-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
152 lines (138 loc) · 6.65 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import argparse
import time
import uuid
import torch.nn.functional as F
import torch.optim as optim
from drc_model.drcgcn import DRCGCN
from utils import *
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0, help='Random seed.')
parser.add_argument('--epochs', type=int, default=1500, help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.01, help='Learning rate.')
parser.add_argument('--wd1', type=float, default=5e-2, help='Weight decay (L2 loss on each gcn layer\'s parameters).')
parser.add_argument('--wd2', type=float, default=5e-3, help='Weight decay (L2 loss on init fc layer\'s parameters).')
parser.add_argument('--wd3', type=float, default=5e-3, help='Weight decay (L2 loss on final fc layer\'s parameters).')
parser.add_argument('--tau', type=float, default=0.5, help='Tau value.')
parser.add_argument('--layer', type=int, default=64, help='Number of layers.')
parser.add_argument('--hidden', type=int, default=-1, help='Hidden layer\'s dimensions.')
parser.add_argument('--dropout', type=float, default=0.5, help='Dropout rate (1 - keep probability).')
parser.add_argument('--patience', type=int, default=100, help='Patience for early stop.')
parser.add_argument('--data', default='cora', help='Dataset to use.')
parser.add_argument('--devid', type=int, default=0, help='Device id, A integer.')
parser.add_argument('--phi', type=float, default=0.0, help='Only work for cSBM dataset, from -1 to 1 step 0.25.')
parser.add_argument('--index', type=int, default=-1, help='Which split to running on.')
parser.add_argument('--nolog', action='store_true', default=False, help='Invoke to prevent training log from output.')
args = parser.parse_args()
set_seed(args.seed)
cuda_id = "cuda:" + str(args.devid)
device = torch.device(cuda_id)
checkpoint_file = PROJECT_ROOT + '/pretrained/full-' + args.data + '-' + uuid.uuid4().hex + '.pt'
if args.data == 'csbm':
print(cuda_id, checkpoint_file, "on dataset", args.data, '(Φ={:.2f})'.format(args.phi))
else:
print(cuda_id, checkpoint_file, "on dataset", args.data)
if not os.path.exists(PROJECT_ROOT + '/pretrained'):
os.makedirs(PROJECT_ROOT + '/pretrained')
def train_step(model, optimizer, features, labels, adj, idx_train):
model.train()
optimizer.zero_grad()
output = model(features, adj)
acc_train = accuracy(output[idx_train], labels[idx_train].to(device))
loss_train = F.nll_loss(output[idx_train], labels[idx_train].to(device))
loss_train.backward()
optimizer.step()
return loss_train.item(), acc_train.item()
def validate_step(model, features, labels, adj, idx_val):
model.eval()
with torch.no_grad():
output = model(features, adj)
loss_val = F.nll_loss(output[idx_val], labels[idx_val].to(device))
acc_val = accuracy(output[idx_val], labels[idx_val].to(device))
return loss_val.item(), acc_val.item()
def test_step(model, features, labels, adj, idx_test):
model.load_state_dict(torch.load(checkpoint_file))
model.eval()
with torch.no_grad():
output = model(features, adj)
loss_test = F.nll_loss(output[idx_test], labels[idx_test].to(device))
acc_test = accuracy(output[idx_test], labels[idx_test].to(device))
return loss_test.item(), acc_test.item()
def train(dataset_name, split_index=0):
if dataset_name == "csbm":
adj, features, labels, idx_train, idx_val, idx_test, num_features, num_labels = load_csbm(
args.phi
)
else:
adj, features, labels, idx_train, idx_val, idx_test, num_features, num_labels = load_data(
dataset_name,
split_index
)
features = features.to(device)
adj = adj.to(device)
model = DRCGCN(
nfeat=features.shape[1],
nlayers=args.layer,
nhidden=args.hidden,
nclass=int(labels.max()) + 1,
dropout=args.dropout,
tau=args.tau
).to(device)
optimizer = optim.Adam(
[
{'params': model.conv_params, 'weight_decay': args.wd1},
{'params': model.init_linear_params, 'weight_decay': args.wd2},
{'params': model.final_linear_params, 'weight_decay': args.wd3},
],
lr=args.lr
)
bad_counter = 0
loss_best = 100
for epoch in range(args.epochs):
loss_tra, acc_tra = train_step(model, optimizer, features, labels, adj, idx_train)
loss_val, acc_val = validate_step(model, features, labels, adj, idx_val)
if not args.nolog:
log_message = '- Epoch:{:04d}'.format(epoch + 1) + ' train' + ' loss:{:.3f}'.format(
loss_tra) + ' acc:{:.2f}'.format(acc_tra * 100) + ' | val' + ' loss:{:.3f}'.format(
loss_val) + ' acc:{:.2f}'.format(acc_val * 100)
print('\b' * len(log_message), end='')
print(log_message, end='')
if loss_val < loss_best or epoch == 0:
loss_best = loss_val
torch.save(model.state_dict(), checkpoint_file)
bad_counter = 0
else:
bad_counter += 1
if bad_counter == args.patience:
break
acc = test_step(model, features, labels, adj, idx_test)[1]
return acc
if __name__ == '__main__':
if args.data in ["cora", "pubmed", "citeseer", "film", "chameleon", "squirrel"]:
t_total = time.time()
if 0 <= args.index and args.index <= 9:
i = args.index
dataset = args.data
split_npz_path = PROJECT_ROOT + '/dataset/splits/' + args.data + '_split_0.6_0.2_' + str(i) + '.npz'
acc = train(dataset, split_npz_path)
print('')
print("Test accuracy", ": {:.2f}".format(acc * 100))
else:
acc_list = []
for i in range(10):
dataset = args.data
split_npz_path = PROJECT_ROOT + '/dataset/splits/' + args.data + '_split_0.6_0.2_' + str(i) + '.npz'
acc_list.append(train(dataset, split_npz_path) * 100)
print('')
print("Index", i, "test accuracy", ": {:.2f}".format(acc_list[-1]))
print("Result on dataset", args.data)
print("Max: {:.2f}".format(max(acc_list)), "Min: {:.2f}".format(min(acc_list)))
print("All: ", ', '.join(['{:.2f}'.format(i) for i in acc_list]))
print("Train cost: {:.4f}s".format(time.time() - t_total))
print("Test acc: {:.2f}".format(np.mean(acc_list)))
elif args.data in ["csbm"]:
acc = train("csbm")
print('')
print("Accuracy for cSBM (Φ={:.2f}) : {:.2f}".format(args.phi, acc * 100))
else:
raise Exception(
"Choose from %s" % ','.join(["cora", "pubmed", "citeseer", "film", "chameleon", "squirrel", "csbm"]))