💡: The Latest Framework test case is under:
./example/
.
On MNIST: (a) acc[96.80%] & loss vs. epochs for mlp; (b) acc[98.24%] & loss vs. epochs for LeNet
- Linear Regression
- Self Made Gauss-Noise of a Function.
- Logistic Regression
- Iris.
- KNN
- CIFAR-10.
- MLP
- MNIST.
- CIFAR-10.
- LeNet[1]
- MNIST.
- CIFAR-10.
- LSTM
- UCI HAR.
- GRU[3]
- UCI HAR.
- Transformer[4]
- WMT15. TODO
- Nerual ODE[5]
- MNIST. TODO
- VAE[7]
- MNIST.
Some small tests for debug during the development of this project:
- How to Use Mini-torch? A brief e.g. Doc TODO
- How to Use Jax Gradient, Ideas about how I manage parameters in this Framework.
- Some Jax Tips, About How to Use Jax Builtins & JIT to Optimize Loops & Matrix Operations.
- Kaiming Initialization[2] used in MLP & Conv, With math derivation.
- Difference between Conv2d Operation by python loop and by Jax.lax.
- Dropout mechanism impl, About Seed in Jax.
- Runge-Kuta solver for Neural ODE.
Overview of Framework
- nn
- Model (Base Class for Nerual Networks, like nn.Module in torch)
- Conv
- Conv1d, Conv2d, Conv3d
- MaxPooling1d, MaxPooling2d, MaxPooling3d
- BatchNorm TODO
- RnnCell
- Basic rnn kernel
- LSTM kernel
- GRU kernel
- BiLSTM kernel
- BiGRU kernel
- Layer Norm TODO
- FC
- Dropout
- Linear
- Optimizer
- Algorithms
- Raw GD
- Momentum
- Nesterov(NAG)
- AdaGrad
- RMSProp
- AdaDelta
- Adam[6]
- Machanisms
- Lr Decay. TODO
- Weight Decay. TODO
- Freeze. TODO
- Algorithms
- Utils
- sigmoid
- one hot
- softmax
- cross_entropy_loss
- mean_square_error
- l1_regularization
- l2_regularization
Last update: 2025.03.14.
236 text files.
135 unique files.
138 files ignored.
github.com/AlDanial/cloc v 1.98 T=0.05 s (2810.5 files/s, 307803.1 lines/s)
-------------------------------------------------------------------------------
Language files blank comment code
-------------------------------------------------------------------------------
Python 33 1689 3297 3177
Jupyter Notebook 21 0 3947 1913
Text 6 1 0 301
CSV 68 0 0 203
Markdown 5 40 0 198
TOML 2 3 0 16
-------------------------------------------------------------------------------
SUM: 135 1733 7244 5808
-------------------------------------------------------------------------------
[1] LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel, L. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4), 541–551.
[2] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV) (pp. 1026–1034).
[3] Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the Difficulty of Training Recurrent Neural Networks. In Proceedings of the 30th International Conference on Machine Learning (ICML) (pp. 1310–1318).
[4] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, ., & Polosukhin, I. (2017). Attention is All You Need. In Advances in Neural Information Processing Systems (NeurIPS).
[5] Chen, T., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018). Neural Ordinary Differential Equations. In Advances in Neural Information Processing Systems (NeurIPS).
[6] Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. Proceedings of the International Conference on Learning Representations (ICLR).
[7] Kingma, D., & Welling, M. (2014). Auto-Encoding Variational Bayes. In International Conference on Learning Representations (ICLR).