-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_2.py
110 lines (83 loc) · 3.28 KB
/
example_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import numpy as np
from numpy import genfromtxt
import scipy.io as sio
import rbmsemisuplearn
from dbncreateopts import dbncreateopts
import dbncheckopts
from dbncheckopts import dbncheckopts
from dbnsetup import dbnsetup
from dbntrain import dbntrain
from rbmsemisuplearn import rbmsemisuplearn
from rbmdiscriminative import rbmdiscriminative
from rbmgenerative import rbmgenerative
from dbnpredict import dbnpredict
import h5py
# biomag_labeled_1 = sio.loadmat(r"C:\Users\Pap Gergő\PycharmProjects\rbm-tf\data_labeled_for_py_1_2.mat")
biomag_labeled_1 = sio.loadmat("./data/data_labeled_6.mat")
biomag_unlabeled_1 = sio.loadmat("./data/unlabeled_data_5000_set_001.mat")
# big data file
f2 = h5py.File(r"C:\Users\Pap Gergő\PycharmProjects\rbm-tf\data\Biomag_unlabeled_3.mat", 'r')
print(list(f2.keys()))
f2_list = list(f2.keys())
x_train_un = f2.get('unlabeled_min_max_norm')
x_train_un_re = x_train_un[0:254,0:10000]
#x_train_un_re_all = x_train_un[:,:]
x_train_un_re = x_train_un_re.T
# biomag_unlabeled_1 = []
# with h5py.File('./data/Biomag_unlabeled_3.mat', 'r') as f:
# biomag_unlabeled_1 = np.array(f["unlabeled_min_max_norm"])
# print(biomag_unlabeled_1.shape)
#biomag_unlabeled_1 = f["unlabeled_min_max_norm"]
#biomag_unlabeled_2 = sio.loadmat("./data/Biomag_unlabeled_3.mat")
#biomag_unlabeled_2 = genfromtxt(r"I:\OneDrive - Szegedi Tudományegyetem\egyetem\tdk\program\unlabeled_mmn.mat", delimiter=',')
sizes = [500]
opts, valid_fields = dbncreateopts()
# print("opts: ", opts)
opts.numepochs = 50
opts.patience = 15
opts.batchsize = 10
train_func_selector_var = 3
if train_func_selector_var == 0:
opts.train_function = rbmgenerative # todo : 'train_func' correction in opts
elif train_func_selector_var == 1:
opts.train_function = rbmdiscriminative
else:
opts.train_function = rbmsemisuplearn
opts.semisup_type = rbmdiscriminative
opts.learningrate = 0.05
opts.momentum = 0.001
opts.semisup_beta = 0.1
opts.traintype = "CD"
opts.init_type = "crbm"
# print(sio.whosmat(r"D:\python_project\wip\data_labeled_for_py_1_2.mat"))
print(sio.whosmat("./data/data_labeled_6.mat"))
opts.y_train = biomag_labeled_1["y_train"]
opts.x_train = biomag_labeled_1["x_train"]
opts.x_val = biomag_labeled_1["x_val"]
opts.y_val = biomag_labeled_1["y_val"]
opts.x_semisup = x_train_un_re
# :O opts.x_semisup = biomag_unlabeled_1["unlabeled_data_5000_set_001"]
#print(biomag_unlabeled_1.shape) #.o["unlabeled_data_5000_set_001"]
x_train = biomag_labeled_1["x_train"]
x_test = biomag_labeled_1["test_x"]
y_test = biomag_labeled_1["test_y"]
# ----------dbncheckopts
# print(opts.__dict__.keys())
print("\n")
# print("fieldnames", fieldnames)
print("\n")
# ---------!dbncheckopts
dbncheckopts(opts,valid_fields)
# print("Sizes sizes: ", sizes)
#dbnsetup(sizes,x_train,opts)
#rbmlist = []
rbmlist, dbn, dbn_sizes = dbnsetup(sizes, x_train, opts)
#print("rbmlist[u] at example_1: ", rbmlist[0])
dbn = dbntrain(rbmlist[:], dbn, x_train, opts)
# Dbn = dbnsetup(sizes, x_train, opts)
pred_y = dbnpredict(dbn, x_test)
pred_y = pred_y + 1 # data labels encoded differently from python 0 starting index
result = pred_y == np.reshape(y_test,(y_test.shape[0]))
accuracy_final = np.sum(result) / x_test.shape[0] * 100
print("Accuracy on test: ",accuracy_final,"%")
np.savetxt('RBM_accuracy.txt', pred_y, fmt='%d')