-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday_03.py
54 lines (39 loc) · 1.62 KB
/
day_03.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
input = [line.strip() for line in open("inputs/day_03.txt", "r").readlines()]
all_diagnostics = [np.array(list(map(int, list(line))), dtype='int') for line in input]
def create_sums(diagnostics):
sums = np.zeros(len(diagnostics[0]))
for diagnostic in diagnostics:
sums += diagnostic
return sums
def part01(diagnostics) -> int:
sums = create_sums(diagnostics)
gamma_rate_b = '0b'
epsilon_rate_b = '0b'
upper_bound = len(diagnostics)/2
for elem in sums:
if elem > upper_bound:
gamma_rate_b += '1'
epsilon_rate_b += '0'
else:
gamma_rate_b += '0'
epsilon_rate_b += '1'
return int(gamma_rate_b, 2) * int(epsilon_rate_b, 2)
def find_number(diagnostics, is_oxygen: bool):
bits = len(diagnostics[0])
filtered_values = diagnostics
for i in range(bits):
upper_bound = len(filtered_values)/2
sums = create_sums(filtered_values)
filter_value = int(sums[i] >= upper_bound if is_oxygen else sums[i] < upper_bound)
filtered_values = list(filter(lambda diag: diag[i] == filter_value, filtered_values))
if len(filtered_values) == 1:
break
return filtered_values[0]
def part02(diagnostics) -> int:
oxygen_generator_rating = find_number(diagnostics, True)
co2_scrubber_rating = find_number(diagnostics, False)
return int(''.join(list(map(str, oxygen_generator_rating))), 2) * int(''.join(list(map(str, co2_scrubber_rating))), 2)
if __name__ == '__main__':
print(f"Part01: {part01(all_diagnostics)}")
print(f"Part02: {part02(all_diagnostics)}")