-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbaseline.py
290 lines (231 loc) · 10.9 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
""" This file contains the baseline functions for detecting anomalies from
sensor data using the ellipsoid boundary modeling techniques outlined by
Dr. Suthaharan et al. They are accessible via the IPython notebook
at the root of the repository and can be interchanged with custom functions
for exploratory analysis of the algorithm(s)
These baseline functions can be replaced with other ellipsoid boundary
modeling techniques to work with the respective IPython notebook.
"""
import math
import numpy
import random
"""Begin data input functions"""
def read_ibrl_data(data_file):
"""Reads IBRL data from file and returns dict mapping
temp./humidity sensor data to the node that collected them
:param data_file: string representing path to ibrl dataset
:return: dictionary mapping sensor node to list of tuples containing sensor data
"""
with open(data_file, 'r') as fp:
row_count = 0
bad_count = 0
input_readings = {}
for line in fp:
row_count = row_count + 1
line = line.strip() # remove edge whitespace
tokens = line.split(',') # segregate each section
try:
if len(tokens) == 5: #
temp_reading = tokens[0]
humidity_reading = tokens[1]
sensor_id = tokens[3]
# if sensor id is in the input_readings dict
if sensor_id in input_readings:
# add the temp and humidity values
input_readings[sensor_id]['temp_readings'].append(temp_reading)
input_readings[sensor_id]['humidity_readings'].append(humidity_reading)
else:
# add the sensor id and new temp and humidity values
input_readings[sensor_id] = {
'temp_readings': [tokens[0]],
'humidity_readings': [tokens[1]]
}
else: # Note and dump bad data
bad_count = bad_count + 1
except Exception as e:
raise e
# Convert data points to numpy arrays
measurements = {sensor: numpy.array([readings['temp_readings'], readings['humidity_readings']], float)
for (sensor, readings) in input_readings.iteritems()}
print "Total rows: %s" % row_count
print "Total incomplete rows: %s" % bad_count
return measurements
"""Begin data transformation functions"""
def randomize_readings(sensors):
""" Pseudo randomly shuffles location of each pair of temperature and
humidity observations
:param sensors: Dictionary of sensors containing temp. and humidity readings
:return: Dictionary of sensors containing shuffled temp. and humid. readings
"""
for sensor in sensors:
tuples = [(sensors[sensor][0][i],sensors[sensor][1][i])
for i in range(len(sensors[sensor][0]))]
random.shuffle(tuples)
sensors[sensor] = numpy.array([[reading[0] for reading in tuples], [reading[1] for reading in tuples]], float)
return sensors
def generate_differences(sensors):
"""Generates a dictionary mapping sensors to a 2D array containing
the successive differences of temp. and humidity measurements as well as
a look up table mapping the resulting differences to their original
measurements.
:param sensor: Dictionary mapping sensors to original arrays of temp.
and humidity readings
:return: tuple containing dictionary mapping sensors to successive
differences and look up table mapping the results to their original
measurements
"""
differences = {}
lookup_table = {}
for sensor in sensors:
differences[sensor] = calc_succ_diff(sensors[sensor])
return (differences, lookup_table)
def calc_succ_diff(sensor):
""" Calculates the successive differences of for a given sensor
:param sensor: Sensor to be operated on
:return: numpy array of successive differences
"""
sensor = [
successive_diff(sensor[0]),
successive_diff(sensor[1])
]
return numpy.array(sensor, float)
def successive_diff(array):
""" Calculates the successive differences for an array
:param array: Array to be operated on
:return: Array of resulting successive differences
"""
return [array[i+1] - array[i] for i in range(len(array) - 1)]
"""Begin ellipsoid modeling functions"""
def generate_regional_ellipsoid_parameters(sensors_ellipsoid_parameters):
""" Generates the aggregate ellipsoid parameters from a list of ellipsoids
within a region
:param ellipsoid_parameters: list of dictionaries representing ellipsoid
parameters from individual sensors
:return: dictionary representing the aggregate ellipsoid parameters for a
given region
"""
num_of_ellipsoids = len(sensors_ellipsoid_parameters)
ave_a = sum([sensors_ellipsoid_parameters[ellipsoid]['a'] for ellipsoid in sensors_ellipsoid_parameters]) / num_of_ellipsoids
ave_b = sum([sensors_ellipsoid_parameters[ellipsoid]['b'] for ellipsoid in sensors_ellipsoid_parameters]) / num_of_ellipsoids
ave_theta = sum([sensors_ellipsoid_parameters[ellipsoid]['theta'] for ellipsoid in sensors_ellipsoid_parameters]) / num_of_ellipsoids
return (ave_a, ave_b, ave_theta)
def generate_ellipsoid(sensor, a, b, theta=None):
""" Calculates points representing an ellipsoid for a given a and b
over from sensor readings.
:param sensor: sensor mapped to a 2D array of temp. and humidity readings
:param a: a parameter used in calculating ellipsoid parameters
:param b: b parameter used in calculating ellipsoid parameters
:param theta: optional hardcoded theta value
:return: ellipsoid_parameters: dictionary containing parameters used in creation of
as well as results from modeling ellipsoid boundaries
"""
if theta is None:
theta = calculate_ellipsoid_orientation(sensor)
A = calc_A(a, b, theta) # A is independent of the temperatures
ellipsoid_parameters = {
'a': a,
'b': b,
'theta': theta,
'original_sensor_readings': sensor,
'ellipsoid_points': []
}
for temp_reading in sensor[0]:
B = calc_B(a, b, temp_reading, theta)
C = calc_C(a, b, temp_reading, theta)
hi1 = calc_hi1(A, B, C)
ellipsoid_parameters['ellipsoid_points'].append((temp_reading, hi1))
hi2 = calc_hi2(A, B, C)
ellipsoid_parameters['ellipsoid_points'].append((temp_reading, hi2))
return ellipsoid_parameters
def calculate_ellipsoid_orientation(sensor):
""" Calculates the orientation of raw sensor data points
:param sensor: sensor mapped to a 2D array of temp. and humidity readings
:return: float, theta of ellipsoid orientation
"""
n = len(sensor[0])
temperature_readings = sensor[0]
humidity_readings = sensor[1]
#FIXME(hrybacki): Come up with a better way of breaking this components down
# part_one
part_one_multiplicands = [temperature_readings[i]*humidity_readings[i] for i in range(n)]
part_one_value = n * sum(part_one_multiplicands)
# part two
part_two_value = sum(temperature_readings) * sum(humidity_readings)
# part three
part_three_value = n * sum([math.pow(temp, 2) for temp in temperature_readings])
# part four
part_four_value = math.pow(sum(temperature_readings), 2)
# arctan(theta)
tan_theta = (part_one_value - part_two_value) / (part_three_value - part_four_value)
#return math.atan(tan_theta)
# @FIXME(hrybacki): Dr. Shan want's this to be absolute value. Do we need that? Why?
#return math.fabs(math.atan(tan_theta))
return math.atan(tan_theta)
def calc_A(a, b, theta):
""" Returns the A value used in ellipsoid boundary modeling
:param a: represents the major axis of the ellipsoid
:param b: represents the mini axis os the ellipsoid
:param theta: represents the orientation of the raw measurements
:return: A value used in ellipsoid boundary modeling
"""
A = (math.pow(math.sin(theta), 2) / math.pow(a, 2)) + (math.pow(math.cos(theta), 2) / math.pow(b, 2))
return A
def calc_B(a, b, ti, theta):
""" Returns the B value used in ellipsoid boundary modeling
:param a: represents the major axis of the ellipsoid
:param b: represents the mini axis os the ellipsoid
:param ti: temperature (independent variable) used in calculation
:param theta: represents the orientation of the raw measurements
:return: B value used in ellipsoid boundary modeling
"""
B = ((1/math.pow(a, 2)) - (1/math.pow(b, 2))) * ti * math.sin(2*theta)
return B
def calc_C(a, b, ti, theta):
""" Returns the C value used in ellipsoid boundary modeling
:param a: represents the major axis of the ellipsoid
:param b: represents the mini axis os the ellipsoid
:param ti: temperature (independent variable) used in calculation
:param theta: represents the orientation of the raw measurements
:return: C value used in ellipsoid boundary modeling
"""
C = ((math.pow(ti, 2) * math.pow(math.cos(theta), 2)) / math.pow(a, 2)) + \
((math.pow(ti, 2) * math.pow(math.sin(theta), 2)) / math.pow(b, 2)) - 1
return C
def calc_hi1(A, B, C):
""" Calculates the upper point for a given temp modeling an ellipsoid
:param A: A value used in ellipsoid boundary modeling
:param B: B value used in ellipsoid boundary modeling
:param C: C value used in ellipsoid boundary modeling
:return: Upper point for given temperature
"""
try:
return (-B + math.sqrt(math.pow(B, 2) - (4*A*C))) / (2*A)
except ValueError:
pass # skip domain errors
def calc_hi2(A, B, C):
""" Calculates the lower point for a given temp modeling an ellipsoid
:param A: A value used in ellipsoid boundary modeling
:param B: B value used in ellipsoid boundary modeling
:param C: C value used in ellipsoid boundary modeling
:return: Lower point for given temperature
"""
try:
return (-B - math.sqrt(math.pow(B, 2) - (4*A*C))) / (2*A)
except ValueError:
pass # ignore domain errors
"""Begin incomplete functions"""
def inverse_transformation(lookup_table, aggregate_ellipsoid):
""" Generates a tuple of two dicts mapping sensors to anomalies and true measurements
:param lookup_table: dictionary mapping difference readings to their raw measurements
:param aggregate_ellipsoid: 3-tuple containing aggregate ellipsoid parameters
:return: tuple containing two dicts, one of true measurements and another of anomalies
each mapped to their original sensors
"""
pass
def is_anomaly(reading, aggregate_ellipsoid):
""" Determines if reading is anomaly with respect to an ellipsoid
:param reading: temperature and humidity readings
:param aggregate_ellipsoid: parameters for aggregate ellipsoid
:return: True if an anomaly, else False
"""
pass