-
Notifications
You must be signed in to change notification settings - Fork 190
/
Copy pathmermaid.js
127 lines (114 loc) · 3.2 KB
/
mermaid.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
graph LR
subgraph Data Sources
database
csv
end
database-->dataframe
csv-->dataframe
dataframe-->SMT_init
subgraph TrainedSupervisedModel
subgraph TSM_Properties
algorithm_name
is_classification
is_regression
best_hyperparameters
model_type
binary_classification_scores
metrics
end
subgraph TSM_Properties2
model
feature_model
fit_pipeline
column_names
_model_type
grain_column
prediction_column
test_set_predictions
test_set_class_labels
test_set_actual
_metric_by_name
end
subgraph TSM_methods
TSM_init[__init__]
save
make_predictions
prepare_and_subset
make_factors
make_predictions_with_k_factors
make_original_with_predictions_and_features
create_catalyst_dataframe
predict_to_catalyst_sam
predict_to_sqlite
roc_curve_plot
roc
pr_curve_plot
pr
validate_classification
end
end
subgraph SupervisedModelTrainer
SMT_init-->ASMT_init
SMT_init[__init__]-->full_pipeline
knn-->knn2
random_forest-->random_forest_classification_a
random_forest-->random_forest_regression_a
logistic_regression-->logistic_regression2
linear_regression-->linear_regression2
subgraph AdvancedSupervisedModelTrainer
ASMT_init[__init__]
knn2-->TSM_init
random_forest_classification_a-->TSM_init
random_forest_regression_a-->TSM_init
logistic_regression2-->TSM_init
linear_regression2-->TSM_init
end
end
subgraph toolbox
subgraph model_eval.py
compute_roc
compute_pr
validate_predictions_and_labels_are_equal_length
calculate_regression_metrics
calculate_binary_classification_metrics
tsm_classification_comparison_plots
roc_plot_from_thresholds
pr_plot_from_thresholds
plot_rf_from_tsm
plot_random_forest_feature_importance
get_estimator_from_trained_supervised_model
get_estimator_from_meta_estimator
get_hyperparameters_from_meta_estimator
end
subgraph data_preparation.py
full_pipeline
end
full_pipeline-->DataFrameImputer
full_pipeline-->DataFrameConvertTargetToBinary
full_pipeline-->DataFrameCreateDummyVariables
full_pipeline-->DataFrameConvertColumnToNumeric
full_pipeline-->DataFrameUnderSampling
full_pipeline-->DataFrameOverSampling
full_pipeline-->DataframeDateTimeColumnSuffixFilter
full_pipeline-->DataframeColumnRemover
full_pipeline-->DataframeNullValueFilter
subgraph transformers.py
DataFrameImputer
DataFrameConvertTargetToBinary
DataFrameCreateDummyVariables
DataFrameConvertColumnToNumeric
DataFrameUnderSampling
DataFrameOverSampling
end
subgraph filters.py
DataframeDateTimeColumnSuffixFilter
DataframeColumnRemover
DataframeNullValueFilter
end
end
class model_eval pythonModule;
classDef pythonClass fill:#00ff33;
classDef pythonModule fill:#ff1100;
class Trainer pythonClass;
class AdvancedTrainer pythonClass;
class TSM pythonClass;