forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathbenchmark_lora.py
1149 lines (981 loc) · 43.2 KB
/
benchmark_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# SPDX-License-Identifier: Apache-2.0
import argparse
import copy
import json
import pickle
import time
from dataclasses import dataclass
from enum import Enum, auto
from itertools import product
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple
import torch
import torch.utils.benchmark as TBenchmark
from torch.utils.benchmark import Measurement as TMeasurement
from utils import ArgPool, Bench, CudaGraphBenchParams
from weight_shapes import WEIGHT_SHAPES
from vllm.lora.ops.triton_ops.bgmv_expand import bgmv_expand
from vllm.lora.ops.triton_ops.bgmv_expand_slice import bgmv_expand_slice
from vllm.lora.ops.triton_ops.bgmv_shrink import bgmv_shrink
from vllm.lora.ops.triton_ops.sgmv_expand import sgmv_expand
from vllm.lora.ops.triton_ops.sgmv_shrink import sgmv_shrink
from vllm.lora.ops.triton_ops.utils import _LORA_A_PTR_DICT, _LORA_B_PTR_DICT
from vllm.utils import FlexibleArgumentParser
DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
DEFAULT_TP_SIZES = [1]
DEFAULT_BATCH_SIZES = [
1, 16, 32, 64, 128, 192, 256, 320, 384, 448, 512, 640, 768, 896, 1024,
2048, 3072, 4096, 5120, 6144, 7168, 8192
]
DEFAULT_HIDDEN_SIZES = [1024, 2048, 4096, 8192, 16384]
DEFAULT_LORA_RANKS = [16]
DEFAULT_NUM_LORAS = [1, 2, 3, 4]
DEFAULT_SORT_BY_LORA_IDS = [False, True]
DEFAULT_SEQ_LENGTHS = [1]
DEFAULT_EXPAND_FN_ADD_INPUTS = [True, False]
# Utilities
def dtype_to_str(dtype: torch.dtype):
if dtype == torch.float16:
return "f16"
if dtype == torch.bfloat16:
return "bf16"
if dtype == torch.float32:
return "f32"
raise ValueError(f"Unsupported dtype {dtype}")
def make_rand_lora_weight_tensor(k: int,
n: int,
num_loras: int,
dtype: torch.dtype,
device: str = "cuda") -> torch.Tensor:
# LoRA weights column major
return torch.rand((num_loras, n, k), dtype=dtype).to(device)
def make_rand_tensors(
a_shape: Tuple[int],
b_shape: Tuple[int],
c_shape: Tuple[int],
a_dtype: torch.dtype,
b_dtype: torch.dtype,
c_dtype: torch.dtype,
num_slices: int,
device: str = "cuda",
) -> Tuple[torch.Tensor, List[torch.Tensor], torch.Tensor]:
"""
Make LoRA input/output matrices.
"""
A = torch.rand(a_shape, dtype=a_dtype).to(device)
# LoRA weights column major
Bs = [
torch.rand(b_shape, dtype=b_dtype).to(device)
for _ in range(num_slices)
]
C = torch.zeros(c_shape, dtype=c_dtype).to(device)
return A, Bs, C
def make_prompt_lora_mapping(num_prompts: int, num_active_loras: int,
sort_by_lora_id: bool,
device: str) -> torch.Tensor:
"""
All prompts are mapped to a Lora ID in range [0, num_active_loras).
where 0 refers to first lora, 1 refers to second lora and so on.
"""
assert num_active_loras > 0
if not sort_by_lora_id:
return torch.randint(0,
num_active_loras, (num_prompts, ),
dtype=torch.long)
# Divide LoRAs equally and in order.
part_size = num_prompts // num_active_loras
part_size = max(part_size, 1)
lora_id = 0
prompt_lora_mapping = []
while len(prompt_lora_mapping) < num_prompts:
prompt_lora_mapping.extend([lora_id] * part_size)
lora_id = lora_id + 1 if lora_id + 1 < num_active_loras else lora_id
return torch.tensor(prompt_lora_mapping[:num_prompts],
dtype=torch.long,
device=device)
def make_token_lora_mapping(num_tokens: int, num_prompts: int,
prompt_lora_mapping: torch.Tensor,
seq_len_tensor: torch.Tensor, device: str):
"""
Make token_lora_mapping from prompt_lora_mapping and seq_lens_tensor
"""
assert prompt_lora_mapping.shape[0] == num_prompts
# token to lora index mapping
token_lora_mapping = [0] * num_tokens
current_offset = 0
for b_id in range(num_prompts):
lora_index = prompt_lora_mapping[b_id].item()
s = current_offset
e = s + seq_len_tensor[b_id].item()
token_lora_mapping[s:e] = [lora_index] * (e - s)
current_offset += seq_len_tensor[b_id].item()
return torch.tensor(token_lora_mapping, dtype=torch.long, device=device)
def ref_group_gemm(ref_out: torch.Tensor, input: torch.Tensor,
lora_weights: List[torch.Tensor],
seq_lens_cpu: torch.Tensor,
prompt_lora_mapping_cpu: torch.Tensor, scaling: float,
add_inputs: Optional[bool]):
"""
Torch group gemm reference implementation to test correctness of
benchmarking operations.
"""
batches = seq_lens_cpu.size(0)
out_list = []
current_offset = 0
for lora_index, b_length in zip(range(batches), seq_lens_cpu):
x = input[current_offset:b_length + current_offset, :]
current_offset += b_length
w = lora_weights[prompt_lora_mapping_cpu[lora_index]]
result = torch.nn.functional.linear(x, w)
result *= scaling
out_list.append(result)
torch.cat(out_list, dim=0)
cat_result = torch.cat(out_list, dim=0)
if add_inputs:
ref_out += cat_result
else:
ref_out.copy_(cat_result)
class OpType(Enum):
"""
LoRA Ops to benchmark and its properties.
"""
SGMV_SHRINK = auto()
BGMV_SHRINK = auto()
SGMV_EXPAND = auto()
BGMV_EXPAND = auto()
BGMV_EXPAND_SLICE = auto()
@staticmethod
def from_str(s: str) -> "OpType":
if s.lower() == 'sgmv_shrink':
return OpType.SGMV_SHRINK
if s.lower() == 'sgmv_expand':
return OpType.SGMV_EXPAND
if s.lower() == 'bgmv_shrink':
return OpType.BGMV_SHRINK
if s.lower() == 'bgmv_expand':
return OpType.BGMV_EXPAND
if s.lower() == "bgmv_expand_slice":
return OpType.BGMV_EXPAND_SLICE
raise ValueError(f"Unrecognized str {s} to convert to OpType")
def is_shrink_fn(self) -> bool:
return self in [OpType.SGMV_SHRINK, OpType.BGMV_SHRINK]
def is_expand_fn(self) -> bool:
return self in [OpType.SGMV_EXPAND, OpType.BGMV_EXPAND]
def is_prefill_op(self) -> bool:
return self in [OpType.SGMV_SHRINK, OpType.SGMV_EXPAND]
def is_decode_op(self) -> bool:
return self in [
OpType.BGMV_SHRINK, OpType.BGMV_EXPAND, OpType.BGMV_EXPAND_SLICE
]
def is_expand_slice_fn(self) -> bool:
return self in [OpType.BGMV_EXPAND_SLICE]
def num_slices(self) -> List[int]:
if self in [OpType.SGMV_EXPAND, OpType.SGMV_SHRINK]:
# SGMV kernels supports slices
return [1, 2, 3]
if self in [OpType.BGMV_SHRINK, OpType.BGMV_EXPAND]:
return [1]
if self in [OpType.BGMV_EXPAND_SLICE]:
return [2, 3]
raise ValueError(f"Unrecognized OpType {self}")
def mkn(self, batch_size: int, seq_length: int, hidden_size: int,
lora_rank: int) -> Tuple[int, int, int]:
num_tokens = batch_size * seq_length
if self.is_shrink_fn():
m = num_tokens
k = hidden_size
n = lora_rank
else:
assert self.is_expand_fn() or self.is_expand_slice_fn()
m = num_tokens
k = lora_rank
n = hidden_size
return m, k, n
def matmul_dtypes(
self, op_dtype: torch.dtype
) -> Tuple[torch.dtype, torch.dtype, torch.dtype]:
"""
return a type, b type and c type for A x B = C
"""
if self.is_shrink_fn():
return op_dtype, op_dtype, torch.float32
else:
assert self.is_expand_fn() or self.is_expand_slice_fn()
return torch.float32, op_dtype, op_dtype
def matmul_shapes(
self, batch_size: int, seq_length: int, hidden_size: int,
lora_rank: int, num_loras: int,
num_slices: int) -> Tuple[Tuple[int], Tuple[int], Tuple[int]]:
"""
Given num_slices, return the shapes of the A, B, and C matrices
in A x B = C, for the op_type
"""
m, k, n = self.mkn(batch_size, seq_length, hidden_size, lora_rank)
b_shape = (num_loras, n, k) # col-major
if self == OpType.SGMV_SHRINK:
# SGMV shrink supports num_slices inherently in the kernel
return ((m, k), b_shape, (num_slices, m, n))
if self == OpType.SGMV_EXPAND:
# SGMV expand supports num_slices inherently in the kernel
return ((num_slices, m, k), b_shape, (m, n * num_slices))
if self == OpType.BGMV_SHRINK:
return ((m, k), b_shape, (m, n))
if self == OpType.BGMV_EXPAND:
return ((m, k), b_shape, (m, n))
if self == OpType.BGMV_EXPAND_SLICE:
return ((num_slices, m, k), b_shape, (m, n * num_slices))
raise ValueError(f"Unrecognized op_type {self}")
def bench_fn(self) -> Callable:
def emulate_bgmv_expand_slice(kwargs_list: List[Dict[str, Any]]):
for x in kwargs_list:
bgmv_expand_slice(**x)
if self == OpType.SGMV_SHRINK:
return sgmv_shrink
if self == OpType.SGMV_EXPAND:
return sgmv_expand
if self == OpType.BGMV_SHRINK:
return bgmv_shrink
if self == OpType.BGMV_EXPAND:
return bgmv_expand
if self == OpType.BGMV_EXPAND_SLICE:
return emulate_bgmv_expand_slice
raise ValueError(f"Unrecognized optype {self}")
def run_ref_group_gemm(self, output: torch.Tensor, input: torch.Tensor,
lora_weights: List[torch.Tensor],
**kwargs) -> Callable:
"""Each benchmark operation expected the input, lora_weights and outputs
in a slightly different format. Refer to self.matmul_shapes().
run_ref_group_gemm accounts for those differences in executing a
reference group gemm for correctness testing.
"""
w_dtype = lora_weights[0].dtype
num_slices = len(lora_weights)
if self == OpType.SGMV_SHRINK:
for slice_idx in range(num_slices):
ref_group_gemm(ref_out=output[slice_idx, :],
input=input,
lora_weights=lora_weights[slice_idx],
**kwargs)
if self == OpType.SGMV_EXPAND:
hidden_size = lora_weights[0].shape[1]
for slice_idx in range(num_slices):
slice_offset = slice_idx * hidden_size
ref_group_gemm(
ref_out=output[:, slice_offset:slice_offset + hidden_size],
input=input[slice_idx].clone().to(dtype=w_dtype),
lora_weights=lora_weights[slice_idx],
**kwargs)
if self == OpType.BGMV_SHRINK:
assert num_slices == 1
ref_group_gemm(ref_out=output,
input=input,
lora_weights=lora_weights[0],
**kwargs)
if self == OpType.BGMV_EXPAND:
assert num_slices == 1
ref_group_gemm(ref_out=output,
input=input.clone().to(dtype=w_dtype),
lora_weights=lora_weights[0],
**kwargs)
if self == OpType.BGMV_EXPAND_SLICE:
hidden_size = lora_weights[0].shape[1]
for slice_idx in range(num_slices):
slice_offset = slice_idx * hidden_size
ref_group_gemm(
ref_out=output[:, slice_offset:slice_offset + hidden_size],
input=input[slice_idx].clone().to(dtype=w_dtype),
lora_weights=lora_weights[slice_idx],
**kwargs)
raise ValueError(f"Unrecognized optype {self}")
@dataclass
class BenchmarkContext:
"""
LoRA benchmark context
"""
batch_size: int
hidden_size: int
num_loras: int
num_active_loras: int
lora_rank: int
sort_by_lora_id: bool
dtype: torch.dtype
seq_length: Optional[int] = None
num_slices: Optional[int] = None # num_slices for slice based ops
def with_seq_length(self, seq_length: int) -> "BenchmarkContext":
ctx = copy.copy(self)
ctx.seq_length = seq_length
return ctx
def with_num_slices(self, num_slices: int) -> "BenchmarkContext":
ctx = copy.copy(self)
ctx.num_slices = num_slices
return ctx
def bench_label(self) -> str:
return f"lora-{self.dtype}"
def bench_sublabel(self, op_type: OpType) -> str:
m, k, n = op_type.mkn(self.batch_size, self.seq_length,
self.hidden_size, self.lora_rank)
desc = {
'bs': self.batch_size,
'sl': self.seq_length,
'm': m,
'k': k,
'n': n,
'num_loras': self.num_loras,
'sort_by_lora': self.sort_by_lora_id,
'num_slices': self.num_slices,
}
return json.dumps(desc)
@dataclass
class BenchmarkTensors:
"""
Input/Output tensors used for benchmarks
"""
# matmul tensors
input: torch.Tensor
lora_weights_lst: List[torch.Tensor]
output: torch.Tensor
# metadata tensors
seq_lens: torch.Tensor
seq_start_loc: torch.Tensor
prompt_lora_mapping: torch.Tensor
token_lora_mapping: torch.Tensor
def io_types(self) -> str:
return (f"{dtype_to_str(self.input.dtype)}x"
f"{dtype_to_str(self.lora_weights_lst[0].dtype)}=>"
f"{dtype_to_str(self.output.dtype)}")
@staticmethod
def make(ctx: BenchmarkContext,
op_type: OpType,
device: str = "cuda") -> "BenchmarkTensors":
# Make input / output matmul tensors.
a_shape, b_shape, c_shape = op_type.matmul_shapes(
ctx.batch_size, ctx.seq_length, ctx.hidden_size, ctx.lora_rank,
ctx.num_loras, ctx.num_slices)
a_type, b_type, c_type = op_type.matmul_dtypes(ctx.dtype)
input_tensor, lora_weights, output_tensor = \
make_rand_tensors(a_shape, b_shape, c_shape, a_type, b_type, c_type,
num_slices = ctx.num_slices)
# Make metadata tensors.
# Keep the metadata tensors in the CPU for further processing if needed.
# The tensors get moved to the GPU before benchmarking.
assert ctx.num_active_loras <= ctx.num_loras
total_tokens = ctx.batch_size * ctx.seq_length
# Prepare seq lens tensor
seq_len_tensor = torch.randint(ctx.seq_length, ctx.seq_length + 1,
(ctx.batch_size, ))
# Prepare seq_start_loc tensor
seq_start_loc_tensor = torch.cumsum(torch.tensor(
[0] + seq_len_tensor[:-1].tolist(), dtype=torch.long),
dim=0)
assert total_tokens == seq_len_tensor.sum()
# Prepare prompt lora indices tensor
prompt_lora_indices_tensor = make_prompt_lora_mapping(
ctx.batch_size, ctx.num_active_loras, ctx.sort_by_lora_id, "cpu")
# Prepare token lora indices tensor
token_lora_indices_tensor = make_token_lora_mapping(
total_tokens, ctx.batch_size, prompt_lora_indices_tensor,
seq_len_tensor, "cpu")
return BenchmarkTensors(input_tensor, lora_weights, output_tensor,
seq_len_tensor, seq_start_loc_tensor,
prompt_lora_indices_tensor,
token_lora_indices_tensor)
def sanity_check(self) -> None:
"""
Fails asserts when non-conformality is detected.
"""
num_tokens = self.input.shape[-2]
# check metadata tensors
assert torch.sum(self.seq_lens) == num_tokens
num_seqs = self.seq_lens.shape[0]
assert self.seq_start_loc.shape[0] == num_seqs
assert self.prompt_lora_mapping.shape[0] == num_seqs
assert self.token_lora_mapping.shape[0] == num_tokens
def to_device(self, device: str):
"""
Transfer tensors to device if the tensors aren't already on the device
"""
def to_device(tensor: torch.Tensor):
if tensor.device != device:
tensor = tensor.to(device=device)
return tensor
self.input = to_device(self.input)
self.output = to_device(self.output)
self.seq_lens = to_device(self.seq_lens)
self.seq_start_loc = to_device(self.seq_start_loc)
self.prompt_lora_mapping = to_device(self.prompt_lora_mapping)
self.token_lora_mapping = to_device(self.token_lora_mapping)
for i in range(len(self.lora_weights_lst)):
self.lora_weights_lst[i] = to_device(self.lora_weights_lst[i])
def metadata(self) -> Tuple[int, int, int]:
"""
Return num_seqs, num_tokens and max_seq_len
"""
num_seqs = self.seq_lens.shape[0]
num_tokens = self.token_lora_mapping.shape[0]
max_seq_len = torch.max(self.seq_lens).item()
num_slices = len(self.lora_weights_lst)
return num_seqs, num_tokens, max_seq_len, num_slices
def convert_to_sgmv_benchmark_tensors(self):
"""
For sgmv punica kernels, when consecutive sequences have the
same LoRA ID, we just merge them together.
This happens in punica.py::compute_metadata
"""
# Collapse seq_lens and seq_start_loc
_, seq_lens = torch.unique_consecutive(self.token_lora_mapping,
return_counts=True)
cum_result = torch.cumsum(seq_lens, dim=0)
seq_start_loc = torch.zeros_like(seq_lens)
seq_start_loc[1:].copy_(cum_result[:-1])
# Collapse prompt mapping
prompt_lora_mapping = torch.unique_consecutive(
self.prompt_lora_mapping)
assert torch.sum(seq_lens) == torch.sum(self.seq_lens), \
f"dont match - new {torch.sum(seq_lens)} vs {torch.sum(self.seq_lens)}"
self.prompt_lora_mapping = prompt_lora_mapping.to(
dtype=self.prompt_lora_mapping.dtype)
self.seq_lens = seq_lens.to(dtype=self.seq_lens.dtype)
self.seq_start_loc = seq_start_loc.to(dtype=self.seq_start_loc.dtype)
def as_sgmv_shrink_kwargs(self) -> Dict[str, Any]:
self.convert_to_sgmv_benchmark_tensors()
self.sanity_check()
self.to_device(self.input.device)
num_seqs, num_tokens, max_seq_len, num_slices = self.metadata()
# Sanity check matrix shapes.
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
0].shape, self.output.shape
# Expected input shape [num_tokens, hidden_size]
assert len(i_shape) == 2
assert i_shape[0] == num_tokens
hidden_size = i_shape[1]
# Expected lora weight shape [num_loras, lora_rank, hidden_size]
assert len(lw_shape) == 3
assert lw_shape[2] == hidden_size
lora_rank = lw_shape[1]
# Expected output shape [num_slices, num_tokens, lora_rank]
assert len(o_shape) == 3
assert o_shape == (num_slices, num_tokens, lora_rank)
return {
'inputs': self.input,
'lora_a_weights': self.lora_weights_lst,
'output_tensor': self.output,
'b_seq_start_loc': self.seq_start_loc,
'seq_len_tensor': self.seq_lens,
'lora_indices_tensor': self.prompt_lora_mapping,
'batches': num_seqs,
'max_seq_length': max_seq_len,
'token_nums': num_tokens,
'scaling': 1.0,
}
def as_sgmv_expand_kwargs(self, add_inputs: bool) -> Dict[str, Any]:
self.convert_to_sgmv_benchmark_tensors()
self.sanity_check()
self.to_device(self.input.device)
num_seqs, num_tokens, max_seq_len, num_slices = self.metadata()
# Sanity check matrix shapes.
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
0].shape, self.output.shape
# Expected input shape : [num_slices, num_tokens, lora_rank]
assert len(i_shape) == 3
assert i_shape[0] == num_slices
assert i_shape[1] == num_tokens
lora_rank = i_shape[2]
# Expected lora weight shape : [num_lora, hidden_size, lora_rank]
assert len(lw_shape) == 3
assert lw_shape[2] == lora_rank
hidden_size = lw_shape[1]
# Expected output shape : [num_tokens, hidden_size * num_slices]
assert len(o_shape) == 2
assert o_shape == (num_tokens, hidden_size * num_slices)
return {
'inputs': self.input,
'lora_b_weights': self.lora_weights_lst,
'output_tensor': self.output,
'b_seq_start_loc': self.seq_start_loc,
'seq_len_tensor': self.seq_lens,
'lora_indices_tensor': self.prompt_lora_mapping,
'batches': num_seqs,
'max_seq_length': max_seq_len,
'token_nums': num_tokens,
'offset_start': 0,
'add_inputs': add_inputs,
}
def as_bgmv_shrink_kwargs(self) -> Dict[str, Any]:
assert len(self.lora_weights_lst) == 1
self.to_device(self.input.device)
_, num_tokens, _, _ = self.metadata()
# Sanity check shapes
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
0].shape, self.output.shape
# Expected input shape [num_tokens, hidden_size]
assert len(i_shape) == 2
assert i_shape[0] == num_tokens
hidden_size = i_shape[1]
# Expected lora weight shape [num_loras, lora_rank, hidden_size]
assert len(lw_shape) == 3
assert lw_shape[2] == hidden_size
lora_rank = lw_shape[1]
# Expected output shape [num_tokens, lora_rank]
assert len(o_shape) == 2
assert o_shape == (num_tokens, lora_rank)
return {
'inputs': self.input,
'lora_a_weights': self.lora_weights_lst[0],
'output_tensor': self.output,
'lora_indices_tensor': self.token_lora_mapping,
'scaling': 1.0
}
def as_bgmv_expand_kwargs(self, add_inputs: bool):
assert len(self.lora_weights_lst) == 1
self.to_device(self.input.device)
_, num_tokens, _, _ = self.metadata()
# Sanity check shapes
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
0].shape, self.output.shape
# Expected input shape [num_tokens, lora_rank]
assert len(i_shape) == 2
assert i_shape[0] == num_tokens
lora_rank = i_shape[1]
# Expected lora weight shape [num_loras, hidden_size, lora_rank]
assert len(lw_shape) == 3
assert lw_shape[2] == lora_rank
hidden_size = lw_shape[1]
# Expected output shape [num_tokens, hidden_size]
assert len(o_shape) == 2
assert o_shape == (num_tokens, hidden_size)
return {
'inputs': self.input,
'lora_b_weights': self.lora_weights_lst[0],
'output_tensor': self.output,
'lora_indices_tensor': self.token_lora_mapping,
'add_inputs': add_inputs
}
def as_bgmv_expand_slice_kwargs(self, add_inputs: bool) -> Dict[str, Any]:
_, num_tokens, _, num_slices = self.metadata()
# Sanity check shapes
i_shape, lw_shape, o_shape = self.input.shape, self.lora_weights_lst[
0].shape, self.output.shape
# Expected input shape [num_slices, num_tokens, lora_rank]
assert len(i_shape) == 3
assert i_shape[0] == num_slices
assert i_shape[1] == num_tokens
lora_rank = i_shape[2]
# Expected lora weight shape [num_loras, hidden_size, lora_rank]
assert len(lw_shape) == 3
assert lw_shape[2] == lora_rank
hidden_size = lw_shape[1]
# Expected output shape [num_tokens, hidden_size * num_slices]
assert len(o_shape) == 2
assert o_shape == (num_tokens, hidden_size * num_slices)
self.to_device(self.input.device)
kwargs_list = []
for i in range(num_slices):
kwargs_list.append({
'inputs': self.input[i],
'lora_b_weights': self.lora_weights_lst[i],
'output_tensor': self.output,
'lora_indices_tensor': self.token_lora_mapping,
'slice_offset': i * hidden_size,
'slice_size': hidden_size,
'add_inputs': add_inputs,
})
return {'kwargs_list': kwargs_list}
def bench_fn_kwargs(self,
op_type: OpType,
add_inputs: Optional[bool] = None) -> Dict[str, Any]:
if op_type.is_shrink_fn():
assert add_inputs is None
else:
assert add_inputs is not None
if op_type == OpType.SGMV_SHRINK:
return self.as_sgmv_shrink_kwargs()
if op_type == OpType.SGMV_EXPAND:
return self.as_sgmv_expand_kwargs(add_inputs)
if op_type == OpType.BGMV_SHRINK:
return self.as_bgmv_shrink_kwargs()
if op_type == OpType.BGMV_EXPAND:
return self.as_bgmv_expand_kwargs(add_inputs)
if op_type == OpType.BGMV_EXPAND_SLICE:
return self.as_bgmv_expand_slice_kwargs(add_inputs)
raise ValueError(f"Unrecognized optype {self}")
def test_correctness(self, op_type: OpType,
expand_fn_add_inputs: Optional[bool]) -> bool:
"""
Test correctness of op_type implementation against a grouped gemm
reference implementation.
"""
seq_lens_cpu = self.seq_lens.to(device="cpu")
prompt_lora_mapping_cpu = self.prompt_lora_mapping.to(device="cpu")
ref_output = self.output.clone()
self.output.zero_()
op_type.bench_fn()(
**self.bench_fn_kwargs(op_type, expand_fn_add_inputs))
op_type.run_ref_group_gemm(
ref_output,
self.input,
self.lora_weights_lst,
seq_lens_cpu=seq_lens_cpu,
prompt_lora_mapping_cpu=prompt_lora_mapping_cpu,
scaling=1.0,
add_inputs=expand_fn_add_inputs)
rtol, atol = {
torch.float16: (6e-2, 6e-2),
torch.bfloat16: (6e-2, 6e-2),
torch.float32: (1e-2, 1e-2),
}[self.output.dtype]
return torch.allclose(ref_output, self.output, rtol=rtol, atol=atol)
def bench_optype(ctx: BenchmarkContext,
arg_pool_size: int,
op_type: OpType,
cuda_graph_nops: Optional[int] = None,
expand_fn_add_inputs: Optional[bool] = None,
test_correctness: bool = False) -> TMeasurement:
assert arg_pool_size >= 1
if op_type.is_shrink_fn():
assert expand_fn_add_inputs is None
else:
assert expand_fn_add_inputs is not None
# BenchmarkContext -> BenchmarkTensors
bench_tensors : List[BenchmarkTensors] = \
[BenchmarkTensors.make(ctx, op_type) for _ in range(arg_pool_size)]
for bt in bench_tensors:
bt.sanity_check()
# Test correctness of our implementation.
if test_correctness:
assert all([
bt.test_correctness(op_type, expand_fn_add_inputs)
for bt in bench_tensors
])
# BenchmarkTensors -> Dict (kwargs)
kwargs_list = [
bt.bench_fn_kwargs(op_type, add_inputs=expand_fn_add_inputs)
for bt in bench_tensors
]
# Clear LoRA optimization hash-maps.
_LORA_A_PTR_DICT.clear()
_LORA_B_PTR_DICT.clear()
# Run bench function so that _LORA_A_PTR_DICT and _LORA_B_PTR_DICT are setup
for kwargs in kwargs_list:
op_type.bench_fn()(**kwargs)
torch.cuda.synchronize()
# Merge into a single kwargs and qualify arguments as ArgPool
kwargs = {k: ArgPool([]) for k in kwargs_list[0]}
for _kwargs in kwargs_list:
for k, v in _kwargs.items():
kwargs[k].values.append(v)
describe_args = (f"add_inputs={expand_fn_add_inputs}"
if expand_fn_add_inputs is not None else "")
description = (
f"{op_type.name}({describe_args}) ({bench_tensors[0].io_types()})")
cuda_graph_params = None
if cuda_graph_nops:
cuda_graph_params = CudaGraphBenchParams(cuda_graph_nops)
timer = None
with Bench(cuda_graph_params,
ctx.bench_label(), ctx.bench_sublabel(op_type), description,
op_type.bench_fn(), **kwargs) as bench:
timer = bench.run()
return timer
def bench_torch_mm(ctx: BenchmarkContext,
arg_pool_size: int,
op_type: OpType,
cuda_graph_nops: Optional[int] = None) -> TMeasurement:
"""
Benchmark basic torch.mm as a roofline.
When all the input tokens have the same LoRA ID, the LoRA kernels are just
a matmul. This torch.mm benchmark serves as a roofline for that case.
input op_type is used in determining the m, k, n dimensions for the matmul.
"""
batch_size, hidden_size, lora_rank, seq_length, dtype = (ctx.batch_size,
ctx.hidden_size,
ctx.lora_rank,
ctx.seq_length,
ctx.dtype)
m, k, n = op_type.mkn(batch_size, seq_length, hidden_size, lora_rank)
# For a fairer comparison.
n = n * ctx.num_slices
# Get matmul input and output tensors for A x B = C
As, Bs, Cs = [], [], []
for _ in range(arg_pool_size):
As.append(torch.rand((m, k), dtype=dtype).to("cuda"))
Bs.append(torch.rand((n, k), dtype=dtype).to("cuda").t())
Cs.append(torch.rand((m, n), dtype=dtype).to("cuda"))
# Make torch.mm kwargs
mm_kwargs = {'input': ArgPool(As), 'mat2': ArgPool(Bs), 'out': ArgPool(Cs)}
description = (
f"single-lora roofline using torch.mm ({dtype_to_str(dtype)}"
f"x{dtype_to_str(dtype)}"
f"=>{dtype_to_str(dtype)})")
cuda_graph_params = None
if cuda_graph_nops:
cuda_graph_params = CudaGraphBenchParams(cuda_graph_nops)
with Bench(cuda_graph_params, ctx.bench_label(),
ctx.bench_sublabel(op_type), description, torch.mm,
**mm_kwargs) as bench:
return bench.run()
# runner
def use_cuda_graph_recommendation() -> str:
return """
Triton kernels have a significant launch overhead with
launched directly via python. This overhead is more noticeable
for small the problem sizes. For these cases, it is recommended
to use the script with `--cuda-graph-nops N` to benchmark N
consecutive invocations of the benchmarking operations from
inside a CUDA Graph. Note that the returned measurement is for N
invocations of the operation.
"""
def print_timers(timers: List[TMeasurement],
args: Optional[argparse.Namespace] = None):
compare = TBenchmark.Compare(timers)
compare.print()
if args and args.cuda_graph_nops:
print(
f"Note : The timings reported above is for {args.cuda_graph_nops} "
"consecutive invocations of the benchmarking functions. "
f"Please divide by {args.cuda_graph_nops} for single invocation "
"timings.")
print("Note on Comparison with torch.mm : The torch.mm numbers are "
"benchmark numbers of a simple matmul emulating the single lora "
"case. It is provided as a roofline for comparing our LoRA Kernel "
"implementations. It is expected that the LoRA kernels will be "
"slower than torch.mm in cases where num_loras is big. But for "
"small num_loras the goal should be to match the torch.mm numbers.")
def run(args: argparse.Namespace, bench_ctxs: List[BenchmarkContext]):
if args.cuda_graph_nops is not None:
assert args.cuda_graph_nops > 0
print(f"Benchmarking {args.cuda_graph_nops} invocations inside a CUDA "
"Graph")
else:
print(f"CUDA Graphs not enabled.\n{use_cuda_graph_recommendation()}")
timers = []
for bench_ctx in bench_ctxs:
for seq_len in args.seq_lengths:
bench_ops: List[OpType] = []
if seq_len == 1:
# bench all decode ops
bench_ops = [op for op in args.op_types if op.is_decode_op()]
else:
# bench all prefill ops
bench_ops = [op for op in args.op_types if op.is_prefill_op()]
seq_len_timers = []
for bench_op in bench_ops:
for num_slices in bench_op.num_slices():
_ctx = bench_ctx.with_seq_length(seq_len).with_num_slices(
num_slices)
# Benchmark torch.mm as a roofline
seq_len_timers.append(
bench_torch_mm(_ctx, args.arg_pool_size, bench_op,
args.cuda_graph_nops))
# Benchmark bench_op
expand_fn_add_inputs = [
None
] if bench_op.is_shrink_fn() else args.expand_fn_add_inputs
for add_input_arg in expand_fn_add_inputs:
seq_len_timers.append(
bench_optype(_ctx, args.arg_pool_size, bench_op,
args.cuda_graph_nops, add_input_arg,
args.test_correctness))
print_timers(seq_len_timers)
timers.extend(seq_len_timers)
# Result stdout dump
print("== All Results ====")
print_timers(timers, args)
if args.output_directory:
# Result file dump
od = Path(args.output_directory)
if not od.exists():
od.mkdir()
timestamp = int(time.time())
pkl_file = od / f"lora_bench-{timestamp}.pkl"
print(f"Writing benchmarks to {pkl_file}")
with open(pkl_file, "wb") as f:
pickle.dump(timers, f)
def as_benchmark_contexts(hidden_sizes: List[int], lora_ranks: List[int],
args: argparse.Namespace) -> List[BenchmarkContext]:
ctxs: List[BenchmarkContext] = []
for batch_size, hidden_size, lora_rank, num_loras, sort_by_lora_id in product( # noqa
args.batch_sizes, list(hidden_sizes), lora_ranks, args.num_loras,
args.sort_by_lora_id):
ctxs.append(
BenchmarkContext(
batch_size=batch_size,
hidden_size=hidden_size,
lora_rank=lora_rank,
num_loras=num_loras,
num_active_loras=args.num_active_loras
if args.num_active_loras else num_loras,
# To be filled based on the OpType to benchmark
seq_length=None,
sort_by_lora_id=sort_by_lora_id,
dtype=args.dtype,
# To be filled based on the OpType to benchmark
num_slices=None))
return ctxs
def run_list_bench(args: argparse.Namespace):
print(args)
print("List bench :\n"
f" Hidden Sizes {args.hidden_sizes}"
f" LoRA Ranks {args.lora_ranks}")
# Get all benchmarking contexts
bench_contexts: List[BenchmarkContext] = as_benchmark_contexts(
hidden_sizes=args.hidden_sizes, lora_ranks=args.lora_ranks, args=args)
run(args, bench_contexts)
def run_range_bench(args: argparse.Namespace):
print(args)
hidden_sizes = list(
range(args.hidden_sizes_start, args.hidden_sizes_end + 1,
args.hidden_sizes_increment))
lora_ranks = list(
range(args.lora_ranks_start, args.lora_ranks_end + 1,
args.lora_ranks_increment))
print("Range bench :\n"
f" Hidden Sizes {hidden_sizes}"
f" LoRA Ranks {lora_ranks}")
# Get all benchmarking contexts
bench_contexts: List[BenchmarkContext] = as_benchmark_contexts(
hidden_sizes=hidden_sizes, lora_ranks=lora_ranks, args=args)
run(args, bench_contexts)
def run_model_bench(args: argparse.Namespace):
print(args)
def hidden_sizes_from_model(model: str, tp_size: int) -> set[int]:
hidden_sizes = set()
for KN, tp_split_dim in WEIGHT_SHAPES[model]:
KN[tp_split_dim] = KN[tp_split_dim] // tp_size
hidden_sizes.add(KN[1])
return hidden_sizes
# Get all hidden sizes
hidden_sizes: set[int] = set()
for model_name, tp_size in product(args.models, args.tp_sizes):
hidden_sizes = hidden_sizes.union(
hidden_sizes_from_model(model_name, tp_size))
print("Model bench :\n"