-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
237 lines (203 loc) · 9.18 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import pickle as pkl
import random
import sys
from csbm.csbm_dataset import SynCSBM
import networkx as nx
import numpy as np
import scipy.sparse as sp
import torch
PROJECT_ROOT = os.path.split(__file__)[0]
def _adj_single_side_norm(adj):
adj = sp.coo_matrix(adj)
adj = adj + sp.eye(adj.shape[0])
row_sum = np.array(adj.sum(1))
row_sum = (row_sum == 0) * 1 + row_sum
d_inv_sqrt = np.power(row_sum, -1.0).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.0
d_mat = sp.diags(d_inv_sqrt)
return d_mat.dot(adj).tocoo()
def _parse_index_file(filename):
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
def _get_sample_mask(idx, l):
mask = np.zeros(l)
mask[idx] = 1
return np.array(mask, dtype=np.bool)
def _preprocess_features(features):
row_sum = np.array(features.sum(1))
row_sum = (row_sum == 0) * 1 + row_sum
r_inv = np.power(row_sum.astype(np.float), -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
features = r_mat_inv.dot(features)
return features
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
def accuracy(output, labels):
preds = output.max(1)[1].type_as(labels)
correct = preds.eq(labels).double()
correct = correct.sum()
return correct / len(labels)
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
if not isinstance(sparse_mx, sp.coo_matrix):
sparse_mx = sp.coo_matrix(sparse_mx)
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
def _load_citation(dataset_str):
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open(PROJECT_ROOT + "/dataset/data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f))
x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = _parse_index_file(
PROJECT_ROOT + "/dataset/data/ind.{}.test.index".format(dataset_str)
)
test_idx_range = np.sort(test_idx_reorder)
if dataset_str == 'citeseer':
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder) + 1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range - min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range - min(test_idx_range), :] = ty
ty = ty_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :]
idx_test = test_idx_range.tolist()
idx_train = range(len(y))
idx_val = range(len(y), len(y) + 500)
train_mask = _get_sample_mask(idx_train, labels.shape[0])
val_mask = _get_sample_mask(idx_val, labels.shape[0])
test_mask = _get_sample_mask(idx_test, labels.shape[0])
y_train = np.zeros(labels.shape)
y_val = np.zeros(labels.shape)
y_test = np.zeros(labels.shape)
y_train[train_mask, :] = labels[train_mask, :]
y_val[val_mask, :] = labels[val_mask, :]
y_test[test_mask, :] = labels[test_mask, :]
return adj, features, labels, train_mask, val_mask, test_mask
def load_data(dataset_name, splits_file_path=None):
if dataset_name in {'cora', 'citeseer', 'pubmed'}:
adj, features, labels, _, _, _ = _load_citation(dataset_name)
labels = np.argmax(labels, axis=-1)
features = features.todense()
G = nx.DiGraph(adj)
else:
graph_adjacency_list_file_path = os.path.join(
PROJECT_ROOT + '/dataset/raw_data',
dataset_name,
'out1_graph_edges.txt'
)
graph_node_features_and_labels_file_path = os.path.join(
PROJECT_ROOT + "/dataset/raw_data",
dataset_name,
'out1_node_feature_label.txt'
)
G = nx.DiGraph()
graph_node_features_dict = {}
graph_labels_dict = {}
if dataset_name == 'film':
with open(graph_node_features_and_labels_file_path) as graph_node_features_and_labels_file:
graph_node_features_and_labels_file.readline()
for line in graph_node_features_and_labels_file:
line = line.rstrip().split('\t')
assert (len(line) == 3)
assert (int(line[0]) not in graph_node_features_dict and int(line[0]) not in graph_labels_dict)
feature_blank = np.zeros(932, dtype=np.uint8)
feature_blank[np.array(line[1].split(','), dtype=np.uint16)] = 1
graph_node_features_dict[int(line[0])] = feature_blank
graph_labels_dict[int(line[0])] = int(line[2])
else:
with open(graph_node_features_and_labels_file_path) as graph_node_features_and_labels_file:
graph_node_features_and_labels_file.readline()
for line in graph_node_features_and_labels_file:
line = line.rstrip().split('\t')
assert (len(line) == 3)
assert (int(line[0]) not in graph_node_features_dict and int(line[0]) not in graph_labels_dict)
graph_node_features_dict[int(line[0])] = np.array(line[1].split(','), dtype=np.uint8)
graph_labels_dict[int(line[0])] = int(line[2])
with open(graph_adjacency_list_file_path) as graph_adjacency_list_file:
graph_adjacency_list_file.readline()
for line in graph_adjacency_list_file:
line = line.rstrip().split('\t')
assert (len(line) == 2)
if int(line[0]) not in G:
G.add_node(int(line[0]), features=graph_node_features_dict[int(line[0])],
label=graph_labels_dict[int(line[0])])
if int(line[1]) not in G:
G.add_node(int(line[1]), features=graph_node_features_dict[int(line[1])],
label=graph_labels_dict[int(line[1])])
G.add_edge(int(line[0]), int(line[1]))
adj = nx.adjacency_matrix(G, sorted(G.nodes()))
features = np.array(
[features for _, features in sorted(G.nodes(data='features'), key=lambda x: x[0])]
)
labels = np.array(
[label for _, label in sorted(G.nodes(data='label'), key=lambda x: x[0])]
)
features = _preprocess_features(features)
with np.load(splits_file_path) as splits_file:
train_mask = splits_file['train_mask']
val_mask = splits_file['val_mask']
test_mask = splits_file['test_mask']
num_features = features.shape[1]
num_labels = len(np.unique(labels))
assert (np.array_equal(np.unique(labels), np.arange(len(np.unique(labels)))))
features = torch.FloatTensor(features)
labels = torch.LongTensor(labels)
train_mask = torch.BoolTensor(train_mask)
val_mask = torch.BoolTensor(val_mask)
test_mask = torch.BoolTensor(test_mask)
if dataset_name == 'film' or dataset_name == 'texas' or dataset_name == 'wisconsin' or dataset_name == 'cornell':
adj = _adj_single_side_norm(adj)
else:
s = adj.sum(1)
adj = adj / np.tile(s, s.shape[0])
adj = sparse_mx_to_torch_sparse_tensor(adj)
return adj, features, labels, train_mask, val_mask, test_mask, num_features, num_labels
def load_csbm(phi):
assert phi in [-1.0, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, 1.0], "Phi is limited to -1, 1, 0.25."
dataset_name = "cSBM_phi_" + '{:.2f}'.format(phi)
root = PROJECT_ROOT + '/dataset/csbm'
dataset = SynCSBM(root=root, name=dataset_name)
data = dataset.data
graph = nx.DiGraph()
for i in range(data.num_nodes):
graph.add_node(i, features=data.x[i].numpy(), label=int(data.y[i]))
for i in range(data.edge_index.shape[1]):
src, dst = int(data.edge_index[0][i]), int(data.edge_index[1][i])
graph.add_edge(src, dst)
adj = nx.adjacency_matrix(graph, sorted(graph.nodes()))
features = np.array(
[features for _, features in sorted(graph.nodes(data='features'), key=lambda x: x[0])]
)
labels = np.array(
[label for _, label in sorted(graph.nodes(data='label'), key=lambda x: x[0])]
)
features = torch.FloatTensor(features)
labels = torch.LongTensor(labels)
train_mask = torch.BoolTensor(data.train_mask)
val_mask = torch.BoolTensor(data.val_mask)
test_mask = torch.BoolTensor(data.test_mask)
num_features = features.shape[1]
num_labels = len(np.unique(labels))
adj = _adj_single_side_norm(adj)
adj = sparse_mx_to_torch_sparse_tensor(adj)
return adj, features, labels, train_mask, val_mask, test_mask, num_features, num_labels