Skip to content

Commit 86cba9a

Browse files
author
Yukai Yang (Alexis)
authored
Update README.md
1 parent 2296fe4 commit 86cba9a

File tree

1 file changed

+10
-16
lines changed

1 file changed

+10
-16
lines changed

README.md

Lines changed: 10 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,9 @@
33

44
<img src="assets/demo.gif" />
55

6+
## News
7+
- (2020.11.28) Docker container is now supported on Ubuntu 18.04!
8+
69
## Description
710
Fast MOT is a multiple object tracker that implements:
811
- YOLO detector
@@ -36,37 +39,28 @@ This means even though the tracker runs much faster, it is still highly accurate
3639
- PyCuda
3740
- Numpy >= 1.15
3841
- Scipy >= 1.5
39-
- TensorFlow <= 1.15.2 (for SSD support)
40-
- Numba >= 0.48
42+
- TensorFlow < 2.0 (for SSD support)
43+
- Numba == 0.48
4144
- cython-bbox
4245

4346
### Install for Jetson (TX2/Xavier NX/Xavier)
44-
Make sure to have [JetPack 4.4](https://developer.nvidia.com/embedded/jetpack) installed and run the script
47+
Make sure to have [JetPack 4.4](https://developer.nvidia.com/embedded/jetpack) installed and run the script:
4548
```
4649
$ scripts/install_jetson.sh
4750
```
4851
### Install for Ubuntu 18.04
49-
Make sure to have [CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html), [cuDNN](https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html), and [TensorRT](https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#downloading) (including Python API) installed. You can optionally use my script to install from scratch
50-
```
51-
$ scripts/install_tensorrt.sh
52-
```
53-
Install UFF and Graph Surgeon for SSD support: https://github.com/GeekAlexis/FastMOT/issues/15#issuecomment-717045972
54-
55-
Build OpenCV from source with GStreamer (optional). GStreamer is recommended for performance. Modify `ARCH_BIN` [here](https://github.com/GeekAlexis/FastMOT/blob/0e9cb21cef5e36b1b9b0c41ae22adeeb110166bc/scripts/install_opencv.sh#L4) to match your [GPU compute capability](https://developer.nvidia.com/cuda-gpus#compute)
56-
```
57-
$ scripts/install_opencv.sh
58-
```
59-
60-
Install Python dependencies
52+
Make sure to have [nvidia-docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker) installed. The image requires an NVIDIA Driver version >= 450. Build and run the docker image:
6153
```
62-
$ pip3 install -r requirements.txt
54+
$ docker build -t fastmot:latest .
55+
$ docker run --rm --gpus all -it -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=unix$DISPLAY fastmot:latest
6356
```
6457
### Download models
6558
This includes both pretrained OSNet, SSD, and my custom YOLOv4 ONNX model
6659
```
6760
$ scripts/download_models.sh
6861
```
6962
### Build YOLOv4 TensorRT plugin
63+
Modify `compute` [here](https://github.com/GeekAlexis/FastMOT/blob/2296fe414ca6a9515accb02ff88e8aa563ed2a05/fastmot/plugins/Makefile#L21) to match your [GPU compute capability](https://developer.nvidia.com/cuda-gpus#compute)
7064
```
7165
$ cd fastmot/plugins
7266
$ make

0 commit comments

Comments
 (0)