,102,86,36,120,45.5,0.127,23,1 +1098,6,105,70,32,68,30.8,0.122,37,0 +1099,8,118,72,19,0,23.1,1.476,46,0 +1100,2,87,58,16,52,32.7,0.166,25,0 +1101,1,180,0,0,0,43.3,0.282,41,1 +1102,12,106,80,0,0,23.6,0.137,44,0 +1103,1,95,60,18,58,23.9,0.26,22,0 +1104,0,165,76,43,255,47.9,0.259,26,0 +1105,0,117,0,0,0,33.8,0.932,44,0 +1106,5,115,76,0,0,31.2,0.343,44,1 +1107,9,152,78,34,171,34.2,0.893,33,1 +1108,7,178,84,0,0,39.9,0.331,41,1 +1109,1,130,70,13,105,25.9,0.472,22,0 +1110,1,95,74,21,73,25.9,0.673,36,0 +1111,1,0,68,35,0,32,0.389,22,0 +1112,5,122,86,0,0,34.7,0.29,33,0 +1113,8,95,72,0,0,36.8,0.485,57,0 +1114,8,126,88,36,108,38.5,0.349,49,0 +1115,1,139,46,19,83,28.7,0.654,22,0 +1116,3,116,0,0,0,23.5,0.187,23,0 +1117,3,99,62,19,74,21.8,0.279,26,0 +1118,5,0,80,32,0,41,0.346,37,1 +1119,4,92,80,0,0,42.2,0.237,29,0 +1120,4,137,84,0,0,31.2,0.252,30,0 +1121,3,61,82,28,0,34.4,0.243,46,0 +1122,1,90,62,12,43,27.2,0.58,24,0 +1123,3,90,78,0,0,42.7,0.559,21,0 +1124,9,165,88,0,0,30.4,0.302,49,1 +1125,1,125,50,40,167,33.3,0.962,28,1 +1126,13,129,0,30,0,39.9,0.569,44,1 +1127,12,88,74,40,54,35.3,0.378,48,0 +1128,1,196,76,36,249,36.5,0.875,29,1 +1129,5,189,64,33,325,31.2,0.583,29,1 +1130,5,158,70,0,0,29.8,0.207,63,0 +1131,5,103,108,37,0,39.2,0.305,65,0 +1132,4,146,78,0,0,38.5,0.52,67,1 +1133,4,147,74,25,293,34.9,0.385,30,0 +1134,5,99,54,28,83,34,0.499,30,0 +1135,6,124,72,0,0,27.6,0.368,29,1 +1136,0,101,64,17,0,21,0.252,21,0 +1137,3,81,86,16,66,27.5,0.306,22,0 +1138,1,133,102,28,140,32.8,0.234,45,1 +1139,3,173,82,48,465,38.4,2.137,25,1 +1140,0,118,64,23,89,0,1.731,21,0 +1141,0,84,64,22,66,35.8,0.545,21,0 +1142,2,105,58,40,94,34.9,0.225,25,0 +1143,2,122,52,43,158,36.2,0.816,28,0 +1144,12,140,82,43,325,39.2,0.528,58,1 +1145,0,98,82,15,84,25.2,0.299,22,0 +1146,1,87,60,37,75,37.2,0.509,22,0 +1147,4,156,75,0,0,48.3,0.238,32,1 +1148,0,93,100,39,72,43.4,1.021,35,0 +1149,1,107,72,30,82,30.8,0.821,24,0 +1150,0,105,68,22,0,20,0.236,22,0 +1151,1,109,60,8,182,25.4,0.947,21,0 +1152,1,90,62,18,59,25.1,1.268,25,0 +1153,1,125,70,24,110,24.3,0.221,25,0 +1154,1,119,54,13,50,22.3,0.205,24,0 +1155,5,116,74,29,0,32.3,0.66,35,1 +1156,8,105,100,36,0,43.3,0.239,45,1 +1157,5,144,82,26,285,32,0.452,58,1 +1158,3,100,68,23,81,31.6,0.949,28,0 +1159,1,100,66,29,196,32,0.444,42,0 +1160,5,166,76,0,0,45.7,0.34,27,1 +1161,1,131,64,14,415,23.7,0.389,21,0 +1162,4,116,72,12,87,22.1,0.463,37,0 +1163,4,158,78,0,0,32.9,0.803,31,1 +1164,2,127,58,24,275,27.7,1.6,25,0 +1165,3,96,56,34,115,24.7,0.944,39,0 +1166,0,131,66,40,0,34.3,0.196,22,1 +1167,3,82,70,0,0,21.1,0.389,25,0 +1168,3,193,70,31,0,34.9,0.241,25,1 +1169,4,95,64,0,0,32,0.161,31,1 +1170,6,137,61,0,0,24.2,0.151,55,0 +1171,5,136,84,41,88,35,0.286,35,1 +1172,9,72,78,25,0,31.6,0.28,38,0 +1173,5,168,64,0,0,32.9,0.135,41,1 +1174,2,123,48,32,165,42.1,0.52,26,0 +1175,4,115,72,0,0,28.9,0.376,46,1 +1176,0,101,62,0,0,21.9,0.336,25,0 +1177,8,197,74,0,0,25.9,1.191,39,1 +1178,1,172,68,49,579,42.4,0.702,28,1 +1179,6,102,90,39,0,35.7,0.674,28,0 +1180,1,112,72,30,176,34.4,0.528,25,0 +1181,1,143,84,23,310,42.4,1.076,22,0 +1182,1,143,74,22,61,26.2,0.256,21,0 +1183,0,138,60,35,167,34.6,0.534,21,1 +1184,3,173,84,33,474,35.7,0.258,22,1 +1185,1,97,68,21,0,27.2,1.095,22,0 +1186,4,144,82,32,0,38.5,0.554,37,1 +1187,1,83,68,0,0,18.2,0.624,27,0 +1188,3,129,64,29,115,26.4,0.219,28,1 +1189,1,119,88,41,170,45.3,0.507,26,0 +1190,2,94,68,18,76,26,0.561,21,0 +1191,0,102,64,46,78,40.6,0.496,21,0 +1192,2,115,64,22,0,30.8,0.421,21,0 +1193,8,151,78,32,210,42.9,0.516,36,1 +1194,4,184,78,39,277,37,0.264,31,1 +1195,0,94,0,0,0,0,0.256,25,0 +1196,1,181,64,30,180,34.1,0.328,38,1 +1197,0,135,94,46,145,40.6,0.284,26,0 +1198,1,95,82,25,180,35,0.233,43,1 +1199,2,99,0,0,0,22.2,0.108,23,0 +1200,3,89,74,16,85,30.4,0.551,38,0 +1201,1,80,74,11,60,30,0.527,22,0 +1202,2,139,75,0,0,25.6,0.167,29,0 +1203,1,90,68,8,0,24.5,1.138,36,0 +1204,0,141,0,0,0,42.4,0.205,29,1 +1205,12,140,85,33,0,37.4,0.244,41,0 +1206,5,147,75,0,0,29.9,0.434,28,0 +1207,1,97,70,15,0,18.2,0.147,21,0 +1208,6,107,88,0,0,36.8,0.727,31,0 +1209,0,189,104,25,0,34.3,0.435,41,1 +1210,2,83,66,23,50,32.2,0.497,22,0 +1211,4,117,64,27,120,33.2,0.23,24,0 +1212,8,108,70,0,0,30.5,0.955,33,1 +1213,4,117,62,12,0,29.7,0.38,30,1 +1214,0,180,78,63,14,59.4,2.42,25,1 +1215,1,100,72,12,70,25.3,0.658,28,0 +1216,0,95,80,45,92,36.5,0.33,26,0 +1217,0,104,64,37,64,33.6,0.51,22,1 +1218,0,120,74,18,63,30.5,0.285,26,0 +1219,1,82,64,13,95,21.2,0.415,23,0 +1220,2,134,70,0,0,28.9,0.542,23,1 +1221,0,91,68,32,210,39.9,0.381,25,0 +1222,2,119,0,0,0,19.6,0.832,72,0 +1223,2,100,54,28,105,37.8,0.498,24,0 +1224,14,175,62,30,0,33.6,0.212,38,1 +1225,1,135,54,0,0,26.7,0.687,62,0 +1226,5,86,68,28,71,30.2,0.364,24,0 +1227,10,148,84,48,237,37.6,1.001,51,1 +1228,9,134,74,33,60,25.9,0.46,81,0 +1229,9,120,72,22,56,20.8,0.733,48,0 +1230,1,71,62,0,0,21.8,0.416,26,0 +1231,8,74,70,40,49,35.3,0.705,39,0 +1232,5,88,78,30,0,27.6,0.258,37,0 +1233,10,115,98,0,0,24,1.022,34,0 +1234,0,124,56,13,105,21.8,0.452,21,0 +1235,0,74,52,10,36,27.8,0.269,22,0 +1236,0,97,64,36,100,36.8,0.6,25,0 +1237,8,120,0,0,0,30,0.183,38,1 +1238,6,154,78,41,140,46.1,0.571,27,0 +1239,1,144,82,40,0,41.3,0.607,28,0 +1240,0,137,70,38,0,33.2,0.17,22,0 +1241,0,119,66,27,0,38.8,0.259,22,0 +1242,7,136,90,0,0,29.9,0.21,50,0 +1243,4,114,64,0,0,28.9,0.126,24,0 +1244,0,137,84,27,0,27.3,0.231,59,0 +1245,2,105,80,45,191,33.7,0.711,29,1 +1246,7,114,76,17,110,23.8,0.466,31,0 +1247,8,126,74,38,75,25.9,0.162,39,0 +1248,4,132,86,31,0,28,0.419,63,0 +1249,3,158,70,30,328,35.5,0.344,35,1 +1250,0,123,88,37,0,35.2,0.197,29,0 +1251,4,85,58,22,49,27.8,0.306,28,0 +1252,0,84,82,31,125,38.2,0.233,23,0 +1253,0,145,0,0,0,44.2,0.63,31,1 +1254,0,135,68,42,250,42.3,0.365,24,1 +1255,1,139,62,41,480,40.7,0.536,21,0 +1256,0,173,78,32,265,46.5,1.159,58,0 +1257,4,99,72,17,0,25.6,0.294,28,0 +1258,8,194,80,0,0,26.1,0.551,67,0 +1259,2,83,65,28,66,36.8,0.629,24,0 +1260,2,89,90,30,0,33.5,0.292,42,0 +1261,4,99,68,38,0,32.8,0.145,33,0 +1262,4,125,70,18,122,28.9,1.144,45,1 +1263,3,80,0,0,0,0,0.174,22,0 +1264,6,166,74,0,0,26.6,0.304,66,0 +1265,5,110,68,0,0,26,0.292,30,0 +1266,2,81,72,15,76,30.1,0.547,25,0 +1267,7,195,70,33,145,25.1,0.163,55,1 +1268,6,154,74,32,193,29.3,0.839,39,0 +1269,2,117,90,19,71,25.2,0.313,21,0 +1270,3,84,72,32,0,37.2,0.267,28,0 +1271,6,0,68,41,0,39,0.727,41,1 +1272,7,94,64,25,79,33.3,0.738,41,0 +1273,3,96,78,39,0,37.3,0.238,40,0 +1274,10,75,82,0,0,33.3,0.263,38,0 +1275,0,180,90,26,90,36.5,0.314,35,1 +1276,1,130,60,23,170,28.6,0.692,21,0 +1277,2,84,50,23,76,30.4,0.968,21,0 +1278,8,120,78,0,0,25,0.409,64,0 +1279,12,84,72,31,0,29.7,0.297,46,1 +1280,0,139,62,17,210,22.1,0.207,21,0 +1281,9,91,68,0,0,24.2,0.2,58,0 +1282,2,91,62,0,0,27.3,0.525,22,0 +1283,3,99,54,19,86,25.6,0.154,24,0 +1284,3,163,70,18,105,31.6,0.268,28,1 +1285,9,145,88,34,165,30.3,0.771,53,1 +1286,7,125,86,0,0,37.6,0.304,51,0 +1287,13,76,60,0,0,32.8,0.18,41,0 +1288,6,129,90,7,326,19.6,0.582,60,0 +1289,2,68,70,32,66,25,0.187,25,0 +1290,3,124,80,33,130,33.2,0.305,26,0 +1291,6,114,0,0,0,0,0.189,26,0 +1292,9,130,70,0,0,34.2,0.652,45,1 +1293,3,125,58,0,0,31.6,0.151,24,0 +1294,3,87,60,18,0,21.8,0.444,21,0 +1295,1,97,64,19,82,18.2,0.299,21,0 +1296,3,116,74,15,105,26.3,0.107,24,0 +1297,0,117,66,31,188,30.8,0.493,22,0 +1298,0,111,65,0,0,24.6,0.66,31,0 +1299,2,122,60,18,106,29.8,0.717,22,0 +1300,0,107,76,0,0,45.3,0.686,24,0 +1301,1,86,66,52,65,41.3,0.917,29,0 +1302,6,91,0,0,0,29.8,0.501,31,0 +1303,1,77,56,30,56,33.3,1.251,24,0 +1304,4,132,0,0,0,32.9,0.302,23,1 +1305,0,105,90,0,0,29.6,0.197,46,0 +1306,0,57,60,0,0,21.7,0.735,67,0 +1307,0,127,80,37,210,36.3,0.804,23,0 +1308,3,129,92,49,155,36.4,0.968,32,1 +1309,8,100,74,40,215,39.4,0.661,43,1 +1310,3,128,72,25,190,32.4,0.549,27,1 +1311,10,90,85,32,0,34.9,0.825,56,1 +1312,4,84,90,23,56,39.5,0.159,25,0 +1313,1,88,78,29,76,32,0.365,29,0 +1314,8,186,90,35,225,34.5,0.423,37,1 +1315,5,187,76,27,207,43.6,1.034,53,1 +1316,4,131,68,21,166,33.1,0.16,28,0 +1317,1,164,82,43,67,32.8,0.341,50,0 +1318,4,189,110,31,0,28.5,0.68,37,0 +1319,1,116,70,28,0,27.4,0.204,21,0 +1320,3,84,68,30,106,31.9,0.591,25,0 +1321,6,114,88,0,0,27.8,0.247,66,0 +1322,1,88,62,24,44,29.9,0.422,23,0 +1323,1,84,64,23,115,36.9,0.471,28,0 +1324,7,124,70,33,215,25.5,0.161,37,0 +1325,1,97,70,40,0,38.1,0.218,30,0 +1326,8,110,76,0,0,27.8,0.237,58,0 +1327,11,103,68,40,0,46.2,0.126,42,0 +1328,11,85,74,0,0,30.1,0.3,35,0 +1329,6,125,76,0,0,33.8,0.121,54,1 +1330,0,198,66,32,274,41.3,0.502,28,1 +1331,1,87,68,34,77,37.6,0.401,24,0 +1332,6,99,60,19,54,26.9,0.497,32,0 +1333,0,91,80,0,0,32.4,0.601,27,0 +1334,2,95,54,14,88,26.1,0.748,22,0 +1335,1,99,72,30,18,38.6,0.412,21,0 +1336,6,92,62,32,126,32,0.085,46,0 +1337,4,154,72,29,126,31.3,0.338,37,0 +1338,0,121,66,30,165,34.3,0.203,33,1 +1339,3,78,70,0,0,32.5,0.27,39,0 +1340,2,130,96,0,0,22.6,0.268,21,0 +1341,3,111,58,31,44,29.5,0.43,22,0 +1342,2,98,60,17,120,34.7,0.198,22,0 +1343,1,143,86,30,330,30.1,0.892,23,0 +1344,1,119,44,47,63,35.5,0.28,25,0 +1345,6,108,44,20,130,24,0.813,35,0 +1346,2,118,80,0,0,42.9,0.693,21,1 +1347,10,133,68,0,0,27,0.245,36,0 +1348,2,197,70,99,0,34.7,0.575,62,1 +1349,0,151,90,46,0,42.1,0.371,21,1 +1350,6,109,60,27,0,25,0.206,27,0 +1351,12,121,78,17,0,26.5,0.259,62,0 +1352,8,100,76,0,0,38.7,0.19,42,0 +1353,8,124,76,24,600,28.7,0.687,52,1 +1354,1,93,56,11,0,22.5,0.417,22,0 +1355,8,143,66,0,0,34.9,0.129,41,1 +1356,6,103,66,0,0,24.3,0.249,29,0 +1357,3,176,86,27,156,33.3,1.154,52,1 +1358,0,73,0,0,0,21.1,0.342,25,0 +1359,11,111,84,40,0,46.8,0.925,45,1 +1360,2,112,78,50,140,39.4,0.175,24,0 +1361,3,132,80,0,0,34.4,0.402,44,1 +1362,2,82,52,22,115,28.5,1.699,25,0 +1363,6,123,72,45,230,33.6,0.733,34,0 +1364,0,188,82,14,185,32,0.682,22,1 +1365,0,67,76,0,0,45.3,0.194,46,0 +1366,1,89,24,19,25,27.8,0.559,21,0 +1367,1,173,74,0,0,36.8,0.088,38,1 +1368,1,109,38,18,120,23.1,0.407,26,0 +1369,1,108,88,19,0,27.1,0.4,24,0 +1370,6,96,0,0,0,23.7,0.19,28,0 +1371,1,124,74,36,0,27.8,0.1,30,0 +1372,7,150,78,29,126,35.2,0.692,54,1 +1373,4,183,0,0,0,28.4,0.212,36,1 +1374,1,124,60,32,0,35.8,0.514,21,0 +1375,1,181,78,42,293,40,1.258,22,1 +1376,1,92,62,25,41,19.5,0.482,25,0 +1377,0,152,82,39,272,41.5,0.27,27,0 +1378,1,111,62,13,182,24,0.138,23,0 +1379,3,106,54,21,158,30.9,0.292,24,0 +1380,3,174,58,22,194,32.9,0.593,36,1 +1381,7,168,88,42,321,38.2,0.787,40,1 +1382,6,105,80,28,0,32.5,0.878,26,0 +1383,11,138,74,26,144,36.1,0.557,50,1 +1384,3,106,72,0,0,25.8,0.207,27,0 +1385,6,117,96,0,0,28.7,0.157,30,0 +1386,2,68,62,13,15,20.1,0.257,23,0 +1387,9,112,82,24,0,28.2,1.282,50,1 +1388,0,119,0,0,0,32.4,0.141,24,1 +1389,2,112,86,42,160,38.4,0.246,28,0 +1390,2,92,76,20,0,24.2,1.698,28,0 +1391,6,183,94,0,0,40.8,1.461,45,0 +1392,0,94,70,27,115,43.5,0.347,21,0 +1393,2,108,64,0,0,30.8,0.158,21,0 +1394,4,90,88,47,54,37.7,0.362,29,0 +1395,0,125,68,0,0,24.7,0.206,21,0 +1396,0,132,78,0,0,32.4,0.393,21,0 +1397,5,128,80,0,0,34.6,0.144,45,0 +1398,4,94,65,22,0,24.7,0.148,21,0 +1399,7,114,64,0,0,27.4,0.732,34,1 +1400,0,102,78,40,90,34.5,0.238,24,0 +1401,2,111,60,0,0,26.2,0.343,23,0 +1402,1,128,82,17,183,27.5,0.115,22,0 +1403,10,92,62,0,0,25.9,0.167,31,0 +1404,13,104,72,0,0,31.2,0.465,38,1 +1405,5,104,74,0,0,28.8,0.153,48,0 +1406,2,94,76,18,66,31.6,0.649,23,0 +1407,7,97,76,32,91,40.9,0.871,32,1 +1408,1,100,74,12,46,19.5,0.149,28,0 +1409,0,102,86,17,105,29.3,0.695,27,0 +1410,4,128,70,0,0,34.3,0.303,24,0 +1411,6,147,80,0,0,29.5,0.178,50,1 +1412,4,90,0,0,0,28,0.61,31,0 +1413,3,103,72,30,152,27.6,0.73,27,0 +1414,2,157,74,35,440,39.4,0.134,30,0 +1415,1,167,74,17,144,23.4,0.447,33,1 +1416,0,179,50,36,159,37.8,0.455,22,1 +1417,11,136,84,35,130,28.3,0.26,42,1 +1418,0,107,60,25,0,26.4,0.133,23,0 +1419,1,91,54,25,100,25.2,0.234,23,0 +1420,1,117,60,23,106,33.8,0.466,27,0 +1421,5,123,74,40,77,34.1,0.269,28,0 +1422,2,120,54,0,0,26.8,0.455,27,0 +1423,1,106,70,28,135,34.2,0.142,22,0 +1424,2,155,52,27,540,38.7,0.24,25,1 +1425,2,101,58,35,90,21.8,0.155,22,0 +1426,1,120,80,48,200,38.9,1.162,41,0 +1427,11,127,106,0,0,39,0.19,51,0 +1428,3,80,82,31,70,34.2,1.292,27,1 +1429,10,162,84,0,0,27.7,0.182,54,0 +1430,1,199,76,43,0,42.9,1.394,22,1 +1431,8,167,106,46,231,37.6,0.165,43,1 +1432,9,145,80,46,130,37.9,0.637,40,1 +1433,6,115,60,39,0,33.7,0.245,40,1 +1434,1,112,80,45,132,34.8,0.217,24,0 +1435,4,145,82,18,0,32.5,0.235,70,1 +1436,10,111,70,27,0,27.5,0.141,40,1 +1437,6,98,58,33,190,34,0.43,43,0 +1438,9,154,78,30,100,30.9,0.164,45,0 +1439,6,165,68,26,168,33.6,0.631,49,0 +1440,1,99,58,10,0,25.4,0.551,21,0 +1441,10,68,106,23,49,35.5,0.285,47,0 +1442,3,123,100,35,240,57.3,0.88,22,0 +1443,8,91,82,0,0,35.6,0.587,68,0 +1444,6,195,70,0,0,30.9,0.328,31,1 +1445,9,156,86,0,0,24.8,0.23,53,1 +1446,0,93,60,0,0,35.3,0.263,25,0 +1447,3,121,52,0,0,36,0.127,25,1 +1448,2,101,58,17,265,24.2,0.614,23,0 +1449,2,56,56,28,45,24.2,0.332,22,0 +1450,0,162,76,36,0,49.6,0.364,26,1 +1451,0,95,64,39,105,44.6,0.366,22,0 +1452,4,125,80,0,0,32.3,0.536,27,1 +1453,5,136,82,0,0,0,0.64,69,0 +1454,2,129,74,26,205,33.2,0.591,25,0 +1455,3,130,64,0,0,23.1,0.314,22,0 +1456,1,107,50,19,0,28.3,0.181,29,0 +1457,1,140,74,26,180,24.1,0.828,23,0 +1458,1,144,82,46,180,46.1,0.335,46,1 +1459,8,107,80,0,0,24.6,0.856,34,0 +1460,13,158,114,0,0,42.3,0.257,44,1 +1461,2,121,70,32,95,39.1,0.886,23,0 +1462,7,129,68,49,125,38.5,0.439,43,1 +1463,2,90,60,0,0,23.5,0.191,25,0 +1464,7,142,90,24,480,30.4,0.128,43,1 +1465,3,169,74,19,125,29.9,0.268,31,1 +1466,0,99,0,0,0,25,0.253,22,0 +1467,4,127,88,11,155,34.5,0.598,28,0 +1468,4,118,70,0,0,44.5,0.904,26,0 +1469,2,122,76,27,200,35.9,0.483,26,0 +1470,6,125,78,31,0,27.6,0.565,49,1 +1471,1,168,88,29,0,35,0.905,52,1 +1472,2,129,0,0,0,38.5,0.304,41,0 +1473,4,110,76,20,100,28.4,0.118,27,0 +1474,6,80,80,36,0,39.8,0.177,28,0 +1475,10,115,0,0,0,0,0.261,30,1 +1476,2,127,46,21,335,34.4,0.176,22,0 +1477,9,164,78,0,0,32.8,0.148,45,1 +1478,2,93,64,32,160,38,0.674,23,1 +1479,3,158,64,13,387,31.2,0.295,24,0 +1480,5,126,78,27,22,29.6,0.439,40,0 +1481,10,129,62,36,0,41.2,0.441,38,1 +1482,0,134,58,20,291,26.4,0.352,21,0 +1483,3,102,74,0,0,29.5,0.121,32,0 +1484,7,187,50,33,392,33.9,0.826,34,1 +1485,3,173,78,39,185,33.8,0.97,31,1 +1486,10,94,72,18,0,23.1,0.595,56,0 +1487,1,108,60,46,178,35.5,0.415,24,0 +1488,5,97,76,27,0,35.6,0.378,52,1 +1489,4,83,86,19,0,29.3,0.317,34,0 +1490,1,114,66,36,200,38.1,0.289,21,0 +1491,1,149,68,29,127,29.3,0.349,42,1 +1492,5,117,86,30,105,39.1,0.251,42,0 +1493,1,111,94,0,0,32.8,0.265,45,0 +1494,4,112,78,40,0,39.4,0.236,38,0 +1495,1,116,78,29,180,36.1,0.496,25,0 +1496,0,141,84,26,0,32.4,0.433,22,0 +1497,2,175,88,0,0,22.9,0.326,22,0 +1498,2,92,52,0,0,30.1,0.141,22,0 +1499,3,130,78,23,79,28.4,0.323,34,1 +1500,8,120,86,0,0,28.4,0.259,22,1 +1501,2,174,88,37,120,44.5,0.646,24,1 +1502,2,106,56,27,165,29,0.426,22,0 +1503,2,105,75,0,0,23.3,0.56,53,0 +1504,4,95,60,32,0,35.4,0.284,28,0 +1505,0,126,86,27,120,27.4,0.515,21,0 +1506,8,65,72,23,0,32,0.6,42,0 +1507,2,99,60,17,160,36.6,0.453,21,0 +1508,1,102,74,0,0,39.5,0.293,42,1 +1509,11,120,80,37,150,42.3,0.785,48,1 +1510,3,102,44,20,94,30.8,0.4,26,0 +1511,1,109,58,18,116,28.5,0.219,22,0 +1512,9,140,94,0,0,32.7,0.734,45,1 +1513,13,153,88,37,140,40.6,1.174,39,0 +1514,12,100,84,33,105,30,0.488,46,0 +1515,1,147,94,41,0,49.3,0.358,27,1 +1516,1,81,74,41,57,46.3,1.096,32,0 +1517,3,187,70,22,200,36.4,0.408,36,1 +1518,6,162,62,0,0,24.3,0.178,50,1 +1519,4,136,70,0,0,31.2,1.182,22,1 +1520,1,121,78,39,74,39,0.261,28,0 +1521,3,108,62,24,0,26,0.223,25,0 +1522,0,181,88,44,510,43.3,0.222,26,1 +1523,8,154,78,32,0,32.4,0.443,45,1 +1524,1,128,88,39,110,36.5,1.057,37,1 +1525,7,137,90,41,0,32,0.391,39,0 +1526,0,123,72,0,0,36.3,0.258,52,1 +1527,1,106,76,0,0,37.5,0.197,26,0 +1528,6,190,92,0,0,35.5,0.278,66,1 +1529,2,88,58,26,16,28.4,0.766,22,0 +1530,9,170,74,31,0,44,0.403,43,1 +1531,9,89,62,0,0,22.5,0.142,33,0 +1532,10,101,76,48,180,32.9,0.171,63,0 +1533,2,122,70,27,0,36.8,0.34,27,0 +1534,5,121,72,23,112,26.2,0.245,30,0 +1535,1,126,60,0,0,30.1,0.349,47,1 +1536,1,93,70,31,0,30.4,0.315,23,0 +1537,14,100,78,25,184,36.6,0.412,46,1 +1538,8,112,72,0,0,23.6,0.84,58,0 +1539,0,167,0,0,0,32.3,0.839,30,1 +1540,2,144,58,33,135,31.6,0.422,25,1 +1541,5,77,82,41,42,35.8,0.156,35,0 +1542,5,115,98,0,0,52.9,0.209,28,1 +1543,3,150,76,0,0,21,0.207,37,0 +1544,2,120,76,37,105,39.7,0.215,29,0 +1545,10,161,68,23,132,25.5,0.326,47,1 +1546,0,137,68,14,148,24.8,0.143,21,0 +1547,0,128,68,19,180,30.5,1.391,25,1 +1548,2,124,68,28,205,32.9,0.875,30,1 +1549,6,80,66,30,0,26.2,0.313,41,0 +1550,0,106,70,37,148,39.4,0.605,22,0 +1551,2,155,74,17,96,26.6,0.433,27,1 +1552,3,113,50,10,85,29.5,0.626,25,0 +1553,7,109,80,31,0,35.9,1.127,43,1 +1554,2,112,68,22,94,34.1,0.315,26,0 +1555,3,99,80,11,64,19.3,0.284,30,0 +1556,3,182,74,0,0,30.5,0.345,29,1 +1557,3,115,66,39,140,38.1,0.15,28,0 +1558,6,194,78,0,0,23.5,0.129,59,1 +1559,4,129,60,12,231,27.5,0.527,31,0 +1560,3,112,74,30,0,31.6,0.197,25,1 +1561,0,124,70,20,0,27.4,0.254,36,1 +1562,13,152,90,33,29,26.8,0.731,43,1 +1563,2,112,75,32,0,35.7,0.148,21,0 +1564,1,157,72,21,168,25.6,0.123,24,0 +1565,1,122,64,32,156,35.1,0.692,30,1 +1566,10,179,70,0,0,35.1,0.2,37,0 +1567,2,102,86,36,120,45.5,0.127,23,1 +1568,6,105,70,32,68,30.8,0.122,37,0 +1569,8,118,72,19,0,23.1,1.476,46,0 +1570,2,87,58,16,52,32.7,0.166,25,0 +1571,1,180,0,0,0,43.3,0.282,41,1 +1572,12,106,80,0,0,23.6,0.137,44,0 +1573,1,95,60,18,58,23.9,0.26,22,0 +1574,0,165,76,43,255,47.9,0.259,26,0 +1575,0,117,0,0,0,33.8,0.932,44,0 +1576,5,115,76,0,0,31.2,0.343,44,1 +1577,9,152,78,34,171,34.2,0.893,33,1 +1578,7,178,84,0,0,39.9,0.331,41,1 +1579,1,130,70,13,105,25.9,0.472,22,0 +1580,1,95,74,21,73,25.9,0.673,36,0 +1581,1,0,68,35,0,32,0.389,22,0 +1582,5,122,86,0,0,34.7,0.29,33,0 +1583,8,95,72,0,0,36.8,0.485,57,0 +1584,8,126,88,36,108,38.5,0.349,49,0 +1585,1,139,46,19,83,28.7,0.654,22,0 +1586,3,116,0,0,0,23.5,0.187,23,0 +1587,3,99,62,19,74,21.8,0.279,26,0 +1588,5,0,80,32,0,41,0.346,37,1 +1589,4,92,80,0,0,42.2,0.237,29,0 +1590,4,137,84,0,0,31.2,0.252,30,0 +1591,3,61,82,28,0,34.4,0.243,46,0 +1592,1,90,62,12,43,27.2,0.58,24,0 +1593,3,90,78,0,0,42.7,0.559,21,0 +1594,9,165,88,0,0,30.4,0.302,49,1 +1595,1,125,50,40,167,33.3,0.962,28,1 +1596,13,129,0,30,0,39.9,0.569,44,1 +1597,12,88,74,40,54,35.3,0.378,48,0 +1598,1,196,76,36,249,36.5,0.875,29,1 +1599,5,189,64,33,325,31.2,0.583,29,1 +1600,5,158,70,0,0,29.8,0.207,63,0 +1601,5,103,108,37,0,39.2,0.305,65,0 +1602,4,146,78,0,0,38.5,0.52,67,1 +1603,4,147,74,25,293,34.9,0.385,30,0 +1604,5,99,54,28,83,34,0.499,30,0 +1605,6,124,72,0,0,27.6,0.368,29,1 +1606,0,101,64,17,0,21,0.252,21,0 +1607,3,81,86,16,66,27.5,0.306,22,0 +1608,1,133,102,28,140,32.8,0.234,45,1 +1609,3,173,82,48,465,38.4,2.137,25,1 +1610,0,118,64,23,89,0,1.731,21,0 +1611,0,84,64,22,66,35.8,0.545,21,0 +1612,2,105,58,40,94,34.9,0.225,25,0 +1613,2,122,52,43,158,36.2,0.816,28,0 +1614,12,140,82,43,325,39.2,0.528,58,1 +1615,0,98,82,15,84,25.2,0.299,22,0 +1616,1,87,60,37,75,37.2,0.509,22,0 +1617,4,156,75,0,0,48.3,0.238,32,1 +1618,0,93,100,39,72,43.4,1.021,35,0 +1619,1,107,72,30,82,30.8,0.821,24,0 +1620,0,105,68,22,0,20,0.236,22,0 +1621,1,109,60,8,182,25.4,0.947,21,0 +1622,1,90,62,18,59,25.1,1.268,25,0 +1623,1,125,70,24,110,24.3,0.221,25,0 +1624,1,119,54,13,50,22.3,0.205,24,0 +1625,5,116,74,29,0,32.3,0.66,35,1 +1626,8,105,100,36,0,43.3,0.239,45,1 +1627,5,144,82,26,285,32,0.452,58,1 +1628,3,100,68,23,81,31.6,0.949,28,0 +1629,1,100,66,29,196,32,0.444,42,0 +1630,5,166,76,0,0,45.7,0.34,27,1 +1631,1,131,64,14,415,23.7,0.389,21,0 +1632,4,116,72,12,87,22.1,0.463,37,0 +1633,4,158,78,0,0,32.9,0.803,31,1 +1634,2,127,58,24,275,27.7,1.6,25,0 +1635,3,96,56,34,115,24.7,0.944,39,0 +1636,0,131,66,40,0,34.3,0.196,22,1 +1637,3,82,70,0,0,21.1,0.389,25,0 +1638,3,193,70,31,0,34.9,0.241,25,1 +1639,4,95,64,0,0,32,0.161,31,1 +1640,6,137,61,0,0,24.2,0.151,55,0 +1641,5,136,84,41,88,35,0.286,35,1 +1642,9,72,78,25,0,31.6,0.28,38,0 +1643,5,168,64,0,0,32.9,0.135,41,1 +1644,2,123,48,32,165,42.1,0.52,26,0 +1645,4,115,72,0,0,28.9,0.376,46,1 +1646,0,101,62,0,0,21.9,0.336,25,0 +1647,8,197,74,0,0,25.9,1.191,39,1 +1648,1,172,68,49,579,42.4,0.702,28,1 +1649,6,102,90,39,0,35.7,0.674,28,0 +1650,1,112,72,30,176,34.4,0.528,25,0 +1651,1,143,84,23,310,42.4,1.076,22,0 +1652,1,143,74,22,61,26.2,0.256,21,0 +1653,0,138,60,35,167,34.6,0.534,21,1 +1654,3,173,84,33,474,35.7,0.258,22,1 +1655,1,97,68,21,0,27.2,1.095,22,0 +1656,4,144,82,32,0,38.5,0.554,37,1 +1657,1,83,68,0,0,18.2,0.624,27,0 +1658,3,129,64,29,115,26.4,0.219,28,1 +1659,1,119,88,41,170,45.3,0.507,26,0 +1660,2,94,68,18,76,26,0.561,21,0 +1661,0,102,64,46,78,40.6,0.496,21,0 +1662,2,115,64,22,0,30.8,0.421,21,0 +1663,8,151,78,32,210,42.9,0.516,36,1 +1664,4,184,78,39,277,37,0.264,31,1 +1665,0,94,0,0,0,0,0.256,25,0 +1666,1,181,64,30,180,34.1,0.328,38,1 +1667,0,135,94,46,145,40.6,0.284,26,0 +1668,1,95,82,25,180,35,0.233,43,1 +1669,2,99,0,0,0,22.2,0.108,23,0 +1670,3,89,74,16,85,30.4,0.551,38,0 +1671,1,80,74,11,60,30,0.527,22,0 +1672,2,139,75,0,0,25.6,0.167,29,0 +1673,1,90,68,8,0,24.5,1.138,36,0 +1674,0,141,0,0,0,42.4,0.205,29,1 +1675,12,140,85,33,0,37.4,0.244,41,0 +1676,5,147,75,0,0,29.9,0.434,28,0 +1677,1,97,70,15,0,18.2,0.147,21,0 +1678,6,107,88,0,0,36.8,0.727,31,0 +1679,0,189,104,25,0,34.3,0.435,41,1 +1680,2,83,66,23,50,32.2,0.497,22,0 +1681,4,117,64,27,120,33.2,0.23,24,0 +1682,8,108,70,0,0,30.5,0.955,33,1 +1683,4,117,62,12,0,29.7,0.38,30,1 +1684,0,180,78,63,14,59.4,2.42,25,1 +1685,1,100,72,12,70,25.3,0.658,28,0 +1686,0,95,80,45,92,36.5,0.33,26,0 +1687,0,104,64,37,64,33.6,0.51,22,1 +1688,0,120,74,18,63,30.5,0.285,26,0 +1689,1,82,64,13,95,21.2,0.415,23,0 +1690,2,134,70,0,0,28.9,0.542,23,1 +1691,0,91,68,32,210,39.9,0.381,25,0 +1692,2,119,0,0,0,19.6,0.832,72,0 +1693,2,100,54,28,105,37.8,0.498,24,0 +1694,14,175,62,30,0,33.6,0.212,38,1 +1695,1,135,54,0,0,26.7,0.687,62,0 +1696,5,86,68,28,71,30.2,0.364,24,0 +1697,10,148,84,48,237,37.6,1.001,51,1 +1698,9,134,74,33,60,25.9,0.46,81,0 +1699,9,120,72,22,56,20.8,0.733,48,0 +1700,1,71,62,0,0,21.8,0.416,26,0 +1701,8,74,70,40,49,35.3,0.705,39,0 +1702,5,88,78,30,0,27.6,0.258,37,0 +1703,10,115,98,0,0,24,1.022,34,0 +1704,0,124,56,13,105,21.8,0.452,21,0 +1705,0,74,52,10,36,27.8,0.269,22,0 +1706,0,97,64,36,100,36.8,0.6,25,0 +1707,8,120,0,0,0,30,0.183,38,1 +1708,6,154,78,41,140,46.1,0.571,27,0 +1709,1,144,82,40,0,41.3,0.607,28,0 +1710,0,137,70,38,0,33.2,0.17,22,0 +1711,0,119,66,27,0,38.8,0.259,22,0 +1712,7,136,90,0,0,29.9,0.21,50,0 +1713,4,114,64,0,0,28.9,0.126,24,0 +1714,0,137,84,27,0,27.3,0.231,59,0 +1715,2,105,80,45,191,33.7,0.711,29,1 +1716,7,114,76,17,110,23.8,0.466,31,0 +1717,8,126,74,38,75,25.9,0.162,39,0 +1718,4,132,86,31,0,28,0.419,63,0 +1719,3,158,70,30,328,35.5,0.344,35,1 +1720,0,123,88,37,0,35.2,0.197,29,0 +1721,4,85,58,22,49,27.8,0.306,28,0 +1722,0,84,82,31,125,38.2,0.233,23,0 +1723,0,145,0,0,0,44.2,0.63,31,1 +1724,0,135,68,42,250,42.3,0.365,24,1 +1725,1,139,62,41,480,40.7,0.536,21,0 +1726,0,173,78,32,265,46.5,1.159,58,0 +1727,4,99,72,17,0,25.6,0.294,28,0 +1728,8,194,80,0,0,26.1,0.551,67,0 +1729,2,83,65,28,66,36.8,0.629,24,0 +1730,2,89,90,30,0,33.5,0.292,42,0 +1731,4,99,68,38,0,32.8,0.145,33,0 +1732,4,125,70,18,122,28.9,1.144,45,1 +1733,3,80,0,0,0,0,0.174,22,0 +1734,6,166,74,0,0,26.6,0.304,66,0 +1735,5,110,68,0,0,26,0.292,30,0 +1736,2,81,72,15,76,30.1,0.547,25,0 +1737,7,195,70,33,145,25.1,0.163,55,1 +1738,6,154,74,32,193,29.3,0.839,39,0 +1739,2,117,90,19,71,25.2,0.313,21,0 +1740,3,84,72,32,0,37.2,0.267,28,0 +1741,6,0,68,41,0,39,0.727,41,1 +1742,7,94,64,25,79,33.3,0.738,41,0 +1743,3,96,78,39,0,37.3,0.238,40,0 +1744,10,75,82,0,0,33.3,0.263,38,0 +1745,0,180,90,26,90,36.5,0.314,35,1 +1746,1,130,60,23,170,28.6,0.692,21,0 +1747,2,84,50,23,76,30.4,0.968,21,0 +1748,8,120,78,0,0,25,0.409,64,0 +1749,12,84,72,31,0,29.7,0.297,46,1 +1750,0,139,62,17,210,22.1,0.207,21,0 +1751,9,91,68,0,0,24.2,0.2,58,0 +1752,2,91,62,0,0,27.3,0.525,22,0 +1753,3,99,54,19,86,25.6,0.154,24,0 +1754,3,163,70,18,105,31.6,0.268,28,1 +1755,9,145,88,34,165,30.3,0.771,53,1 +1756,2,122,60,18,106,29.8,0.717,22,0 +1757,0,107,76,0,0,45.3,0.686,24,0 +1758,1,86,66,52,65,41.3,0.917,29,0 +1759,6,91,0,0,0,29.8,0.501,31,0 +1760,1,77,56,30,56,33.3,1.251,24,0 +1761,4,132,0,0,0,32.9,0.302,23,1 +1762,0,105,90,0,0,29.6,0.197,46,0 +1763,0,57,60,0,0,21.7,0.735,67,0 +1764,0,127,80,37,210,36.3,0.804,23,0 +1765,3,129,92,49,155,36.4,0.968,32,1 +1766,8,100,74,40,215,39.4,0.661,43,1 +1767,3,128,72,25,190,32.4,0.549,27,1 +1768,10,90,85,32,0,34.9,0.825,56,1 +1769,4,84,90,23,56,39.5,0.159,25,0 +1770,1,88,78,29,76,32,0.365,29,0 +1771,8,186,90,35,225,34.5,0.423,37,1 +1772,5,187,76,27,207,43.6,1.034,53,1 +1773,4,131,68,21,166,33.1,0.16,28,0 +1774,1,164,82,43,67,32.8,0.341,50,0 +1775,4,189,110,31,0,28.5,0.68,37,0 +1776,1,116,70,28,0,27.4,0.204,21,0 +1777,3,84,68,30,106,31.9,0.591,25,0 +1778,6,114,88,0,0,27.8,0.247,66,0 +1779,1,88,62,24,44,29.9,0.422,23,0 +1780,1,84,64,23,115,36.9,0.471,28,0 +1781,7,124,70,33,215,25.5,0.161,37,0 +1782,1,97,70,40,0,38.1,0.218,30,0 +1783,8,110,76,0,0,27.8,0.237,58,0 +1784,11,103,68,40,0,46.2,0.126,42,0 +1785,11,85,74,0,0,30.1,0.3,35,0 +1786,6,125,76,0,0,33.8,0.121,54,1 +1787,0,198,66,32,274,41.3,0.502,28,1 +1788,1,87,68,34,77,37.6,0.401,24,0 +1789,6,99,60,19,54,26.9,0.497,32,0 +1790,0,91,80,0,0,32.4,0.601,27,0 +1791,2,95,54,14,88,26.1,0.748,22,0 +1792,1,99,72,30,18,38.6,0.412,21,0 +1793,6,92,62,32,126,32,0.085,46,0 +1794,4,154,72,29,126,31.3,0.338,37,0 +1795,0,121,66,30,165,34.3,0.203,33,1 +1796,3,78,70,0,0,32.5,0.27,39,0 +1797,2,130,96,0,0,22.6,0.268,21,0 +1798,3,111,58,31,44,29.5,0.43,22,0 +1799,2,98,60,17,120,34.7,0.198,22,0 +1800,1,143,86,30,330,30.1,0.892,23,0 +1801,1,119,44,47,63,35.5,0.28,25,0 +1802,6,108,44,20,130,24,0.813,35,0 +1803,2,118,80,0,0,42.9,0.693,21,1 +1804,10,133,68,0,0,27,0.245,36,0 +1805,2,197,70,99,0,34.7,0.575,62,1 +1806,0,151,90,46,0,42.1,0.371,21,1 +1807,6,109,60,27,0,25,0.206,27,0 +1808,12,121,78,17,0,26.5,0.259,62,0 +1809,8,100,76,0,0,38.7,0.19,42,0 +1810,8,124,76,24,600,28.7,0.687,52,1 +1811,1,93,56,11,0,22.5,0.417,22,0 +1812,8,143,66,0,0,34.9,0.129,41,1 +1813,6,103,66,0,0,24.3,0.249,29,0 +1814,3,176,86,27,156,33.3,1.154,52,1 +1815,0,73,0,0,0,21.1,0.342,25,0 +1816,11,111,84,40,0,46.8,0.925,45,1 +1817,2,112,78,50,140,39.4,0.175,24,0 +1818,3,132,80,0,0,34.4,0.402,44,1 +1819,2,82,52,22,115,28.5,1.699,25,0 +1820,6,123,72,45,230,33.6,0.733,34,0 +1821,0,188,82,14,185,32,0.682,22,1 +1822,0,67,76,0,0,45.3,0.194,46,0 +1823,1,89,24,19,25,27.8,0.559,21,0 +1824,1,173,74,0,0,36.8,0.088,38,1 +1825,1,109,38,18,120,23.1,0.407,26,0 +1826,1,108,88,19,0,27.1,0.4,24,0 +1827,6,96,0,0,0,23.7,0.19,28,0 +1828,1,124,74,36,0,27.8,0.1,30,0 +1829,7,150,78,29,126,35.2,0.692,54,1 +1830,4,183,0,0,0,28.4,0.212,36,1 +1831,1,124,60,32,0,35.8,0.514,21,0 +1832,1,181,78,42,293,40,1.258,22,1 +1833,1,92,62,25,41,19.5,0.482,25,0 +1834,0,152,82,39,272,41.5,0.27,27,0 +1835,1,111,62,13,182,24,0.138,23,0 +1836,3,106,54,21,158,30.9,0.292,24,0 +1837,3,174,58,22,194,32.9,0.593,36,1 +1838,7,168,88,42,321,38.2,0.787,40,1 +1839,6,105,80,28,0,32.5,0.878,26,0 +1840,11,138,74,26,144,36.1,0.557,50,1 +1841,3,106,72,0,0,25.8,0.207,27,0 +1842,6,117,96,0,0,28.7,0.157,30,0 +1843,2,68,62,13,15,20.1,0.257,23,0 +1844,9,112,82,24,0,28.2,1.282,50,1 +1845,0,119,0,0,0,32.4,0.141,24,1 +1846,2,112,86,42,160,38.4,0.246,28,0 +1847,2,92,76,20,0,24.2,1.698,28,0 +1848,6,183,94,0,0,40.8,1.461,45,0 +1849,0,94,70,27,115,43.5,0.347,21,0 +1850,2,108,64,0,0,30.8,0.158,21,0 +1851,4,90,88,47,54,37.7,0.362,29,0 +1852,0,125,68,0,0,24.7,0.206,21,0 +1853,0,132,78,0,0,32.4,0.393,21,0 +1854,5,128,80,0,0,34.6,0.144,45,0 +1855,4,94,65,22,0,24.7,0.148,21,0 +1856,7,114,64,0,0,27.4,0.732,34,1 +1857,0,102,78,40,90,34.5,0.238,24,0 +1858,2,111,60,0,0,26.2,0.343,23,0 +1859,1,128,82,17,183,27.5,0.115,22,0 +1860,10,92,62,0,0,25.9,0.167,31,0 +1861,13,104,72,0,0,31.2,0.465,38,1 +1862,5,104,74,0,0,28.8,0.153,48,0 +1863,2,94,76,18,66,31.6,0.649,23,0 +1864,7,97,76,32,91,40.9,0.871,32,1 +1865,1,100,74,12,46,19.5,0.149,28,0 +1866,0,102,86,17,105,29.3,0.695,27,0 +1867,4,128,70,0,0,34.3,0.303,24,0 +1868,6,147,80,0,0,29.5,0.178,50,1 +1869,4,90,0,0,0,28,0.61,31,0 +1870,3,103,72,30,152,27.6,0.73,27,0 +1871,2,157,74,35,440,39.4,0.134,30,0 +1872,1,167,74,17,144,23.4,0.447,33,1 +1873,0,179,50,36,159,37.8,0.455,22,1 +1874,11,136,84,35,130,28.3,0.26,42,1 +1875,0,107,60,25,0,26.4,0.133,23,0 +1876,1,91,54,25,100,25.2,0.234,23,0 +1877,1,117,60,23,106,33.8,0.466,27,0 +1878,5,123,74,40,77,34.1,0.269,28,0 +1879,2,120,54,0,0,26.8,0.455,27,0 +1880,1,106,70,28,135,34.2,0.142,22,0 +1881,2,155,52,27,540,38.7,0.24,25,1 +1882,2,101,58,35,90,21.8,0.155,22,0 +1883,1,120,80,48,200,38.9,1.162,41,0 +1884,11,127,106,0,0,39,0.19,51,0 +1885,3,80,82,31,70,34.2,1.292,27,1 +1886,10,162,84,0,0,27.7,0.182,54,0 +1887,1,199,76,43,0,42.9,1.394,22,1 +1888,8,167,106,46,231,37.6,0.165,43,1 +1889,9,145,80,46,130,37.9,0.637,40,1 +1890,6,115,60,39,0,33.7,0.245,40,1 +1891,1,112,80,45,132,34.8,0.217,24,0 +1892,4,145,82,18,0,32.5,0.235,70,1 +1893,10,111,70,27,0,27.5,0.141,40,1 +1894,6,98,58,33,190,34,0.43,43,0 +1895,9,154,78,30,100,30.9,0.164,45,0 +1896,6,165,68,26,168,33.6,0.631,49,0 +1897,1,99,58,10,0,25.4,0.551,21,0 +1898,10,68,106,23,49,35.5,0.285,47,0 +1899,3,123,100,35,240,57.3,0.88,22,0 +1900,8,91,82,0,0,35.6,0.587,68,0 +1901,6,195,70,0,0,30.9,0.328,31,1 +1902,9,156,86,0,0,24.8,0.23,53,1 +1903,0,93,60,0,0,35.3,0.263,25,0 +1904,3,121,52,0,0,36,0.127,25,1 +1905,2,101,58,17,265,24.2,0.614,23,0 +1906,2,56,56,28,45,24.2,0.332,22,0 +1907,0,162,76,36,0,49.6,0.364,26,1 +1908,0,95,64,39,105,44.6,0.366,22,0 +1909,4,125,80,0,0,32.3,0.536,27,1 +1910,5,136,82,0,0,0,0.64,69,0 +1911,2,129,74,26,205,33.2,0.591,25,0 +1912,3,130,64,0,0,23.1,0.314,22,0 +1913,1,107,50,19,0,28.3,0.181,29,0 +1914,1,140,74,26,180,24.1,0.828,23,0 +1915,1,144,82,46,180,46.1,0.335,46,1 +1916,8,107,80,0,0,24.6,0.856,34,0 +1917,13,158,114,0,0,42.3,0.257,44,1 +1918,2,121,70,32,95,39.1,0.886,23,0 +1919,7,129,68,49,125,38.5,0.439,43,1 +1920,2,90,60,0,0,23.5,0.191,25,0 +1921,7,142,90,24,480,30.4,0.128,43,1 +1922,3,169,74,19,125,29.9,0.268,31,1 +1923,0,99,0,0,0,25,0.253,22,0 +1924,4,127,88,11,155,34.5,0.598,28,0 +1925,4,118,70,0,0,44.5,0.904,26,0 +1926,2,122,76,27,200,35.9,0.483,26,0 +1927,6,125,78,31,0,27.6,0.565,49,1 +1928,1,168,88,29,0,35,0.905,52,1 +1929,2,129,0,0,0,38.5,0.304,41,0 +1930,4,110,76,20,100,28.4,0.118,27,0 +1931,6,80,80,36,0,39.8,0.177,28,0 +1932,10,115,0,0,0,0,0.261,30,1 +1933,2,127,46,21,335,34.4,0.176,22,0 +1934,9,164,78,0,0,32.8,0.148,45,1 +1935,2,93,64,32,160,38,0.674,23,1 +1936,3,158,64,13,387,31.2,0.295,24,0 +1937,5,126,78,27,22,29.6,0.439,40,0 +1938,10,129,62,36,0,41.2,0.441,38,1 +1939,0,134,58,20,291,26.4,0.352,21,0 +1940,3,102,74,0,0,29.5,0.121,32,0 +1941,7,187,50,33,392,33.9,0.826,34,1 +1942,3,173,78,39,185,33.8,0.97,31,1 +1943,10,94,72,18,0,23.1,0.595,56,0 +1944,1,108,60,46,178,35.5,0.415,24,0 +1945,5,97,76,27,0,35.6,0.378,52,1 +1946,4,83,86,19,0,29.3,0.317,34,0 +1947,1,114,66,36,200,38.1,0.289,21,0 +1948,1,149,68,29,127,29.3,0.349,42,1 +1949,5,117,86,30,105,39.1,0.251,42,0 +1950,1,111,94,0,0,32.8,0.265,45,0 +1951,4,112,78,40,0,39.4,0.236,38,0 +1952,1,116,78,29,180,36.1,0.496,25,0 +1953,0,141,84,26,0,32.4,0.433,22,0 +1954,2,175,88,0,0,22.9,0.326,22,0 +1955,2,92,52,0,0,30.1,0.141,22,0 +1956,3,130,78,23,79,28.4,0.323,34,1 +1957,8,120,86,0,0,28.4,0.259,22,1 +1958,2,174,88,37,120,44.5,0.646,24,1 +1959,2,106,56,27,165,29,0.426,22,0 +1960,2,105,75,0,0,23.3,0.56,53,0 +1961,4,95,60,32,0,35.4,0.284,28,0 +1962,0,126,86,27,120,27.4,0.515,21,0 +1963,8,65,72,23,0,32,0.6,42,0 +1964,2,99,60,17,160,36.6,0.453,21,0 +1965,1,102,74,0,0,39.5,0.293,42,1 +1966,11,120,80,37,150,42.3,0.785,48,1 +1967,3,102,44,20,94,30.8,0.4,26,0 +1968,1,109,58,18,116,28.5,0.219,22,0 +1969,9,140,94,0,0,32.7,0.734,45,1 +1970,13,153,88,37,140,40.6,1.174,39,0 +1971,12,100,84,33,105,30,0.488,46,0 +1972,1,147,94,41,0,49.3,0.358,27,1 +1973,1,81,74,41,57,46.3,1.096,32,0 +1974,3,187,70,22,200,36.4,0.408,36,1 +1975,6,162,62,0,0,24.3,0.178,50,1 +1976,4,136,70,0,0,31.2,1.182,22,1 +1977,1,121,78,39,74,39,0.261,28,0 +1978,3,108,62,24,0,26,0.223,25,0 +1979,0,181,88,44,510,43.3,0.222,26,1 +1980,8,154,78,32,0,32.4,0.443,45,1 +1981,1,128,88,39,110,36.5,1.057,37,1 +1982,7,137,90,41,0,32,0.391,39,0 +1983,0,123,72,0,0,36.3,0.258,52,1 +1984,1,106,76,0,0,37.5,0.197,26,0 +1985,6,190,92,0,0,35.5,0.278,66,1 +1986,2,88,58,26,16,28.4,0.766,22,0 +1987,9,170,74,31,0,44,0.403,43,1 +1988,9,89,62,0,0,22.5,0.142,33,0 +1989,10,101,76,48,180,32.9,0.171,63,0 +1990,2,122,70,27,0,36.8,0.34,27,0 +1991,5,121,72,23,112,26.2,0.245,30,0 +1992,1,126,60,0,0,30.1,0.349,47,1 +1993,1,93,70,31,0,30.4,0.315,23,0 +1994,14,100,78,25,184,36.6,0.412,46,1 +1995,8,112,72,0,0,23.6,0.84,58,0 +1996,0,167,0,0,0,32.3,0.839,30,1 +1997,2,144,58,33,135,31.6,0.422,25,1 +1998,5,77,82,41,42,35.8,0.156,35,0 +1999,5,115,98,0,0,52.9,0.209,28,1 +2000,3,150,76,0,0,21,0.207,37,0 +2001,2,120,76,37,105,39.7,0.215,29,0 +2002,10,161,68,23,132,25.5,0.326,47,1 +2003,0,137,68,14,148,24.8,0.143,21,0 +2004,0,128,68,19,180,30.5,1.391,25,1 +2005,2,124,68,28,205,32.9,0.875,30,1 +2006,6,80,66,30,0,26.2,0.313,41,0 +2007,0,106,70,37,148,39.4,0.605,22,0 +2008,2,155,74,17,96,26.6,0.433,27,1 +2009,3,113,50,10,85,29.5,0.626,25,0 +2010,7,109,80,31,0,35.9,1.127,43,1 +2011,2,112,68,22,94,34.1,0.315,26,0 +2012,3,99,80,11,64,19.3,0.284,30,0 +2013,3,182,74,0,0,30.5,0.345,29,1 +2014,3,115,66,39,140,38.1,0.15,28,0 +2015,6,194,78,0,0,23.5,0.129,59,1 +2016,4,129,60,12,231,27.5,0.527,31,0 +2017,3,112,74,30,0,31.6,0.197,25,1 +2018,0,124,70,20,0,27.4,0.254,36,1 +2019,13,152,90,33,29,26.8,0.731,43,1 +2020,2,112,75,32,0,35.7,0.148,21,0 +2021,1,157,72,21,168,25.6,0.123,24,0 +2022,1,122,64,32,156,35.1,0.692,30,1 +2023,10,179,70,0,0,35.1,0.2,37,0 +2024,2,102,86,36,120,45.5,0.127,23,1 +2025,6,93,50,30,64,28.7,0.356,23,0 +2026,1,122,90,51,220,49.7,0.325,31,1 +2027,1,163,72,0,0,39,1.222,33,1 +2028,1,151,60,0,0,26.1,0.179,22,0 +2029,0,125,96,0,0,22.5,0.262,21,0 +2030,1,81,72,18,40,26.6,0.283,24,0 +2031,2,85,65,0,0,39.6,0.93,27,0 +2032,1,126,56,29,152,28.7,0.801,21,0 +2033,1,96,122,0,0,22.4,0.207,27,0 +2034,4,144,58,28,140,29.5,0.287,37,0 +2035,3,83,58,31,18,34.3,0.336,25,0 +2036,0,95,85,25,36,37.4,0.247,24,1 +2037,3,171,72,33,135,33.3,0.199,24,1 +2038,8,155,62,26,495,34,0.543,46,1 +2039,1,89,76,34,37,31.2,0.192,23,0 +2040,4,76,62,0,0,34,0.391,25,0 +2041,7,160,54,32,175,30.5,0.588,39,1 +2042,4,146,92,0,0,31.2,0.539,61,1 +2043,5,124,74,0,0,34,0.22,38,1 +2044,5,78,48,0,0,33.7,0.654,25,0 +2045,4,97,60,23,0,28.2,0.443,22,0 +2046,4,99,76,15,51,23.2,0.223,21,0 +2047,0,162,76,56,100,53.2,0.759,25,1 +2048,6,111,64,39,0,34.2,0.26,24,0 +2049,2,107,74,30,100,33.6,0.404,23,0 +2050,5,132,80,0,0,26.8,0.186,69,0 +2051,0,113,76,0,0,33.3,0.278,23,1 +2052,1,88,30,42,99,55,0.496,26,1 +2053,3,120,70,30,135,42.9,0.452,30,0 +2054,1,118,58,36,94,33.3,0.261,23,0 +2055,1,117,88,24,145,34.5,0.403,40,1 +2056,0,105,84,0,0,27.9,0.741,62,1 +2057,4,173,70,14,168,29.7,0.361,33,1 +2058,9,122,56,0,0,33.3,1.114,33,1 +2059,3,170,64,37,225,34.5,0.356,30,1 +2060,8,84,74,31,0,38.3,0.457,39,0 +2061,2,96,68,13,49,21.1,0.647,26,0 +2062,2,125,60,20,140,33.8,0.088,31,0 +2063,0,100,70,26,50,30.8,0.597,21,0 +2064,0,93,60,25,92,28.7,0.532,22,0 +2065,0,129,80,0,0,31.2,0.703,29,0 +2066,5,105,72,29,325,36.9,0.159,28,0 +2067,3,128,78,0,0,21.1,0.268,55,0 +2068,5,106,82,30,0,39.5,0.286,38,0 +2069,2,108,52,26,63,32.5,0.318,22,0 +2070,10,108,66,0,0,32.4,0.272,42,1 +2071,4,154,62,31,284,32.8,0.237,23,0 +2072,0,102,75,23,0,0,0.572,21,0 +2073,9,57,80,37,0,32.8,0.096,41,0 +2074,2,106,64,35,119,30.5,1.4,34,0 +2075,5,147,78,0,0,33.7,0.218,65,0 +2076,2,90,70,17,0,27.3,0.085,22,0 +2077,1,136,74,50,204,37.4,0.399,24,0 +2078,4,114,65,0,0,21.9,0.432,37,0 +2079,9,156,86,28,155,34.3,1.189,42,1 +2080,1,153,82,42,485,40.6,0.687,23,0 +2081,8,188,78,0,0,47.9,0.137,43,1 +2082,7,152,88,44,0,50,0.337,36,1 +2083,2,99,52,15,94,24.6,0.637,21,0 +2084,1,109,56,21,135,25.2,0.833,23,0 +2085,2,88,74,19,53,29,0.229,22,0 +2086,17,163,72,41,114,40.9,0.817,47,1 +2087,4,151,90,38,0,29.7,0.294,36,0 +2088,7,102,74,40,105,37.2,0.204,45,0 +2089,0,114,80,34,285,44.2,0.167,27,0 +2090,2,100,64,23,0,29.7,0.368,21,0 +2091,0,131,88,0,0,31.6,0.743,32,1 +2092,6,104,74,18,156,29.9,0.722,41,1 +2093,3,148,66,25,0,32.5,0.256,22,0 +2094,4,120,68,0,0,29.6,0.709,34,0 +2095,4,110,66,0,0,31.9,0.471,29,0 +2096,3,111,90,12,78,28.4,0.495,29,0 +2097,6,102,82,0,0,30.8,0.18,36,1 +2098,6,134,70,23,130,35.4,0.542,29,1 +2099,2,87,0,23,0,28.9,0.773,25,0 +2100,1,79,60,42,48,43.5,0.678,23,0 +2101,2,75,64,24,55,29.7,0.37,33,0 +2102,8,179,72,42,130,32.7,0.719,36,1 +2103,6,85,78,0,0,31.2,0.382,42,0 +2104,0,129,110,46,130,67.1,0.319,26,1 +2105,5,143,78,0,0,45,0.19,47,0 +2106,5,130,82,0,0,39.1,0.956,37,1 +2107,6,87,80,0,0,23.2,0.084,32,0 +2108,0,119,64,18,92,34.9,0.725,23,0 +2109,1,0,74,20,23,27.7,0.299,21,0 +2110,5,73,60,0,0,26.8,0.268,27,0 +2111,4,141,74,0,0,27.6,0.244,40,0 +2112,7,194,68,28,0,35.9,0.745,41,1 +2113,8,181,68,36,495,30.1,0.615,60,1 +2114,1,128,98,41,58,32,1.321,33,1 +2115,8,109,76,39,114,27.9,0.64,31,1 +2116,5,139,80,35,160,31.6,0.361,25,1 +2117,3,111,62,0,0,22.6,0.142,21,0 +2118,9,123,70,44,94,33.1,0.374,40,0 +2119,7,159,66,0,0,30.4,0.383,36,1 +2120,11,135,0,0,0,52.3,0.578,40,1 +2121,8,85,55,20,0,24.4,0.136,42,0 +2122,5,158,84,41,210,39.4,0.395,29,1 +2123,1,105,58,0,0,24.3,0.187,21,0 +2124,3,107,62,13,48,22.9,0.678,23,1 +2125,4,109,64,44,99,34.8,0.905,26,1 +2126,4,148,60,27,318,30.9,0.15,29,1 +2127,0,113,80,16,0,31,0.874,21,0 +2128,1,138,82,0,0,40.1,0.236,28,0 +2129,0,108,68,20,0,27.3,0.787,32,0 +2130,2,99,70,16,44,20.4,0.235,27,0 +2131,6,103,72,32,190,37.7,0.324,55,0 +2132,5,111,72,28,0,23.9,0.407,27,0 +2133,8,196,76,29,280,37.5,0.605,57,1 +2134,5,162,104,0,0,37.7,0.151,52,1 +2135,1,96,64,27,87,33.2,0.289,21,0 +2136,7,184,84,33,0,35.5,0.355,41,1 +2137,2,81,60,22,0,27.7,0.29,25,0 +2138,0,147,85,54,0,42.8,0.375,24,0 +2139,7,179,95,31,0,34.2,0.164,60,0 +2140,0,140,65,26,130,42.6,0.431,24,1 +2141,9,112,82,32,175,34.2,0.26,36,1 +2142,12,151,70,40,271,41.8,0.742,38,1 +2143,5,109,62,41,129,35.8,0.514,25,1 +2144,6,125,68,30,120,30,0.464,32,0 +2145,5,85,74,22,0,29,1.224,32,1 +2146,5,112,66,0,0,37.8,0.261,41,1 +2147,0,177,60,29,478,34.6,1.072,21,1 +2148,2,158,90,0,0,31.6,0.805,66,1 +2149,7,119,0,0,0,25.2,0.209,37,0 +2150,7,142,60,33,190,28.8,0.687,61,0 +2151,1,100,66,15,56,23.6,0.666,26,0 +2152,1,87,78,27,32,34.6,0.101,22,0 +2153,0,101,76,0,0,35.7,0.198,26,0 +2154,3,162,52,38,0,37.2,0.652,24,1 +2155,4,197,70,39,744,36.7,2.329,31,0 +2156,0,117,80,31,53,45.2,0.089,24,0 +2157,4,142,86,0,0,44,0.645,22,1 +2158,6,134,80,37,370,46.2,0.238,46,1 +2159,1,79,80,25,37,25.4,0.583,22,0 +2160,4,122,68,0,0,35,0.394,29,0 +2161,3,74,68,28,45,29.7,0.293,23,0 +2162,4,171,72,0,0,43.6,0.479,26,1 +2163,7,181,84,21,192,35.9,0.586,51,1 +2164,0,179,90,27,0,44.1,0.686,23,1 +2165,9,164,84,21,0,30.8,0.831,32,1 +2166,0,104,76,0,0,18.4,0.582,27,0 +2167,1,91,64,24,0,29.2,0.192,21,0 +2168,4,91,70,32,88,33.1,0.446,22,0 +2169,3,139,54,0,0,25.6,0.402,22,1 +2170,6,119,50,22,176,27.1,1.318,33,1 +2171,2,146,76,35,194,38.2,0.329,29,0 +2172,9,184,85,15,0,30,1.213,49,1 +2173,10,122,68,0,0,31.2,0.258,41,0 +2174,0,165,90,33,680,52.3,0.427,23,0 +2175,9,124,70,33,402,35.4,0.282,34,0 +2176,1,111,86,19,0,30.1,0.143,23,0 +2177,9,106,52,0,0,31.2,0.38,42,0 +2178,2,129,84,0,0,28,0.284,27,0 +2179,2,90,80,14,55,24.4,0.249,24,0 +2180,0,86,68,32,0,35.8,0.238,25,0 +2181,12,92,62,7,258,27.6,0.926,44,1 +2182,1,113,64,35,0,33.6,0.543,21,1 +2183,3,111,56,39,0,30.1,0.557,30,0 +2184,2,114,68,22,0,28.7,0.092,25,0 +2185,1,193,50,16,375,25.9,0.655,24,0 +2186,11,155,76,28,150,33.3,1.353,51,1 +2187,3,191,68,15,130,30.9,0.299,34,0 +2188,3,141,0,0,0,30,0.761,27,1 +2189,4,95,70,32,0,32.1,0.612,24,0 +2190,3,142,80,15,0,32.4,0.2,63,0 +2191,4,123,62,0,0,32,0.226,35,1 +2192,5,96,74,18,67,33.6,0.997,43,0 +2193,0,138,0,0,0,36.3,0.933,25,1 +2194,2,128,64,42,0,40,1.101,24,0 +2195,0,102,52,0,0,25.1,0.078,21,0 +2196,2,146,0,0,0,27.5,0.24,28,1 +2197,10,101,86,37,0,45.6,1.136,38,1 +2198,2,108,62,32,56,25.2,0.128,21,0 +2199,3,122,78,0,0,23,0.254,40,0 +2200,1,71,78,50,45,33.2,0.422,21,0 +2201,13,106,70,0,0,34.2,0.251,52,0 +2202,2,100,70,52,57,40.5,0.677,25,0 +2203,7,106,60,24,0,26.5,0.296,29,1 +2204,0,104,64,23,116,27.8,0.454,23,0 +2205,5,114,74,0,0,24.9,0.744,57,0 +2206,2,108,62,10,278,25.3,0.881,22,0 +2207,0,146,70,0,0,37.9,0.334,28,1 +2208,10,129,76,28,122,35.9,0.28,39,0 +2209,7,133,88,15,155,32.4,0.262,37,0 +2210,7,161,86,0,0,30.4,0.165,47,1 +2211,2,108,80,0,0,27,0.259,52,1 +2212,7,136,74,26,135,26,0.647,51,0 +2213,5,155,84,44,545,38.7,0.619,34,0 +2214,1,119,86,39,220,45.6,0.808,29,1 +2215,4,96,56,17,49,20.8,0.34,26,0 +2216,5,108,72,43,75,36.1,0.263,33,0 +2217,0,78,88,29,40,36.9,0.434,21,0 +2218,0,107,62,30,74,36.6,0.757,25,1 +2219,2,128,78,37,182,43.3,1.224,31,1 +2220,1,128,48,45,194,40.5,0.613,24,1 +2221,0,161,50,0,0,21.9,0.254,65,0 +2222,6,151,62,31,120,35.5,0.692,28,0 +2223,2,146,70,38,360,28,0.337,29,1 +2224,0,126,84,29,215,30.7,0.52,24,0 +2225,14,100,78,25,184,36.6,0.412,46,1 +2226,3,82,70,0,0,21.1,0.389,25,0 +2227,3,193,70,31,0,34.9,0.241,25,1 +2228,4,95,64,0,0,32,0.161,31,1 +2229,6,137,61,0,0,24.2,0.151,55,0 +2230,5,136,84,41,88,35,0.286,35,1 +2231,9,72,78,25,0,31.6,0.28,38,0 +2232,5,168,64,0,0,32.9,0.135,41,1 +2233,2,123,48,32,165,42.1,0.52,26,0 +2234,4,115,72,0,0,28.9,0.376,46,1 +2235,0,101,62,0,0,21.9,0.336,25,0 +2236,8,197,74,0,0,25.9,1.191,39,1 +2237,1,172,68,49,579,42.4,0.702,28,1 +2238,6,102,90,39,0,35.7,0.674,28,0 +2239,1,112,72,30,176,34.4,0.528,25,0 +2240,1,143,84,23,310,42.4,1.076,22,0 +2241,1,143,74,22,61,26.2,0.256,21,0 +2242,0,138,60,35,167,34.6,0.534,21,1 +2243,3,173,84,33,474,35.7,0.258,22,1 +2244,1,97,68,21,0,27.2,1.095,22,0 +2245,4,144,82,32,0,38.5,0.554,37,1 +2246,1,83,68,0,0,18.2,0.624,27,0 +2247,3,129,64,29,115,26.4,0.219,28,1 +2248,1,119,88,41,170,45.3,0.507,26,0 +2249,2,94,68,18,76,26,0.561,21,0 +2250,0,102,64,46,78,40.6,0.496,21,0 +2251,2,115,64,22,0,30.8,0.421,21,0 +2252,8,151,78,32,210,42.9,0.516,36,1 +2253,4,184,78,39,277,37,0.264,31,1 +2254,0,94,0,0,0,0,0.256,25,0 +2255,1,181,64,30,180,34.1,0.328,38,1 +2256,0,135,94,46,145,40.6,0.284,26,0 +2257,1,95,82,25,180,35,0.233,43,1 +2258,2,99,0,0,0,22.2,0.108,23,0 +2259,3,89,74,16,85,30.4,0.551,38,0 +2260,1,80,74,11,60,30,0.527,22,0 +2261,2,139,75,0,0,25.6,0.167,29,0 +2262,1,90,68,8,0,24.5,1.138,36,0 +2263,0,141,0,0,0,42.4,0.205,29,1 +2264,12,140,85,33,0,37.4,0.244,41,0 +2265,5,147,75,0,0,29.9,0.434,28,0 +2266,1,97,70,15,0,18.2,0.147,21,0 +2267,6,107,88,0,0,36.8,0.727,31,0 +2268,0,189,104,25,0,34.3,0.435,41,1 +2269,2,83,66,23,50,32.2,0.497,22,0 +2270,4,117,64,27,120,33.2,0.23,24,0 +2271,8,108,70,0,0,30.5,0.955,33,1 +2272,4,117,62,12,0,29.7,0.38,30,1 +2273,0,180,78,63,14,59.4,2.42,25,1 +2274,1,100,72,12,70,25.3,0.658,28,0 +2275,0,95,80,45,92,36.5,0.33,26,0 +2276,0,104,64,37,64,33.6,0.51,22,1 +2277,0,120,74,18,63,30.5,0.285,26,0 +2278,1,82,64,13,95,21.2,0.415,23,0 +2279,2,134,70,0,0,28.9,0.542,23,1 +2280,0,91,68,32,210,39.9,0.381,25,0 +2281,2,119,0,0,0,19.6,0.832,72,0 +2282,2,100,54,28,105,37.8,0.498,24,0 +2283,14,175,62,30,0,33.6,0.212,38,1 +2284,1,135,54,0,0,26.7,0.687,62,0 +2285,5,86,68,28,71,30.2,0.364,24,0 +2286,10,148,84,48,237,37.6,1.001,51,1 +2287,9,134,74,33,60,25.9,0.46,81,0 +2288,9,120,72,22,56,20.8,0.733,48,0 +2289,1,71,62,0,0,21.8,0.416,26,0 +2290,8,74,70,40,49,35.3,0.705,39,0 +2291,5,88,78,30,0,27.6,0.258,37,0 +2292,10,115,98,0,0,24,1.022,34,0 +2293,0,124,56,13,105,21.8,0.452,21,0 +2294,0,74,52,10,36,27.8,0.269,22,0 +2295,0,97,64,36,100,36.8,0.6,25,0 +2296,8,120,0,0,0,30,0.183,38,1 +2297,6,154,78,41,140,46.1,0.571,27,0 +2298,1,144,82,40,0,41.3,0.607,28,0 +2299,0,137,70,38,0,33.2,0.17,22,0 +2300,0,119,66,27,0,38.8,0.259,22,0 +2301,7,136,90,0,0,29.9,0.21,50,0 +2302,4,114,64,0,0,28.9,0.126,24,0 +2303,0,137,84,27,0,27.3,0.231,59,0 +2304,2,105,80,45,191,33.7,0.711,29,1 +2305,7,114,76,17,110,23.8,0.466,31,0 +2306,8,126,74,38,75,25.9,0.162,39,0 +2307,4,132,86,31,0,28,0.419,63,0 +2308,3,158,70,30,328,35.5,0.344,35,1 +2309,0,123,88,37,0,35.2,0.197,29,0 +2310,4,85,58,22,49,27.8,0.306,28,0 +2311,0,84,82,31,125,38.2,0.233,23,0 +2312,0,145,0,0,0,44.2,0.63,31,1 +2313,0,135,68,42,250,42.3,0.365,24,1 +2314,1,139,62,41,480,40.7,0.536,21,0 +2315,0,173,78,32,265,46.5,1.159,58,0 +2316,4,99,72,17,0,25.6,0.294,28,0 +2317,8,194,80,0,0,26.1,0.551,67,0 +2318,2,83,65,28,66,36.8,0.629,24,0 +2319,2,89,90,30,0,33.5,0.292,42,0 +2320,4,99,68,38,0,32.8,0.145,33,0 +2321,4,125,70,18,122,28.9,1.144,45,1 +2322,3,80,0,0,0,0,0.174,22,0 +2323,6,166,74,0,0,26.6,0.304,66,0 +2324,5,110,68,0,0,26,0.292,30,0 +2325,2,81,72,15,76,30.1,0.547,25,0 +2326,7,195,70,33,145,25.1,0.163,55,1 +2327,6,154,74,32,193,29.3,0.839,39,0 +2328,0,136,74,49,220,20.1,0.82,44,1 +2329,0,126,84,29,215,30.7,0.52,24,0 +2330,0,116,64,39,225,40.2,0.72,50,0 +2331,2,142,94,59,177,38.3,0.62,63,1 +2332,4,183,66,0,215,80.6,0.654,40,0 +2333,1,100,62,0,0,64.4,0.152,36,0 +2334,0,163,40,23,64,40.7,0.322,33,0 +2335,6,139,84,37,0,50.7,0.32,50,1 +2336,2,167,44,30,140,52.7,0.452,28,0 +2337,3,162,0,110,215,48.7,0.52,24,0 +2338,0,173,78,32,265,46.5,1.159,58,0 +2339,4,99,72,17,0,25.6,0.294,28,0 +2340,8,194,80,0,0,26.1,0.551,67,0 +2341,2,83,65,28,66,36.8,0.629,24,0 +2342,2,89,90,30,0,33.5,0.292,42,0 +2343,4,99,68,38,0,32.8,0.145,33,0 +2344,4,125,70,18,122,28.9,1.144,45,1 +2345,3,80,0,0,0,0,0.174,22,0 +2346,6,166,74,0,0,26.6,0.304,66,0 +2347,5,110,68,0,0,26,0.292,30,0 +2348,2,81,72,15,76,30.1,0.547,25,0 +2349,7,195,70,33,145,25.1,0.163,55,1 +2350,6,154,74,32,193,29.3,0.839,39,0 +2351,0,136,74,49,220,20.1,0.82,44,1 +2352,0,126,84,29,215,30.7,0.52,24,0 +2353,0,116,64,39,225,40.2,0.72,50,0 +2354,2,142,94,59,177,38.3,0.62,63,1 +2355,4,183,66,0,215,80.6,0.654,40,0 +2356,1,100,62,0,0,64.4,0.152,36,0 +2357,0,163,40,23,64,40.7,0.322,33,0 +2358,6,139,84,37,0,50.7,0.32,50,1 +2359,2,167,44,30,140,52.7,0.452,28,0 +2360,3,162,0,110,215,48.7,0.52,24,0 +2361,7,178,84,0,0,39.9,0.331,41,1 +2362,1,130,70,13,105,25.9,0.472,22,0 +2363,1,95,74,21,73,25.9,0.673,36,0 +2364,1,0,68,35,0,32,0.389,22,0 +2365,5,122,86,0,0,34.7,0.29,33,0 +2366,8,95,72,0,0,36.8,0.485,57,0 +2367,8,126,88,36,108,38.5,0.349,49,0 +2368,1,139,46,19,83,28.7,0.654,22,0 +2369,3,116,0,0,0,23.5,0.187,23,0 +2370,3,99,62,19,74,21.8,0.279,26,0 +2371,5,0,80,32,0,41,0.346,37,1 +2372,4,92,80,0,0,42.2,0.237,29,0 +2373,4,137,84,0,0,31.2,0.252,30,0 +2374,3,61,82,28,0,34.4,0.243,46,0 +2375,1,90,62,12,43,27.2,0.58,24,0 +2376,3,90,78,0,0,42.7,0.559,21,0 +2377,9,165,88,0,0,30.4,0.302,49,1 +2378,1,125,50,40,167,33.3,0.962,28,1 +2379,13,129,0,30,0,39.9,0.569,44,1 +2380,12,88,74,40,54,35.3,0.378,48,0 +2381,1,196,76,36,249,36.5,0.875,29,1 +2382,5,189,64,33,325,31.2,0.583,29,1 +2383,5,158,70,0,0,29.8,0.207,63,0 +2384,5,103,108,37,0,39.2,0.305,65,0 +2385,4,146,78,0,0,38.5,0.52,67,1 +2386,4,147,74,25,293,34.9,0.385,30,0 +2387,5,99,54,28,83,34,0.499,30,0 +2388,6,124,72,0,0,27.6,0.368,29,1 +2389,0,101,64,17,0,21,0.252,21,0 +2390,3,81,86,16,66,27.5,0.306,22,0 +2391,1,133,102,28,140,32.8,0.234,45,1 +2392,3,173,82,48,465,38.4,2.137,25,1 +2393,0,118,64,23,89,0,1.731,21,0 +2394,0,84,64,22,66,35.8,0.545,21,0 +2395,2,105,58,40,94,34.9,0.225,25,0 +2396,2,122,52,43,158,36.2,0.816,28,0 +2397,12,140,82,43,325,39.2,0.528,58,1 +2398,0,98,82,15,84,25.2,0.299,22,0 +2399,1,87,60,37,75,37.2,0.509,22,0 +2400,4,156,75,0,0,48.3,0.238,32,1 +2401,0,93,100,39,72,43.4,1.021,35,0 +2402,1,107,72,30,82,30.8,0.821,24,0 +2403,0,105,68,22,0,20,0.236,22,0 +2404,1,109,60,8,182,25.4,0.947,21,0 +2405,1,90,62,18,59,25.1,1.268,25,0 +2406,1,125,70,24,110,24.3,0.221,25,0 +2407,1,119,54,13,50,22.3,0.205,24,0 +2408,5,116,74,29,0,32.3,0.66,35,1 +2409,8,105,100,36,0,43.3,0.239,45,1 +2410,5,144,82,26,285,32,0.452,58,1 +2411,3,100,68,23,81,31.6,0.949,28,0 +2412,1,100,66,29,196,32,0.444,42,0 +2413,5,166,76,0,0,45.7,0.34,27,1 +2414,1,131,64,14,415,23.7,0.389,21,0 +2415,4,116,72,12,87,22.1,0.463,37,0 +2416,4,158,78,0,0,32.9,0.803,31,1 +2417,2,127,58,24,275,27.7,1.6,25,0 +2418,3,96,56,34,115,24.7,0.944,39,0 +2419,0,131,66,40,0,34.3,0.196,22,1 +2420,3,82,70,0,0,21.1,0.389,25,0 +2421,3,193,70,31,0,34.9,0.241,25,1 +2422,4,95,64,0,0,32,0.161,31,1 +2423,6,137,61,0,0,24.2,0.151,55,0 +2424,5,136,84,41,88,35,0.286,35,1 +2425,9,72,78,25,0,31.6,0.28,38,0 +2426,5,168,64,0,0,32.9,0.135,41,1 +2427,2,123,48,32,165,42.1,0.52,26,0 +2428,4,115,72,0,0,28.9,0.376,46,1 +2429,0,101,62,0,0,21.9,0.336,25,0 +2430,8,197,74,0,0,25.9,1.191,39,1 +2431,1,172,68,49,579,42.4,0.702,28,1 +2432,6,102,90,39,0,35.7,0.674,28,0 +2433,1,112,72,30,176,34.4,0.528,25,0 +2434,1,143,84,23,310,42.4,1.076,22,0 +2435,1,143,74,22,61,26.2,0.256,21,0 +2436,0,138,60,35,167,34.6,0.534,21,1 +2437,3,173,84,33,474,35.7,0.258,22,1 +2438,1,97,68,21,0,27.2,1.095,22,0 +2439,4,144,82,32,0,38.5,0.554,37,1 +2440,1,83,68,0,0,18.2,0.624,27,0 +2441,3,129,64,29,115,26.4,0.219,28,1 +2442,1,119,88,41,170,45.3,0.507,26,0 +2443,2,94,68,18,76,26,0.561,21,0 +2444,0,102,64,46,78,40.6,0.496,21,0 +2445,2,115,64,22,0,30.8,0.421,21,0 +2446,8,151,78,32,210,42.9,0.516,36,1 +2447,4,184,78,39,277,37,0.264,31,1 +2448,0,94,0,0,0,0,0.256,25,0 +2449,1,181,64,30,180,34.1,0.328,38,1 +2450,0,135,94,46,145,40.6,0.284,26,0 +2451,1,95,82,25,180,35,0.233,43,1 +2452,2,99,0,0,0,22.2,0.108,23,0 +2453,3,89,74,16,85,30.4,0.551,38,0 +2454,1,80,74,11,60,30,0.527,22,0 +2455,1,173,74,0,0,36.8,0.088,38,1 +2456,1,109,38,18,120,23.1,0.407,26,0 +2457,1,108,88,19,0,27.1,0.4,24,0 +2458,6,96,0,0,0,23.7,0.19,28,0 +2459,1,124,74,36,0,27.8,0.1,30,0 +2460,7,150,78,29,126,35.2,0.692,54,1 +2461,4,183,0,0,0,28.4,0.212,36,1 +2462,1,124,60,32,0,35.8,0.514,21,0 +2463,1,181,78,42,293,40,1.258,22,1 +2464,1,92,62,25,41,19.5,0.482,25,0 +2465,0,152,82,39,272,41.5,0.27,27,0 +2466,1,111,62,13,182,24,0.138,23,0 +2467,3,106,54,21,158,30.9,0.292,24,0 +2468,3,174,58,22,194,32.9,0.593,36,1 +2469,7,168,88,42,321,38.2,0.787,40,1 +2470,6,105,80,28,0,32.5,0.878,26,0 +2471,11,138,74,26,144,36.1,0.557,50,1 +2472,3,106,72,0,0,25.8,0.207,27,0 +2473,6,117,96,0,0,28.7,0.157,30,0 +2474,2,68,62,13,15,20.1,0.257,23,0 +2475,9,112,82,24,0,28.2,1.282,50,1 +2476,0,119,0,0,0,32.4,0.141,24,1 +2477,2,112,86,42,160,38.4,0.246,28,0 +2478,2,92,76,20,0,24.2,1.698,28,0 +2479,6,183,94,0,0,40.8,1.461,45,0 +2480,0,94,70,27,115,43.5,0.347,21,0 +2481,2,108,64,0,0,30.8,0.158,21,0 +2482,4,90,88,47,54,37.7,0.362,29,0 +2483,0,125,68,0,0,24.7,0.206,21,0 +2484,0,132,78,0,0,32.4,0.393,21,0 +2485,5,128,80,0,0,34.6,0.144,45,0 +2486,4,94,65,22,0,24.7,0.148,21,0 +2487,7,114,64,0,0,27.4,0.732,34,1 +2488,0,102,78,40,90,34.5,0.238,24,0 +2489,2,111,60,0,0,26.2,0.343,23,0 +2490,1,128,82,17,183,27.5,0.115,22,0 +2491,10,92,62,0,0,25.9,0.167,31,0 +2492,13,104,72,0,0,31.2,0.465,38,1 +2493,5,104,74,0,0,28.8,0.153,48,0 +2494,2,94,76,18,66,31.6,0.649,23,0 +2495,7,97,76,32,91,40.9,0.871,32,1 +2496,1,100,74,12,46,19.5,0.149,28,0 +2497,0,102,86,17,105,29.3,0.695,27,0 +2498,4,128,70,0,0,34.3,0.303,24,0 +2499,6,147,80,0,0,29.5,0.178,50,1 +2500,4,90,0,0,0,28,0.61,31,0 +2501,3,103,72,30,152,27.6,0.73,27,0 +2502,2,157,74,35,440,39.4,0.134,30,0 +2503,1,167,74,17,144,23.4,0.447,33,1 +2504,0,179,50,36,159,37.8,0.455,22,1 +2505,11,136,84,35,130,28.3,0.26,42,1 +2506,0,107,60,25,0,26.4,0.133,23,0 +2507,1,91,54,25,100,25.2,0.234,23,0 +2508,1,117,60,23,106,33.8,0.466,27,0 +2509,5,123,74,40,77,34.1,0.269,28,0 +2510,2,120,54,0,0,26.8,0.455,27,0 +2511,1,106,70,28,135,34.2,0.142,22,0 +2512,2,155,52,27,540,38.7,0.24,25,1 +2513,2,101,58,35,90,21.8,0.155,22,0 +2514,1,120,80,48,200,38.9,1.162,41,0 +2515,11,127,106,0,0,39,0.19,51,0 +2516,3,80,82,31,70,34.2,1.292,27,1 +2517,10,162,84,0,0,27.7,0.182,54,0 +2518,1,199,76,43,0,42.9,1.394,22,1 +2519,8,167,106,46,231,37.6,0.165,43,1 +2520,9,145,80,46,130,37.9,0.637,40,1 +2521,6,115,60,39,0,33.7,0.245,40,1 +2522,1,112,80,45,132,34.8,0.217,24,0 +2523,4,145,82,18,0,32.5,0.235,70,1 +2524,10,111,70,27,0,27.5,0.141,40,1 +2525,6,98,58,33,190,34,0.43,43,0 +2526,9,154,78,30,100,30.9,0.164,45,0 +2527,6,165,68,26,168,33.6,0.631,49,0 +2528,1,99,58,10,0,25.4,0.551,21,0 +2529,10,68,106,23,49,35.5,0.285,47,0 +2530,3,123,100,35,240,57.3,0.88,22,0 +2531,8,91,82,0,0,35.6,0.587,68,0 +2532,6,195,70,0,0,30.9,0.328,31,1 +2533,9,156,86,0,0,24.8,0.23,53,1 +2534,0,93,60,0,0,35.3,0.263,25,0 +2535,3,121,52,0,0,36,0.127,25,1 +2536,2,101,58,17,265,24.2,0.614,23,0 +2537,2,56,56,28,45,24.2,0.332,22,0 +2538,0,162,76,36,0,49.6,0.364,26,1 +2539,0,95,64,39,105,44.6,0.366,22,0 +2540,4,125,80,0,0,32.3,0.536,27,1 +2541,5,136,82,0,0,0,0.64,69,0 +2542,2,129,74,26,205,33.2,0.591,25,0 +2543,3,130,64,0,0,23.1,0.314,22,0 +2544,1,107,50,19,0,28.3,0.181,29,0 +2545,1,140,74,26,180,24.1,0.828,23,0 +2546,1,144,82,46,180,46.1,0.335,46,1 +2547,8,107,80,0,0,24.6,0.856,34,0 +2548,13,158,114,0,0,42.3,0.257,44,1 +2549,2,121,70,32,95,39.1,0.886,23,0 +2550,7,129,68,49,125,38.5,0.439,43,1 +2551,2,90,60,0,0,23.5,0.191,25,0 +2552,7,142,90,24,480,30.4,0.128,43,1 +2553,3,169,74,19,125,29.9,0.268,31,1 +2554,0,99,0,0,0,25,0.253,22,0 +2555,4,127,88,11,155,34.5,0.598,28,0 +2556,4,118,70,0,0,44.5,0.904,26,0 +2557,2,122,76,27,200,35.9,0.483,26,0 +2558,6,125,78,31,0,27.6,0.565,49,1 +2559,1,168,88,29,0,35,0.905,52,1 +2560,2,129,0,0,0,38.5,0.304,41,0 +2561,4,110,76,20,100,28.4,0.118,27,0 +2562,6,80,80,36,0,39.8,0.177,28,0 +2563,10,115,0,0,0,0,0.261,30,1 +2564,2,127,46,21,335,34.4,0.176,22,0 +2565,9,164,78,0,0,32.8,0.148,45,1 +2566,2,93,64,32,160,38,0.674,23,1 +2567,3,158,64,13,387,31.2,0.295,24,0 +2568,5,126,78,27,22,29.6,0.439,40,0 +2569,10,129,62,36,0,41.2,0.441,38,1 +2570,0,134,58,20,291,26.4,0.352,21,0 +2571,3,102,74,0,0,29.5,0.121,32,0 +2572,7,187,50,33,392,33.9,0.826,34,1 +2573,3,173,78,39,185,33.8,0.97,31,1 +2574,10,94,72,18,0,23.1,0.595,56,0 +2575,1,108,60,46,178,35.5,0.415,24,0 +2576,5,97,76,27,0,35.6,0.378,52,1 +2577,4,83,86,19,0,29.3,0.317,34,0 +2578,1,114,66,36,200,38.1,0.289,21,0 +2579,1,149,68,29,127,29.3,0.349,42,1 +2580,5,117,86,30,105,39.1,0.251,42,0 +2581,1,111,94,0,0,32.8,0.265,45,0 +2582,4,112,78,40,0,39.4,0.236,38,0 +2583,1,116,78,29,180,36.1,0.496,25,0 +2584,0,141,84,26,0,32.4,0.433,22,0 +2585,2,175,88,0,0,22.9,0.326,22,0 +2586,2,92,52,0,0,30.1,0.141,22,0 +2587,3,130,78,23,79,28.4,0.323,34,1 +2588,8,120,86,0,0,28.4,0.259,22,1 +2589,2,174,88,37,120,44.5,0.646,24,1 +2590,2,106,56,27,165,29,0.426,22,0 +2591,2,105,75,0,0,23.3,0.56,53,0 +2592,4,95,60,32,0,35.4,0.284,28,0 +2593,0,126,86,27,120,27.4,0.515,21,0 +2594,8,65,72,23,0,32,0.6,42,0 +2595,2,99,60,17,160,36.6,0.453,21,0 +2596,1,102,74,0,0,39.5,0.293,42,1 +2597,11,120,80,37,150,42.3,0.785,48,1 +2598,3,102,44,20,94,30.8,0.4,26,0 +2599,1,109,58,18,116,28.5,0.219,22,0 +2600,9,140,94,0,0,32.7,0.734,45,1 +2601,13,153,88,37,140,40.6,1.174,39,0 +2602,12,100,84,33,105,30,0.488,46,0 +2603,1,147,94,41,0,49.3,0.358,27,1 +2604,1,81,74,41,57,46.3,1.096,32,0 +2605,3,187,70,22,200,36.4,0.408,36,1 +2606,6,162,62,0,0,24.3,0.178,50,1 +2607,4,136,70,0,0,31.2,1.182,22,1 +2608,1,121,78,39,74,39,0.261,28,0 +2609,3,108,62,24,0,26,0.223,25,0 +2610,0,181,88,44,510,43.3,0.222,26,1 +2611,8,154,78,32,0,32.4,0.443,45,1 +2612,1,128,88,39,110,36.5,1.057,37,1 +2613,7,137,90,41,0,32,0.391,39,0 +2614,0,123,72,0,0,36.3,0.258,52,1 +2615,1,106,76,0,0,37.5,0.197,26,0 +2616,6,190,92,0,0,35.5,0.278,66,1 +2617,2,88,58,26,16,28.4,0.766,22,0 +2618,9,170,74,31,0,44,0.403,43,1 +2619,9,89,62,0,0,22.5,0.142,33,0 +2620,10,101,76,48,180,32.9,0.171,63,0 +2621,2,122,70,27,0,36.8,0.34,27,0 +2622,5,121,72,23,112,26.2,0.245,30,0 +2623,1,126,60,0,0,30.1,0.349,47,1 +2624,10,122,78,31,0,27.6,0.512,45,0 +2625,4,103,60,33,192,24,0.966,33,0 +2626,11,138,76,0,0,33.2,0.42,35,0 +2627,9,102,76,37,0,32.9,0.665,46,1 +2628,2,90,68,42,0,38.2,0.503,27,1 +2629,4,111,72,47,207,37.1,1.39,56,1 +2630,3,180,64,25,70,34,0.271,26,0 +2631,7,133,84,0,0,40.2,0.696,37,0 +2632,7,106,92,18,0,22.7,0.235,48,0 +2633,9,171,110,24,240,45.4,0.721,54,1 +2634,7,159,64,0,0,27.4,0.294,40,0 +2635,0,180,66,39,0,42,1.893,25,1 +2636,1,146,56,0,0,29.7,0.564,29,0 +2637,2,71,70,27,0,28,0.586,22,0 +2638,7,103,66,32,0,39.1,0.344,31,1 +2639,7,105,0,0,0,0,0.305,24,0 +2640,1,103,80,11,82,19.4,0.491,22,0 +2641,1,101,50,15,36,24.2,0.526,26,0 +2642,5,88,66,21,23,24.4,0.342,30,0 +2643,8,176,90,34,300,33.7,0.467,58,1 +2644,7,150,66,42,342,34.7,0.718,42,0 +2645,1,73,50,10,0,23,0.248,21,0 +2646,7,187,68,39,304,37.7,0.254,41,1 +2647,0,100,88,60,110,46.8,0.962,31,0 +2648,0,146,82,0,0,40.5,1.781,44,0 +2649,0,105,64,41,142,41.5,0.173,22,0 +2650,2,84,0,0,0,0,0.304,21,0 +2651,8,133,72,0,0,32.9,0.27,39,1 +2652,5,44,62,0,0,25,0.587,36,0 +2653,2,141,58,34,128,25.4,0.699,24,0 +2654,7,114,66,0,0,32.8,0.258,42,1 +2655,5,99,74,27,0,29,0.203,32,0 +2656,0,109,88,30,0,32.5,0.855,38,1 +2657,2,109,92,0,0,42.7,0.845,54,0 +2658,1,95,66,13,38,19.6,0.334,25,0 +2659,4,146,85,27,100,28.9,0.189,27,0 +2660,2,100,66,20,90,32.9,0.867,28,1 +2661,5,139,64,35,140,28.6,0.411,26,0 +2662,13,126,90,0,0,43.4,0.583,42,1 +2663,4,129,86,20,270,35.1,0.231,23,0 +2664,1,79,75,30,0,32,0.396,22,0 +2665,1,0,48,20,0,24.7,0.14,22,0 +2666,7,62,78,0,0,32.6,0.391,41,0 +2667,5,95,72,33,0,37.7,0.37,27,0 +2668,0,131,0,0,0,43.2,0.27,26,1 +2669,2,112,66,22,0,25,0.307,24,0 +2670,3,113,44,13,0,22.4,0.14,22,0 +2671,2,74,0,0,0,0,0.102,22,0 +2672,7,83,78,26,71,29.3,0.767,36,0 +2673,0,101,65,28,0,24.6,0.237,22,0 +2674,5,137,108,0,0,48.8,0.227,37,1 +2675,2,110,74,29,125,32.4,0.698,27,0 +2676,13,106,72,54,0,36.6,0.178,45,0 +2677,2,100,68,25,71,38.5,0.324,26,0 +2678,15,136,70,32,110,37.1,0.153,43,1 +2679,1,107,68,19,0,26.5,0.165,24,0 +2680,1,80,55,0,0,19.1,0.258,21,0 +2681,4,123,80,15,176,32,0.443,34,0 +2682,7,81,78,40,48,46.7,0.261,42,0 +2683,4,134,72,0,0,23.8,0.277,60,1 +2684,2,142,82,18,64,24.7,0.761,21,0 +2685,6,144,72,27,228,33.9,0.255,40,0 +2686,2,92,62,28,0,31.6,0.13,24,0 +2687,1,71,48,18,76,20.4,0.323,22,0 +2688,6,93,50,30,64,28.7,0.356,23,0 +2689,1,122,90,51,220,49.7,0.325,31,1 +2690,1,163,72,0,0,39,1.222,33,1 +2691,1,151,60,0,0,26.1,0.179,22,0 +2692,0,125,96,0,0,22.5,0.262,21,0 +2693,1,81,72,18,40,26.6,0.283,24,0 +2694,2,85,65,0,0,39.6,0.93,27,0 +2695,1,126,56,29,152,28.7,0.801,21,0 +2696,1,96,122,0,0,22.4,0.207,27,0 +2697,4,144,58,28,140,29.5,0.287,37,0 +2698,3,83,58,31,18,34.3,0.336,25,0 +2699,0,95,85,25,36,37.4,0.247,24,1 +2700,3,171,72,33,135,33.3,0.199,24,1 +2701,8,155,62,26,495,34,0.543,46,1 +2702,1,89,76,34,37,31.2,0.192,23,0 +2703,4,76,62,0,0,34,0.391,25,0 +2704,7,160,54,32,175,30.5,0.588,39,1 +2705,4,146,92,0,0,31.2,0.539,61,1 +2706,5,124,74,0,0,34,0.22,38,1 +2707,5,78,48,0,0,33.7,0.654,25,0 +2708,4,97,60,23,0,28.2,0.443,22,0 +2709,4,99,76,15,51,23.2,0.223,21,0 +2710,0,162,76,56,100,53.2,0.759,25,1 +2711,6,111,64,39,0,34.2,0.26,24,0 +2712,2,107,74,30,100,33.6,0.404,23,0 +2713,5,132,80,0,0,26.8,0.186,69,0 +2714,0,113,76,0,0,33.3,0.278,23,1 +2715,1,88,30,42,99,55,0.496,26,1 +2716,3,120,70,30,135,42.9,0.452,30,0 +2717,1,118,58,36,94,33.3,0.261,23,0 +2718,1,117,88,24,145,34.5,0.403,40,1 +2719,0,105,84,0,0,27.9,0.741,62,1 +2720,4,173,70,14,168,29.7,0.361,33,1 +2721,9,122,56,0,0,33.3,1.114,33,1 +2722,3,170,64,37,225,34.5,0.356,30,1 +2723,8,84,74,31,0,38.3,0.457,39,0 +2724,2,96,68,13,49,21.1,0.647,26,0 +2725,2,125,60,20,140,33.8,0.088,31,0 +2726,0,100,70,26,50,30.8,0.597,21,0 +2727,0,93,60,25,92,28.7,0.532,22,0 +2728,0,129,80,0,0,31.2,0.703,29,0 +2729,5,105,72,29,325,36.9,0.159,28,0 +2730,3,128,78,0,0,21.1,0.268,55,0 +2731,5,106,82,30,0,39.5,0.286,38,0 +2732,2,108,52,26,63,32.5,0.318,22,0 +2733,10,108,66,0,0,32.4,0.272,42,1 +2734,4,154,62,31,284,32.8,0.237,23,0 +2735,0,102,75,23,0,0,0.572,21,0 +2736,9,57,80,37,0,32.8,0.096,41,0 +2737,2,106,64,35,119,30.5,1.4,34,0 +2738,5,147,78,0,0,33.7,0.218,65,0 +2739,2,90,70,17,0,27.3,0.085,22,0 +2740,1,136,74,50,204,37.4,0.399,24,0 +2741,4,114,65,0,0,21.9,0.432,37,0 +2742,9,156,86,28,155,34.3,1.189,42,1 +2743,1,153,82,42,485,40.6,0.687,23,0 +2744,8,188,78,0,0,47.9,0.137,43,1 +2745,7,152,88,44,0,50,0.337,36,1 +2746,2,99,52,15,94,24.6,0.637,21,0 +2747,1,109,56,21,135,25.2,0.833,23,0 +2748,2,88,74,19,53,29,0.229,22,0 +2749,17,163,72,41,114,40.9,0.817,47,1 +2750,4,151,90,38,0,29.7,0.294,36,0 +2751,7,102,74,40,105,37.2,0.204,45,0 +2752,0,114,80,34,285,44.2,0.167,27,0 +2753,2,100,64,23,0,29.7,0.368,21,0 +2754,0,131,88,0,0,31.6,0.743,32,1 +2755,6,104,74,18,156,29.9,0.722,41,1 +2756,3,148,66,25,0,32.5,0.256,22,0 +2757,4,120,68,0,0,29.6,0.709,34,0 +2758,4,110,66,0,0,31.9,0.471,29,0 +2759,3,111,90,12,78,28.4,0.495,29,0 +2760,6,102,82,0,0,30.8,0.18,36,1 +2761,6,134,70,23,130,35.4,0.542,29,1 +2762,2,87,0,23,0,28.9,0.773,25,0 +2763,1,79,60,42,48,43.5,0.678,23,0 +2764,2,75,64,24,55,29.7,0.37,33,0 +2765,8,179,72,42,130,32.7,0.719,36,1 +2766,6,85,78,0,0,31.2,0.382,42,0 +2767,0,129,110,46,130,67.1,0.319,26,1 +2768,2,81,72,15,76,30.1,0.547,25,0