diff --git a/HARP-2020/Elfgen/Elfgen_Intake_Facility_Algorithm.R b/HARP-2020/Elfgen/Elfgen_Intake_Facility_Algorithm.R index 8838bf1e..1d70f1a9 100644 --- a/HARP-2020/Elfgen/Elfgen_Intake_Facility_Algorithm.R +++ b/HARP-2020/Elfgen/Elfgen_Intake_Facility_Algorithm.R @@ -86,22 +86,16 @@ elf <- elfgen("watershed.df" = watershed.df, #### Solving for confidence interval lines -xdat <- c(elf$plot$data$x_var) -ydat <- c(elf$plot$data$y_var) -data <- as.data.frame(elf$plot$data) uq <- elf$plot$plot_env$upper.quant upper.lm <- lm(y_var ~ log(x_var), data = uq) -predict <- as.data.frame(predict(upper.lm, newdata = data.frame(x_var = mean_intake), interval = 'confidence')) - -species_richness<-elf$stats$m*log(mean_intake)+elf$stats$b - -# Comparing predict to actual values -#fit<-as.numeric(predict$fit) -#species_richness<-elf$stats$m*log(mean_intake)+elf$stats$b -#percent_error<-((fit-species_richness)/species_richness)*100 +predict.df <- as.data.frame(predict(upper.lm, newdata = data.frame(x_var = mean_intake), interval = 'confidence')) +# this section is not necessarily needed - use as a check for percent error +# fit<-as.numeric(predict.df$fit) +# species_richness<-elf$stats$m*log(mean_intake)+elf$stats$b +# percent_error<-((fit-species_richness)/species_richness)*100 xmin <- min(uq$x_var) xmax <- max(uq$x_var) @@ -119,10 +113,10 @@ m <- elf$stats$m b <- elf$stats$b int <- m*log(mean_intake) + b # solving for mean_intake y-value -m1 <- (ymax1-ymin1)/(log(xmax)-log(xmin)) # line 1 +m1 <- (ymax1-ymin1)/(log(xmax)-log(xmin)) # slope and intercept of confidence interval line 1 b1 <- ymax1-(m1*log(xmax)) -m2 <- (ymax2-ymin2)/(log(xmax)-log(xmin)) # line 2 +m2 <- (ymax2-ymin2)/(log(xmax)-log(xmin)) # slope and intercept of confidence interval line 2 b2 <- ymax2 - (m2*log(xmax)) @@ -143,15 +137,14 @@ elf$plot + elf$stats$m <- m1 elf$stats$b <- b1 -percent_richness_change_bound1 <- richness_change(elf$stats, "pctchg" = flow_reduction_pct, "xval" = mean_intake) -abs_richness_change_bound1 <- richness_change(elf$stats, "pctchg" = flow_reduction_pct) +pct_richness_change_1 <- richness_change(elf$stats, "pctchg" = flow_reduction_pct, "xval" = mean_intake) +abs_richness_change_1 <- richness_change(elf$stats, "pctchg" = flow_reduction_pct) elf$stats$m <- m2 elf$stats$b <- b2 -percent_richness_change_bound2 <- richness_change(elf$stats, "pctchg" = flow_reduction_pct, "xval" = mean_intake) -abs_richness_change_bound2 <- richness_change(elf$stats, "pctchg" = flow_reduction_pct) - +pct_richness_change_2 <- richness_change(elf$stats, "pctchg" = flow_reduction_pct, "xval" = mean_intake) +abs_richness_change_2 <- richness_change(elf$stats, "pctchg" = flow_reduction_pct) #### Saving