-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathstats.py
executable file
·468 lines (422 loc) · 15.6 KB
/
stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
#!/usr/bin/env python
from builtins import str
from builtins import map
from collections import defaultdict
from fileinput import input
from fileinput import hook_compressed
from glob import glob
from os.path import basename
from os.path import dirname
from os.path import exists
from os.path import join
import pandas as pd
from sys import stderr
import logging
from omero import all # noqa
from omero import ApiUsageException
from omero.callbacks import CmdCallbackI
from omero.cli import CLI
from omero.cli import Parser
from omero.cmd import DiskUsage2
from omero.rtypes import unwrap
from omero.sys import ParametersI
from omero.gateway import BlitzGateway
from yaml import safe_load
PDI_QUERY = """
SELECT
p.id,
COUNT(DISTINCT d.id),
0,
0,
COUNT(DISTINCT i.id),
SUM(CAST(pix.sizeZ AS long) * pix.sizeT * pix.sizeC),
SUM(CAST(pix.sizeZ AS long) * pix.sizeT * pix.sizeC *
pix.sizeX * pix.sizeY * 2),
CONCAT(
CAST(ROUND(AVG(pix.sizeX)) AS int),
' x ',
CAST(ROUND(AVG(pix.sizeY)) AS int),
' x ',
CAST(ROUND(AVG(pix.sizeZ)) AS int),
' x ',
CAST(ROUND(AVG(pix.sizeC)) AS int),
' x ',
CAST(ROUND(AVG(pix.sizeT)) AS int)
)
FROM Project p
LEFT OUTER JOIN p.datasetLinks pdl
LEFT OUTER JOIN pdl.child d
LEFT OUTER JOIN d.imageLinks dil
LEFT OUTER JOIN dil.child i
LEFT OUTER JOIN i.pixels pix
WHERE p.name = :container
GROUP BY p.id
"""
SPW_QUERY = """
SELECT
s.id,
COUNT(DISTINCT p.id),
COUNT(DISTINCT w.id),
COUNT(DISTINCT pa.id),
COUNT(DISTINCT i.id),
SUM(CAST(pix.sizeZ AS long) * pix.sizeT * pix.sizeC),
SUM(CAST(pix.sizeZ AS long) * pix.sizeT * pix.sizeC *
pix.sizeX * pix.sizeY * 2),
CONCAT(
CAST(ROUND(AVG(pix.sizeX)) AS int),
' x ',
CAST(ROUND(AVG(pix.sizeY)) AS int),
' x ',
CAST(ROUND(AVG(pix.sizeZ)) AS int),
' x ',
CAST(ROUND(AVG(pix.sizeC)) AS int),
' x ',
CAST(ROUND(AVG(pix.sizeT)) AS int)
)
FROM Screen s
LEFT OUTER JOIN s.plateLinks spl
LEFT OUTER JOIN spl.child p
LEFT OUTER JOIN p.wells w
LEFT OUTER JOIN w.wellSamples ws
LEFT OUTER JOIN ws.plateAcquisition pa
LEFT OUTER JOIN ws.image i
LEFT OUTER JOIN i.pixels pix
WHERE s.name = :container
GROUP BY s.id
"""
def studies(study_list, default_columns=["name", "path"]):
rv = defaultdict(lambda: defaultdict(lambda: defaultdict(list)))
if not study_list:
study_list = sorted(glob("idr*"))
for study in study_list:
if study[-1] == "/":
study = study[0:-1]
if "idr0000-" in study or "idr-utils" in study:
continue
logging.info("Finding containers for study %s" % study)
containers = glob(
join(study, "screen[A-Z]")) + glob(join(study, "experiment[A-Z]"))
assert len(containers) >= 1
for container in sorted(containers):
if container.startswith(join(study, "screen")):
target = "Plate"
else:
target = "Dataset"
bulks = glob(join(container, "*-bulk.yml"))
bulks += glob(join(container, "**/*-bulk.yml"))
for bulk in bulks:
pdir = dirname(bulk)
with open(bulk, "r") as f:
y = safe_load(f)
p = join(pdir, y["path"])
columns = y.get("columns", default_columns)
name_idx = None
path_idx = None
target_idx = None
for idx, col in enumerate(columns):
if col == "name":
name_idx = idx
elif col == "target":
target_idx = idx
elif col == "path":
path_idx = idx
if not exists(p) and exists("%s.gz" % p):
p = "%s.gz" % p
with input(files=[p], openhook=hook_compressed) as f:
for line in f:
if isinstance(line, bytes): # compressed files
line = line.decode('utf-8')
parts = line.strip().split("\t")
if name_idx:
name = parts[name_idx]
else:
if path_idx < len(parts):
name = basename(parts[path_idx])
else:
raise Exception(path_idx, container, bulk)
if target_idx:
target = parts[target_idx]
rv[study][container][target].append(name)
for study, containers in sorted(rv.items()):
for container, types in sorted(containers.items()):
assert len(types) == 1, (study, container, types)
return rv
def orphans(query):
orphans = unwrap(query.projection((
"select distinct f.id from Image i "
"join i.fileset as f "
"left outer join i.wellSamples as ws "
"where ws = null "
"order by f.id"), None))
for orphan in orphans:
print("Fileset:%s" % (orphan[0]))
print("Total:", len(orphans), file=stderr)
def unknown(query, study_list):
on_disk = []
for study, screens in sorted(studies(study_list).items()):
for screen, plates in list(screens.items()):
on_disk.append(screen)
on_disk.extend(plates)
on_server = unwrap(query.projection((
"select s.name, s.id from Screen s"), None))
for name, id in on_server:
if name not in on_disk:
print("Screen:%s" % id, name)
on_server = unwrap(query.projection((
"select s.name, p.name, p.id from Plate p "
"join p.screenLinks as sl join sl.parent as s"), None))
for screen, name, id in on_server:
if name not in on_disk:
print("Plate:%s" % id, name, screen)
def check_search(query, search):
obj_types = ('Screen', 'Plate', 'Image')
print("loading all map annotations")
res = query.findAllByQuery("from MapAnnotation m", None)
all_values = set(
v for m in res for k, v in m.getMapValueAsMap().items()
)
print("searching for all unique values [%d]" % len(all_values))
with open("no_matches.txt", "w") as fo:
for v in all_values:
try:
matches = []
for t in obj_types:
search.onlyType(t)
search.byFullText(v)
hit = search.hasNext()
matches.append(0 if not hit else len(search.results()))
fo.write("%s\n" % '\t'.join(map(str, matches)))
except ApiUsageException as e:
stderr.write("%s: %s\n" % (v, e))
continue
def fs_usage(client, objecttype, objectid):
req = DiskUsage2()
req.targetObjects = {objecttype: [objectid]}
cb = None
handle = None
try:
handle = client.sf.submit(req)
cb = CmdCallbackI(client, handle)
# Wait for finish
while True:
found = cb.block(1000)
if found:
break
rsp = cb.getResponse()
# status = cb.getStatus()
except KeyboardInterrupt:
# If user uses Ctrl-C, then cancel
if handle is not None:
logging.warning("Attempting cancel...")
if handle.cancel():
logging.warning("Cancelled")
else:
logging.warning("Failed to cancel")
finally:
if cb is not None:
cb.close(True) # Close handle
sizebytes = sum(rsp.totalBytesUsed.values())
nfiles = sum(rsp.totalFileCount.values())
return sizebytes, nfiles
def get_study_key_value_pairs(
client, container, id, ns="idr.openmicroscopy.org/study/info"):
conn = BlitzGateway(client_obj=client)
logging.debug("get_study_key_value_pairs: %s %s" % (container, id))
key_values = {}
for link in conn.getAnnotationLinks(container, [id], ns=ns):
ann = link.getAnnotation()
logging.debug("map annotation ID: %s", ann.id)
for key_value in ann.getValue():
key_values[key_value[0]] = key_value[1]
return key_values
def stat_top_level(client, study_list, *, release, fsusage, append_totals):
# Calculate stats for the studies.tsv file.
# client: OMERO client
# release: THe name of the IDR release
# study_list: List of studies
# fsusage: If True use the OMERO DiskUsage2 command to get information
# on disk usage, otherwise make a rough guess and ignore other fields
# append_totals: If True append an additional row containing totals
# Returns a pandas Dataframe that can be used for further analysis
query = client.sf.getQueryService()
df = pd.DataFrame(columns=(
"Study",
"Container",
"Introduced",
"ID", # "Internal ID"
"Set", # Number of plates or datasets
"Wells",
"Experiments",
# (wells for screens, imaging experiments for non-screens)",
# TODO: remove
"Targets",
# (genes, small molecules, geographic locations, or combination of
# factors (idr0019, 26, 34, 38)",
# TODO: remove
"Acquisitions",
"Images", # "5D Images"
"Planes",
"Size (TB)",
"Bytes", # "Size"
"# of Files",
"avg. size (MB)",
"Avg. Image Dim (XYZCT)",
"Sample Type", # cell or tissue
))
# Placeholders:
experiments = None
targets = None
for study, containers in sorted(studies(study_list).items()):
for container, set_expected in sorted(containers.items()):
logging.info("Retrieving stats for %s" % container)
params = ParametersI()
params.addString("container", container)
if "Plate" in set_expected:
parenttype = "Screen"
expected = set_expected["Plate"]
rv = unwrap(query.projection(SPW_QUERY, params))
elif "Dataset" in set_expected:
parenttype = "Project"
expected = set_expected["Dataset"]
rv = unwrap(query.projection(PDI_QUERY, params))
else:
raise Exception("unknown: %s" % list(set_expected.keys()))
nexpected = len(expected)
container1, container2 = container.split('/', 1)
if not rv:
df.loc[len(df)] = (
container1,
container2,
release,
"MISSING",
0,
0,
experiments,
targets,
0,
0,
0,
0,
0,
None,
None,
"",
"",
)
else:
for x in rv:
(
plate_or_dataset_id,
plate_or_datasets,
wells,
acquisitions,
images,
planes,
bytes,
avg_image_dim
) = x
kv_pairs = get_study_key_value_pairs(
client, parenttype, plate_or_dataset_id)
if not planes:
planes = 0
if not bytes:
bytes = 0
if plate_or_datasets != nexpected:
logging.debug(
'%s: got %d plate/datasets expected %d',
container, plate_or_datasets, nexpected)
if fsusage:
logging.debug('Computing disk usage')
fs_size, fs_num = fs_usage(
client, parenttype, plate_or_dataset_id)
else:
fs_size = bytes
fs_num = None
if fs_num:
fs_avg_size = fs_size / fs_num / (10 ** 6)
else:
fs_avg_size = None
df.loc[len(df)] = (
container1,
container2,
release,
plate_or_dataset_id,
plate_or_datasets,
wells,
experiments,
targets,
acquisitions,
images,
planes,
fs_size / (10 ** 12),
fs_size,
fs_num,
fs_avg_size,
avg_image_dim,
kv_pairs.get("Sample Type", ""),
)
if append_totals:
totals = df.iloc[:, -12:-2].sum()
df.loc[len(df)] = ["Total", "", "", ""] + totals.to_list() + ["", ""]
return df
def print_stats(df, fmt):
# fmt can be any of the pandas.Dataframe.to_{printfmt} methods
if fmt == 'tsv':
out = df.to_csv(sep='\t', header=False, index=False)
elif fmt in ('json',):
out = getattr(df, f'to_{fmt}')()
else:
out = getattr(df, f'to_{fmt}')(index=False)
print(out)
def main():
parser = Parser()
parser.add_login_arguments()
parser.add_argument("--orphans", action="store_true")
parser.add_argument("--unknown", action="store_true")
parser.add_argument("--search", action="store_true")
parser.add_argument("--images", action="store_true")
parser.add_argument("--release", default="TODO",
help="The name of the release, e.g. 'prod88'")
parser.add_argument("--disable-fsusage", action="store_true", help=(
"Disable fs usage file size and counts. "
"Use this flag if the script is taking too long."))
parser.add_argument("--format", default="tsv", help=(
"Output format, includes 'string', 'csv', 'tsv' (default), and "
"'json'. "
"'tsv' can be appended to the IDR studies.csv file with no further "
"processing. "
"All other formats include headers and totals. "
"'string' is the most human readable (fixed width columns). "
))
parser.add_argument(
"studies", nargs='*',
help="Studies to be processed, default all (idr*)")
parser.add_argument('-v', '--verbose', action='count', default=0)
ns = parser.parse_args()
levels = [logging.WARNING, logging.INFO, logging.DEBUG]
level = levels[min(len(levels)-1, ns.verbose)]
logging.basicConfig(
level=level, format="%(asctime)s %(levelname)s %(message)s")
cli = CLI()
cli.loadplugins()
client = cli.conn(ns)
try:
query = client.sf.getQueryService()
if ns.orphans:
orphans(query)
elif ns.unknown:
unknown(query, ns.studies)
elif ns.search:
search = client.sf.createSearchService()
check_search(query, search)
else:
df = stat_top_level(
client, ns.studies,
release=ns.release,
fsusage=(not ns.disable_fsusage),
append_totals=(ns.format != 'tsv'))
print_stats(df, ns.format)
finally:
cli.close()
if __name__ == "__main__":
main()