-
Notifications
You must be signed in to change notification settings - Fork 158
/
Copy path05_simple_layer_hardware_aware.py
100 lines (78 loc) · 3.03 KB
/
05_simple_layer_hardware_aware.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# -*- coding: utf-8 -*-
# (C) Copyright 2020, 2021, 2022, 2023, 2024 IBM. All Rights Reserved.
#
# Licensed under the MIT license. See LICENSE file in the project root for details.
"""aihwkit example 5: simple network hardware-aware training with one layer.
Simple network that consist of one analog layer. The network aims to learn
to sum all the elements from one array.
"""
# pylint: disable=invalid-name
# Imports from PyTorch.
from torch import Tensor
from torch.nn.functional import mse_loss
# Imports from aihwkit.
from aihwkit.nn import AnalogLinear
from aihwkit.optim import AnalogSGD
from aihwkit.simulator.configs import (
InferenceRPUConfig,
WeightNoiseType,
WeightClipType,
WeightModifierType,
)
from aihwkit.inference import PCMLikeNoiseModel, GlobalDriftCompensation
from aihwkit.simulator.rpu_base import cuda
# Prepare the datasets (input and expected output).
x = Tensor([[0.1, 0.2, 0.4, 0.3], [0.2, 0.1, 0.1, 0.3]])
y = Tensor([[1.0, 0.5], [0.7, 0.3]])
# Define a single-layer network, using inference/hardware-aware training tile
rpu_config = InferenceRPUConfig()
rpu_config.forward.out_res = -1.0 # Turn off (output) ADC discretization.
rpu_config.forward.w_noise_type = WeightNoiseType.ADDITIVE_CONSTANT
rpu_config.forward.w_noise = 0.02 # Short-term w-noise.
rpu_config.clip.type = WeightClipType.FIXED_VALUE
rpu_config.clip.fixed_value = 1.0
rpu_config.modifier.pdrop = 0.03 # Drop connect.
rpu_config.modifier.type = WeightModifierType.ADD_NORMAL # Fwd/bwd weight noise.
rpu_config.modifier.std_dev = 0.1
rpu_config.modifier.rel_to_actual_wmax = True
# Inference noise model.
rpu_config.noise_model = PCMLikeNoiseModel(g_max=25.0)
# drift compensation
rpu_config.drift_compensation = GlobalDriftCompensation()
print(rpu_config)
model = AnalogLinear(4, 2, bias=True, rpu_config=rpu_config)
# Move the model and tensors to cuda if it is available.
if cuda.is_compiled():
x = x.cuda()
y = y.cuda()
model.cuda()
# Define an analog-aware optimizer, preparing it for using the layers.
opt = AnalogSGD(model.parameters(), lr=0.1)
opt.regroup_param_groups(model)
print(next(model.analog_tiles()).tile)
for epoch in range(100):
# Delete old gradient
opt.zero_grad()
# Add the training Tensor to the model (input).
pred = model(x)
# Add the expected output Tensor.
loss = mse_loss(pred, y)
# Run training (backward propagation).
loss.backward()
opt.step()
print("Loss error: {:.16f}".format(loss))
model.eval()
# Do inference with drift.
pred_before = model(x)
print("Correct value:\t {}".format(y.detach().cpu().numpy().flatten()))
print("Prediction after training:\t {}".format(pred_before.detach().cpu().numpy().flatten()))
for t_inference in [0.0, 1.0, 20.0, 1000.0, 1e5]:
model.drift_analog_weights(t_inference)
pred_drift = model(x)
print(
"Prediction after drift (t={}, correction={:1.3f}):\t {}".format(
t_inference,
next(model.analog_tiles()).alpha.cpu().numpy(),
pred_drift.detach().cpu().numpy().flatten(),
)
)