-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindi0001_copy.py
199 lines (160 loc) · 7.35 KB
/
indi0001_copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from datetime import datetime
from lightning.pytorch.callbacks import TQDMProgressBar
from lightning.pytorch.callbacks.early_stopping import EarlyStopping
from torchvision import datasets, transforms
import lightning as L
import os
import sys
import torch
import torch.nn as nn
import torch.utils.data as tdata
import torchmetrics as tm
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)
def forward(self, x):
out = nn.functional.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = nn.functional.relu(out)
return out
class EvoCNNModel(nn.Module):
def __init__(self):
super(EvoCNNModel, self).__init__()
# conv unit
self.conv_3_128 = BasicBlock(in_planes=3, planes=128)
self.conv_128_128 = BasicBlock(in_planes=128, planes=128)
self.conv_128_64 = BasicBlock(in_planes=128, planes=64)
self.conv_64_64 = BasicBlock(in_planes=64, planes=64)
self.conv_64_128 = BasicBlock(in_planes=64, planes=128)
self.conv_128_256 = BasicBlock(in_planes=128, planes=256)
self.conv_256_256 = BasicBlock(in_planes=256, planes=256)
self.conv_256_64 = BasicBlock(in_planes=256, planes=64)
self.conv_64_256 = BasicBlock(in_planes=64, planes=256)
# linear unit
self.linear = nn.Linear(4096, 10)
def forward(self, x):
out_0 = self.conv_3_128(x)
out_1 = self.conv_128_128(out_0)
out_2 = self.conv_128_128(out_1)
out_3 = self.conv_128_128(out_2)
out_4 = self.conv_128_128(out_3)
out_5 = self.conv_128_64(out_4)
out_6 = self.conv_64_64(out_5)
out_7 = self.conv_64_128(out_6)
out_8 = nn.functional.avg_pool2d(out_7, 2)
out_9 = self.conv_128_128(out_8)
out_10 = self.conv_128_256(out_9)
out_11 = self.conv_256_256(out_10)
out_12 = self.conv_256_256(out_11)
out_13 = self.conv_256_256(out_12)
out_14 = nn.functional.avg_pool2d(out_13, 2)
out_15 = self.conv_256_64(out_14)
out_16 = nn.functional.avg_pool2d(out_15, 2)
out_17 = self.conv_64_256(out_16)
out = out_17
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
class MyProgressBar(TQDMProgressBar):
def init_validation_tqdm(self):
bar = super().init_validation_tqdm()
if not sys.stdout.isatty():
bar.disable = True
return bar
def init_predict_tqdm(self):
bar = super().init_predict_tqdm()
if not sys.stdout.isatty():
bar.disable = True
return bar
def init_test_tqdm(self):
bar = super().init_test_tqdm()
if not sys.stdout.isatty():
bar.disable = True
return bar
class CIFAR10DataModule(L.LightningDataModule):
def __init__(self, data_dir='dataset', batch_size=128, num_workers=1):
super().__init__()
self.data_train = None
self.data_test = None
self.data_val = None
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
self.transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])])
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def prepare_data(self):
datasets.CIFAR10(root=self.data_dir, train=True, download=False)
datasets.CIFAR10(root=self.data_dir, train=False, download=False)
def setup(self, stage=None):
self.data_train = datasets.CIFAR10(root=self.data_dir, train=True, transform=self.transform)
self.data_val = datasets.CIFAR10(root=self.data_dir, train=False, transform=self.transform)
def train_dataloader(self):
return torch.utils.data.DataLoader(self.data_train, batch_size=self.batch_size,
num_workers=self.num_workers, persistent_workers=True)
def val_dataloader(self):
return torch.utils.data.DataLoader(self.data_val, batch_size=self.batch_size,
num_workers=self.num_workers, persistent_workers=True)
def training_loop() -> None:
if torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
torch.set_float32_matmul_precision('high')
model = LightningModule()
data_module = CIFAR10DataModule()
trainer = L.Trainer(max_epochs=1, fast_dev_run=False, accelerator="gpu", logger=False, enable_checkpointing=False,
callbacks=[MyProgressBar(), EarlyStopping(monitor="valid_acc", mode="max", patience=10)])
trainer.fit(model, data_module)
class LightningModule(L.LightningModule):
def __init__(self):
super().__init__()
self.model = EvoCNNModel()
self.train_acc = tm.Accuracy(task="multiclass", num_classes=10)
self.valid_acc = tm.Accuracy(task="multiclass", num_classes=10)
self.file_id = os.path.basename(__file__).split('.')[0]
self.best_acc = 0
def forward(self, inputs):
return self.model(inputs)
def training_step(self, batch, batch_idx):
inputs, target = batch
y_hat = self.model(inputs)
self.train_acc(y_hat, target)
self.log('train_acc', self.train_acc, on_step=False, on_epoch=True)
loss = torch.nn.functional.cross_entropy(y_hat, target)
self.log("my_loss", loss, on_step=False, on_epoch=True, prog_bar=False)
return loss
def validation_step(self, batch, batch_idx):
inputs, target = batch
y_hat = self.model(inputs)
self.valid_acc(y_hat, target)
self.log('valid_acc', self.valid_acc, on_step=False, on_epoch=True)
def configure_optimizers(self):
return torch.optim.Adam(self.model.parameters(), lr=0.0001)
def on_train_epoch_end(self) -> None:
self.log_record('Train-Epoch:%3d, Loss: %.3f, Acc:%.3f' % (
self.current_epoch, self.trainer.logged_metrics.get("my_loss").item(),
self.trainer.logged_metrics.get("valid_acc").item()))
if self.trainer.logged_metrics.get("valid_acc").item() > self.best_acc:
self.best_acc = self.trainer.logged_metrics.get("valid_acc").item()
def on_train_end(self) -> None:
self.log_record('Finished-Acc:%.3f' % self.best_acc)
with open('populations/after_%s.txt' % (self.file_id[4:6]), 'a+') as f:
f.write('%s=%.5f\n' % (self.file_id, self.best_acc))
def log_record(self, _str):
dt = datetime.now()
dt.strftime('%Y-%m-%d %H:%M:%S')
with open(f"log/{self.file_id}.txt", 'a+') as f:
f.write('[%s]-%s\n' % (dt, _str))
if __name__ == '__main__':
training_loop()