-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
46 lines (35 loc) · 1.38 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import data_handling
import lightning_module
import lightning as L
from lightning.pytorch.loggers import TensorBoardLogger
from lightning.pytorch.callbacks.early_stopping import EarlyStopping
import os
import sys
from lightning.pytorch.callbacks import TQDMProgressBar
class MyProgressBar(TQDMProgressBar):
def init_validation_tqdm(self):
bar = super().init_validation_tqdm()
if not sys.stdout.isatty():
bar.disable = True
return bar
def init_predict_tqdm(self):
bar = super().init_predict_tqdm()
if not sys.stdout.isatty():
bar.disable = True
return bar
def init_test_tqdm(self):
bar = super().init_test_tqdm()
if not sys.stdout.isatty():
bar.disable = True
return bar
def training_loop() -> None:
if torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
torch.set_float32_matmul_precision('high')
model = lightning_module.LightningModule()
data_module = data_handling.DataModule()
logger = TensorBoardLogger(save_dir=os.getcwd(), name="lightning_logs", default_hp_metric=False)
trainer = L.Trainer(max_epochs=100, logger=logger, fast_dev_run=False, accelerator="gpu",
callbacks=[MyProgressBar(), EarlyStopping(monitor="valid_acc", mode="max", patience=100)])
trainer.fit(model, data_module)